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Constrained Band Selection
for Hyperspectral Imagery
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Abstract—Constrained energy minimization (CEM) has shown
effective in hyperspectral target detection. It linearly constrains
a desired target signature while minimizing interfering effects
caused by other unknown signatures. This paper explores this
idea for band selection and develops a new approach to band
selection, referred to as constrained band selection (CBS) for
hyperspectral imagery. It interprets a band image as a desired
target signature vector while considering other band images as
unknown signature vectors. As a result, the proposed CBS using
the concept of the CEM to linearly constrain a band image,
while also minimizing band correlation or dependence provided
by other band images, is referred to as CEM-CBS. Four different
criteria referred to as Band Correlation Minimization (BCM),
Band Correlation Constraint (BCC), Band Dependence Con-
straint (BDC), and Band Dependence Minimization (BDM) are
derived for CEM-CBS.. Since dimensionality resulting from con-
version of a band image to a vector may be huge, the CEM-CBS
is further reinterpreted as linearly constrained minimum vari-
ance (LCMV)-based CBS by constraining a band image as a
matrix where the same four criteria, BCM, BCC, BDC, and
BDM, can be also used for LCMV-CBS. In order to determine
the number of bands required to select , a recently developed
concept, called virtual dimensionality, is used to estimate the .
Once the is determined, a set of desired bands can be selected
by the CEM/LCMV-CBS. Finally, experiments are conducted to
substantiate the proposed CEM/LCMV-CBS four criteria, BCM,
BCC, BDC, and BDM, in comparison with variance-based band
selection, information divergence-based band selection, and uni-
form band selection.

Index Terms—Band correlation constraint (BCC), band corre-
lation minimization (BCM), band dependence constraint (BDC),
band dependence minimization (BDM), constrained band selec-
tion (CBS), constrained energy minimization (CEM), linearly con-
strained minimum variance (LCMV), virtual dimensionality (VD).

I. INTRODUCTION

Ahyperspectral image is an image cube with each image
pixel represented by a column vector where each of

column components is a pixel imaged by a particular spec-
tral channel. As a result, data volume to be processed for a
hyperspectral image is generally huge and enormous. Its com-
putational complexity is also expected to be very high. In order
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to mitigate this problem, several approaches have been investi-
gated by looking into how to remove information redundancy
resulting from highly correlated bands. One common practice
is data dimensionality reduction (DR) which implements a
transform to reduce data dimensions in accordance with a cer-
tain criterion such as data variance performed by the principal
components analysis (PCA). Two major issues arise from such
DR approaches. One is the number of data dimensions required
for DR to avoid significant loss of information. The other is
that, since the data after DR have been transformed and are,
therefore, no longer original data, some crucial and critical
information may have been compromised and distorted.

An alternative to DR is band selection, which selects appro-
priate bands from the original set of spectral bands that can well
represent original data. Compared to DR, the band selection has
an advantage of preserving original information from the data.
However, it also suffers from two similar issues encountered in
the DR. One is also how many bands needed to be selected in
order to preserve necessary information. The other is the crite-
rion to be used for band selection. This paper investigates these
two issues for band selection.

Since the first issue is very difficult and challenging, most
approaches developed for band selection, such as [1]–[5], have
devoted to the second issue while ignoring the first issue. This
paper addresses this first issue by a new concept of virtual
dimensionality (VD), which was recently introduced in [6] to
estimate the number of spectrally distinct signatures in data.
If we interpret that one signal source can be only accommo-
dated by one single and separate dimension, it requires at least
the same number of dimensions as the VD to accommodate
distinct signal sources. With this interpretation, the VD has
shown to be an effective measure in estimating the number
of dimensions required to be retained for DR [7]–[9]. By the
same token, we can use the VD to resolve the issue of number
of bands required to be retained for band selection. As for
the second issue, this paper develops a new approach, called
constrained band selection (CBS), which is completely dif-
ferent from commonly used variance-based [4] or information
theoretic criteria-based band-selection methods [1]–[3]. It can
be considered as a constrained band correlation/dependence
minimization approach, which linearly constrains a band while
minimizing the correlation or dependency of this particular
band with other bands in a hyperspectral image. The idea can
be traced back to the linearly constrained minimum variance
(LCMV) developed by Frost in [10] for adaptive beamforming
in passive array processing, which makes use of a specific gain
to constrain an finite impulse response (FIR) filter to look for
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signals coming from a particular direction from an array of
sensors. When the gain is constrained to a single direction with
unity, the resulting FIR filter is called the minimum variance
distortionless response (MVDR) beamformer. One early appli-
cation of the MVDR was the constrained energy minimization
(CEM) [6], [11], [12], which interpreted an array of sensors as
a bank of spectral channels and the desired signal direction as a
desired target signature. The rationale of the CBS presented in
this paper is also derived from the LCMV and CEM. Instead of
linearly constraining the signal direction of interest, as is done
in the LCMV and the desired target signature, as is done in the
CEM, the CBS linearly constrains a particular band of interest
while minimizing the band correlation or band dependence
resulting from other bands in the sense of least-square error
(LSE). Accordingly, the larger the LSE, the higher the band
correlation/dependence of the particular band image with/on
other band images. As a result, two versions of the CBS can
be further developed, referred to as CEM-based CBS and
LCMV-based CBS, respectively. When they are used for band
selection, bands to be selected are based on the LSE generated
by either the CEM-CBS or the LCMV-CBS.

There are two ways to implement the proposed CEM/LCMV-
CBS. One is to convert a band image to a band image vector
and the data sample correlation matrix used in the CEM is then
replaced with a correlation matrix obtained by averaging the in-
dividual band image correlation matrix. Since a band image is
generally large, the size of its converted vector will be huge
and may further cause a computational problem. In order to
cope with this difficulty, an alternative approach is to use the
LCMV [6], [10], [12] to alleviate this dilemma. Rather than
constraining a band image as a vector, the LCMV-CBS con-
strains a band image as a matrix where a constraint vector is
imposed on each column of the band image matrix. As a re-
sult, the computational complexity can be cut by three quar-
ters, and, thus, reduced substantially. The experimental results
show that, while both the proposed LCMV-CBS and CEM-CBS
perform very similarly, the LCMV-CBS does offer a signifi-
cant advantage over the CEM-CBS in computation. In order to
evaluate the performance of our proposed CEM/LCMV-CBS,
extensive experiments are conducted to demonstrate that the
CEM/LCMV-CBS, indeed, performs relatively well, and also
effectively, compared to uniform band selection and band-se-
lection methods in [1]–[4].

The remainder of this paper is organized as follows. Section II
develops a new approach to band selection, called constrained
band selection, which is based on the CEM. Section III presents
an alternative to implement the CEM-CBS, called LCMV-CBS,
which eases computational problem encountered in the CEM-
CBS. Section IV conducts experimental study in three applica-
tions to evaluate the proposed CBS for performance analysis.
Section V concludes some remarks.

II. CEM-CBS

In this section, we develop a new approach to band selection,
referred to as CEM-based constrained band selection (CEM-
CBS) which is derived from the concept of the constrained en-
ergy minimization (CEM) [6], [11], [12].

A. CEM-CBS

Let be the set of all band images in a hyperspectral
image cube where is the total number of bands. Assume that
the size of all the band images is . Each band image
can be represented by a column vector of dimension , de-
noted by . Let be an -dimensional column vector that
is used to specify a finite impulse response (FIR) filter designed
for the band image vector and be the filter output specified
by

(1)

The averaged least squares filter output is given by

(2)

Let denote the band image correla-
tion matrix. A similar optimization problem to the constrained
energy minimization (CEM) can be obtained for a constrained
band-selection problem as follows:

subject to (3)

The solution to (3), is given by

(4)

Alternatively, we can exclude the band image from
the band image correlation matrix and further define

as the band image depen-

dence matrix. Replacing in (3) with results in a similar
constrained band-selection problem

subject to (5)

The solution to (5), is the same as the one in (4) with
the replaced by , which is given by

(6)

B. Criteria for Band Selection

In the previous section, two versions of the CEM-CBS
were developed and described by (3) and (5). Their solutions,

and specified by (4) and (6) can then be
used as criteria for band selection. In this section, four different
criteria are proposed for the CBS.

1) Band Correlation Minimization (BCM): According
to (3), the LSE resulting from the is

, which represents minimal
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correlation of the band image vector with the entire hyper-
spectral image in the least-square sense by constraining the
band image . This implies that the larger the , the higher
correlated the band image with the hyperspectral image,
thus, the more important the band . For example, a noisy
band image generally has little correlation with the entire
hyperspectral image, and, thus, has smaller CEM-LSE. The use
of to select the band images is called BCM.

2) Band Dependence Minimization (BDM): Similar
to BCM, the LSE resulting from is

, which indicates the depen-
dence of the band image on all band images other than

. The larger the , the more dependent the band image
on other band images, thus, the more significant the band.
Therefore, using for band selection is called BDM.

3) Band Correlation Constraint (BCC): The BCM and
BDM are criteria to measure the LSE resulting from CEM.
As an alternative, we can measure the degree of a band image
vector deviated from the constraint imposed by the CEM,

, which is . With this interpretation, a new
criterion can be defined by calculating the sum of the deviations
of all bands , other than
from the CEM-imposed constraint via
as follows:

(7)

It should be noted that the one in (7) is the result of
form (3). Additionally, due to the constraint in (3),
a band image vector has less correlation with band image
vector if its band constraint is far away from 1. In
other words, the closer the to 1, the higher the correla-
tion of to . In light of (7), represents the degree of the
band constraint of a particular band on band correlation to
the entire hyperspectral image. The use of for band se-
lection is called BCC.

4) Band Dependence Constraint (BDC): Analogous with
BCC, a criterion can be also defined via by

(8)

The use of to measure the degree of the band constraint
of a particular band on band dependence on all other band
images is called BDC.

III. LCMV-CBS

One disadvantage of the CEM-CBS is the enormous size
of vectors converted from band images that causes tremen-
dous computing time. For example, it requires a vector with
4 10 dimensions to represent a band image with size of
200 200 pixels. In order to mitigate this dilemma, a linearly
constrained minimum variance LCMV-CBS is developed in
this section. Instead of constraining a band image as a vector,
the LCMV-CBS constrains a band image as an image matrix
without vector conversion. More specifically, assume that

are columns of the th band image
, which has rows and columns and each column

is represented by the -dimensional column vector
. In this case, the th band

image can be further expressed by a matrix given by

. . .
...

. . .
. . .

...
...

. . .
. . .

(9)

Like the CEM, the goal is to design a constrained FIR
linear filter with an -dimensional weight column vector

specified by a set of filter coef-
ficients that minimizes the filter output
energy subject to the following simultaneous multiple con-
straints, , which
is equivalent to

(10)

where is an -dimensional column vector with all 1s in its
components. It should be noted that since the weight vector
is (10) is used to constrain column vector of a band image, its

dimensionality is compared to the -dimensional weight
vector used in the CEM-based CBS that constrains a band
image as a vector with dimensionality . By virtue of the
multiple constraints in (10), the CEM-CBS problem described
by (3) can be rederived as the following optimization problem:

subject to (11)

where is the sample band correlation
matrix, The problem described by (11) is referred to as LCMV-
based CBS problem. The solution to (11) can be solved as

(12)

and

for (13)
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plays the same role that does for the CEM-BCM. Sim-
ilar derivations to CEM-BDM can be also obtained for

and

for

(14)

Analogous with the CEM-based band correlation/depen-
dence constraint criteria (BCC/BDC) developed in Section II

for (15)

and

for (16)

can be also derived for an LCMV-based band correlation/depen-
dence constraint criteria by replacing band image vector and
CEM-based weight vectors with band image and LCMV-
based weight vectors respectively.

It should be noted that for the CEM-CBS, the dimensions of
the band image correlation/dependence matrices and are
both , while for the LCMV-CBS, the dimensions of
the band image correlation/dependence matrix and are

. That is exactly the reason why we develop the LCMC-CBS
to dramatically reduce the computational complexity caused by
the CEM-CBS.

One comment is worthwhile. The difference between the
CEM-CBS and the LCMV-CBS lies in the fact that the
former method considers a band image as a column vector
via a scalar constraint, while the latter constraints each of
column vector of a band image through a vector constraint.
In other words, if we impose each of column in ,
for with the same scalar constraint , i.e.,

, we further concatenate
all the column vectors of the th band image

to a vector to represent the as an -dimensional

column vector and the weight
vectors times to an -dimensional weight vector

, then

which is exactly the same constraint imposed in (3).
The advantage of the LCMV-CBS over the CEM-CBS is signifi-
cant reduction of computational complexity. The only difference
between these two approaches is that the weight vector, gen-
erated by the LCMV-CBS has dimensionality of as opposed
to the dimensionality of produced by the CEM-CBS for its
weight vector . Despite the fact that the LCMV-CBS and the
CEM-CBS share the same design concept, both perform quite
differently. According to our conducted experimental results,
the CEM-CBS would only perform better than the LCMV-CBS

when the number of selected bands is small such as fewer than
ten bands, in which case the CEM-CBS is practically imple-
mentable and preferred to the LCMV-CBS. Otherwise, both per-
formed very similarly in which case the LCMV-CBS is always
preferable.

IV. EXPERIMENTS

In this section, two real hyperspectral image data were used
for experiments. Three different applications—target detection,
mixed-pixel classification, and endmember extraction—were
used to evaluate the CEM-CBS and LCMV-CBS in comparison
with uniform band selection (UBS) and eigen-based band
selection (EBS) [4], [5] for performance evaluation. Since
the band selection considered in this paper is unsupervised,
only the minimum variance PCA (MVPCA) in [4] and mutual
information-based information divergence (ID) derived from
[1]–[3] were used for comparison. In particular, the ID to be
used in this paper is defined as follows.

Assume that the is the image histogram of the th band
image, normalized as a probability distribution, and is
its associated Gaussian distribution with mean and variance de-
termined by sample mean and sample variance of the . The
criterion of interest is to measure how much far away from a
Gaussian distribution for a given band image, that is, the dis-
crepancy between and defined by

(17)

which is called information divergence [13]. According to (17),
the higher the value of in (17), the greater deviation
of from the Gaussian distribution, . This implies that the
ID is used to measure non-Gaussianity of a band.

Additionally, the algorithms and images used for applica-
tions were selected to illustrate advantages and disadvantages
of band selection in various applications. Other algorithms or
images can be also used to evaluate our proposed CBS in these
applications.

A. HYDICE Data

The first image data to be studied is an image scene shown
in Fig. 1(a), which has a size of 64 64 pixel vectors with 15
panels in the scene and the ground truth map in Fig. 1(b). It
was acquired by 210 spectral bands with a spectral coverage
from 0.4 to 2.5 m. Low signal/high noise bands (bands 1–3
and bands 202–210) and water vapor absorption bands (bands
101–112 and bands 137–153) were removed. So, a total of 169
bands were used in experiments. The spatial resolution is 1.56 m
and spectral resolution is 10 nm.

Within the scene in Fig. 1(a), there is a large grass field back-
ground, and a forest on the left edge. Each element in this ma-
trix is a square panel and denoted by with rows indexed by

and columns indexed by 1, 2, 3. For each row 1, 2,
, 5, there are three panels , , , painted by the same

paint but with three different sizes. The sizes of the panels in
the first, second and third columns are 3 3 m, 2 2 m, and
1 1 m, respectively. Since the size of the panels in the third
column is 1 1 m, they cannot be seen visually from Fig. 1(a)
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Fig. 1. (a) HYDICE panel scene which contains 15 panels. (b) Ground truth
map of spatial locations of the 15 panels. (c) Spectral signatures of p , p , p ,
p , and p .

due to the fact that its size is less than the 1.56-m pixel resolu-
tion. For each column 1, 2, 3, the five panels have the same
size but with five different paints. However, it should be noted
that the panels in rows two and three were made by the same
material with two different paints. Similarly, it is also the case
for panels in rows four and five. Nevertheless, they were still
considered as different panels, but our experiments will demon-
strate that detecting panels in row five (row four) may also have
effect on detection of panels in row two (row three). The 1.56-m
spatial resolution of the image scene suggests that most of the 15
panels are one pixel in size, except the panels in the first column
along with the second, third, fourth, and fifth rows, which are
two-pixel panels, denoted by , , , , , ,

, . Since the size of the panels in the third column is
1 1 m, they cannot be seen visually from Fig. 1(a) due to
the fact that its size is less than the 1.56-m pixel resolution.
Fig. 1(b) shows the precise spatial locations of these 15 panels
where red pixels (R pixels) are the panel center pixels and the
pixels in yellow (Y pixels) are panel pixels mixed with the back-
ground. Fig. 1(c) plots the five panel spectral signatures for

1, 2, , 5 obtained by averaging R pixels in the 3 3 m and
2 2 m panels in row in Fig. 1(b). It should be noted the R
pixels in the 1 1 m panels are not included because they are
not pure pixels, mainly due to that fact that the spatial resolu-
tion of the R pixels in the 1 1 m panels is 1 m smaller than the
pixel resolution is 1.56 m. These panel signatures along with the
R pixels in the 3 3 m and 2 2 m panels were used as required
prior target knowledge for the following comparative studies.

First, we need to determine how many bands needed for band
selection. Let denote the number of bands required for band
selection. The VD was used to estimate the where the method
developed by Harsanyi et al. in [6] and [14], referred to as HFC
method was used to calculate the VD for the HYDICE image
scene in Fig. 1(a). The values of VD with various false alarm
probabilities of are tabulated in Table I.

TABLE I
VD ESTIMATES FOR THE HYDICE SCENE IN FIG. 1(a) BY THE HFC

METHOD WITH VARIOUS FALSE ALARM PROBABILITIES

TABLE II
COMPARISON BETWEEN SELECTED BANDS USING DIFFERENT TECHNIQUES

For our experiments, VD was chosen to be 9. The selection of
is empirical based on the false alarm fixed at probabilities

, . As noted, the value of VD varies with the
false alarm probability . This makes sense. With no avail-
ability of prior knowledge, the false alarm probability via the
Neyman–Pearson detection theory [15] is probably one of most
effective criteria to determine number of signals detected in the
data. As interpreted in the introduction, one dimension can be
only used to accommodate one single signal source. Therefore,
it requires at least the VD-determined dimensions to separate
distinct signal sources. So, as a matter of fact, the should not
be less than the VD.

1) Target Detection: In order to evaluate the impact of CBS
on target detection, the commonly used CEM was implemented
for performance analysis. The selection of the CEM was purely
based on our preference which only uses partial target knowl-
edge, desired target signature. It can be used to compare results
for unsupervised mixed-pixel classification in the following
section, Section IV-A2, where target knowledge is not pro-
vided a priori, rather obtained directly from the image scene.
Table II tabulates the nine bands selected by the LCMV-CBS
and CEM-CBS with nine highest band correlations along with
the nine bands selected by uniform band and MVPCA in [4]
and the ID defined by (17) where a backslash “/” is used to
separate two selected bands. Since the criteria BCM and BDM
yielded the identical bands for both the LCMV-CBS and the
CEM-CBS, they are included in the same row in Table II.
Similarly, it was true for BCC and BDC which also produced
the identical bands for the LCMV-CBS and the CEM-CBS.

Fig. 2(a) shows the 15-panel detection results by the CEM
using the complete set of full bands, 169 bands, whereas
Fig. 2(b)–(h) shows detection results of the 15 panels by the
CEM using nine bands selected by various criteria, BCM/BDM
CEM-CBS, BCC/BDC CEM-CBS, BCM/BDM LCMV-CBS,
BCC/BDC LCMV-CBS, uniform, MVPCA, and ID where the



1580 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 6, JUNE 2006

Fig. 2. Detection results of 15 panels by the CEM with nine selected bands.

desired target signature used in the CEM was selected from five
panel signatures, , , , , and in Fig. 1(c).

As demonstrated in Fig. 2(b)–(h), the ID seemed to perform
better than other band-selection algorithms. However, this was
due to the fact that the desired target signature used in the
CEM was assumed to be known a priori. The results would
be different and demonstrated in the following section where
the unsupervised mixed-pixel classification is considered as
an application. Furthermore, if we compare the results in
Fig. 2(b)–(h) to that in Fig. 2(a), the CEM using full bands
performed significantly better than band-selection-based tech-
niques in Fig. 2(b)–(h). This may be due to three reasons.

One is targets to be detected. Since the 15 panels are small
targets, their detection requires as many as bands to provide
sufficient sample spectral correlation to capture their subtle
spectral properties. A second reason is the algorithm used for
detection. The CEM only used one signature for detection
while viewing other eight signatures as interfering signatures.
As a result, it did not take advantage of the knowledge provided
by these eight signatures. Instead, it used sample spectral
correlation provided by the entire image to suppress these eight
signatures. In this case, the sample correlation plays a key role
in its detection. Like the first reason, such small panels can
be only captured by subtle sample spectral correlation. Band
selection may result in loss of some crucial information. A
third reason is that the VD only provides an estimate of the
least number of bands to be selected. It does not imply that
the must be the VD. In this particular experiment,
was not sufficiently large for the CEM to detect small panels.
The results were significantly improved with all the 15 panels
detected when the was increased to be twice the VD, 18 or
greater according to the results in [6, Ch. 17]. Their results are
not included here since this experiment was not designed to
show target detection, but rather demonstrated the performance
in target detection for all the band-selection methods that were
compared fairly under the same conditions. Nevertheless, as
will be also demonstrated in the next section, if the application
is mixed-pixel classification and the algorithm to be used is
the fully constrained least-squares (FCLS) method developed
in [6] and [16], the performance can be significantly improved
using the same number of bands selected, .

2) Unsupervised Mixed-Pixel Classification: In the pre-
vious section, target detection was considered as an application
for band selection, where the CEM was used to perform partially
supervised target detection with only desired target signature
required. In this section, unsupervised mixed-pixel classifica-
tion is considered as another application for band selection.
Since it must be performed unsupervisedly, an unsupervised
algorithm which was proved to be effective, the automatic target
generation process (ATGP) developed in [6], [17] was used to
generate nine target pixels directly from the original image with
full bands shown in Fig. 3(a) and nine target pixels from nine-
band selected images shown in Fig. 3(b)–(h) to represent the
required target knowledge for unsupervised classification with
those target pixels corresponding to R panel pixels marked by
green triangles. It should be noted that only nine target pixels
were generated by the ATGP since a nine-band image has only
nine dimensions that can be used for orthogonality projection.

An interesting finding from Fig. 3 is that the nine target pixels
generated by the ATGP with full bands and nine selected bands
by six different band-selection methods were quite different.
Table III tabulates those ATGP-generated target pixels that were
found to be actually R panel pixels in Fig. 1(b). It is interesting
to note that only the LCMV-CBS produced four R panel pixels
that were generated by the ATGP based on the nine selected
bands and the LCMV-CBS with BCM/BDM was the only one
finding an R panel pixel in the second column . The MVPCA
was the worst which could only find one panel pixel .

For each band-selection method, the nine ATGP-generated
target pixels were used to form the desired signature matrix for
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Fig. 3. Nine ATGP-generated target pixels.

the FCLS developed in [6] and [16] to classify the 15 panels. The
FCLS used in the experiments was preferred to the orthogonal
subspace projection (OSP) in [18] because the target signature
knowledge provided by single pixels was sensitive to spectral
variability unless fully abundance constraints imposed on the
OSP which is the FCLS. Fig. 4(a)–(h) shows the FCLS-classi-
fication results of the 15 panels obtained by full bands and var-
ious band-selection methods, CEM-CBS, LCMV-CBS, uniform
band selection, MVPCA, and ID, where the same bands selected
in Table II by each band-selection method were used for the
FCLS method. It is very obvious that the classification perfor-
mance was determined by the R panel pixels found by the ATGP.

TABLE III
ATGP-GENERATED R PANEL PIXELS USING FULL BANDS AND

SIX DIFFERENT BAND SELECTION METHODS

Fig. 4. Mixed-pixel classification with endmembers resulted from ATGP
obtained by various band-selection methods using nine bands in Table III.

According to Table III, the LCMV-CBS found four R panel
pixels among the nine ATGP-generated target pixels compared
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Fig. 5. Spatial positions of five pure pixels corresponding to minerals:
(A) alunite, (B) buddingtonite, (C) calcite, (K) kaolinite, and (M) muscovite.

to other methods which could only find three or fewer R panel
pixels. Therefore, it is not surprising to see that the LCMV-CBS
yielded the best performance and it even performed better than
those produced by using full bands. Additionally, the FCLS-
based mixed-pixel classification performance in Fig. 4 was im-
proved significantly compared to Fig. 3 produced by the CEM
which used the known panel signatures as the desired signa-
tures. The experiments in Fig. 4 showed otherwise where the
LCMV-CBS performed better than the ID. So, this experiment
demonstrated that the same nine selected bands used for target
detection in Fig. 3 produced significantly better performance for
unsupervised mixed-pixel classification shown in Fig. 4. Most
interestingly, according to Fig. 3, the ID performed better than
the LCMV-CBS in the CEM detection. The above two exper-
iments showed that with the same number of selected bands
different applications may be very likely to result in different
performance.

A remark on this example is worthwhile. The results in Fig. 4
were only used to evaluate performance of seven band-selection
methods with fair comparison, in which case, the same ATGP
and FCLS were implemented exactly the same way for full
bands and the bands selected by each of band-selection methods.

B. AVIRIS Cuprite Data

Another real image is a well-known Airborne Visible/In-
fraRed imaging spectrometer (AVIRIS) Cuprite image scene
shown in Fig. 5 which has been used to study endmember
extraction extensively. It is available at website [19] and was
collected by 224 spectral bands with 10-nm spectral resolution
over the Cuprite mining site, Nevada, in 1997. The image in
Fig. 5 has size of 350 350 pixels and is well understood
mineralogically where bands 1–3, 105–115, and 150–170 have
been removed prior to the analysis due to water absorption
and low SNR in those bands. As a result, a total of 189 bands
were used for experiments. The ground truth also provides the

TABLE IV
VD ESTIMATES FOR THE AVIRIS SCENE IN FIG. 5

WITH VARIOUS FALSE ALARM PROBABILITIES

TABLE V
COMPARISON BETWEEN SELECTED BANDS USING DIFFERENT TECHNIQUES

spatial locations of the five minerals—(A) alunite, (B) budding-
tonite, (C) calcite, (K) kaolinite, and (M) muscovite—circled
and labeled by A, B, C, K, and M, respectively, which can
be used to verify endmembers extracted by an endmember
extraction algorithm. Since the size of a band image is huge
with 350 350 pixels, only the LCMV-CBS was implemented
to select bands for endmember extraction to avoid the intensive
computational complexity required by the CEM-CBS.

The VD estimated for this image scene was tabulated in
Table IV with various false alarm probabilities and tabu-
lated in Table IV. For our experiments, was chosen
with .

It has been shown in [20] that the value of the VD could be
also used as the number of endmembers required to be gener-
ated. Therefore, in our experiments, both the number of bands to
be selected and the number of endmembers to be extracted are
set to 22. As noted previously, the VD only provides the least
number of bands for band selection, and is not necessary to be
exact the number of bands to be selected.

Table V tabulates 22 bands selected by the LCMV-CBS in ac-
cordance with 22 highest band correlations along with the uni-
formly selected 22 bands and the MVPCA-selected 22 bands
where a backslash “/” is used to separate two selected bands. It
should be noted that the value of the VD was only used as an es-
timate and not necessarily accurate which is almost impossible
to know for real data.

For the purpose of endmember extraction, the widely used
N-finder algorithm (N-FINDR) developed by Winter in [21] was
used to extract 22 endmembers directly from the image scene.
It should be noted that there is no particular reason to select the
N-FINDR to perform endmember extraction. Any other end-
member extraction algorithm such as pixel purity index (PPI)
[22] can be also used for experiments as well.

Fig. 6(a) shows the 22 endmembers extracted by the
N-FINDR using full bands with Fig. 6(b)–(f) showing the 22
endmembers extracted by the N-FINDR using 22 selected
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Fig. 6. Twenty-two endmembers extracted by N-FINDR using bands in
Table V.

bands tabulated in Table V for comparison where the 22
N-FINDR-extracted endmember pixels are marked by red open
circles with pixels marked by the lower cases of “a,b,c,k,m”
with green triangles indicating that these pixels were found
in correspondence to the five ground truth mineral endmem-
bers marked by the upper cases of “A,B,C,K,M” with yellow
crosses “x.” It should be noted that the N-FINDR-found end-
members “a,b,c,k,m” in Fig. 6 were compared against the
ground truth endmember pixels, “A,B,C,K,M” in Fig. 5 by the
spectral angle mapper (SAM) [6] with their values tabulated in
Table VI(A)–(F) where the coordinates included in the brackets
for both “a,b,c,k,m” and “A,B,C,K,M” indicate the locations in
the image scene.

As we can see from the above experiments, the LCMV-CBS
performed very well to identify all the five mineral endmembers.
Interestingly, the ID which produced good results for HYDICE
data yielded the worst performance for Cuprite data in Fig. 6(f)
and Table VI(F) where the N-FINDR could only find two min-
eral signatures, A and C. This result is the complete opposite of
the result in CEM-based target detection in Fig. 3 where the ID
produced the best result.

TABLE VI
(A) SPECTRAL SIMILARLY VALUES MEASURED BY SAM BETWEEN FOUND

ENDMEMBERS AND THE GROUND TRUTH ENDMEMBERS FOR FULL BANDS.
(B) SPECTRAL SIMILARLY VALUES MEASURED BY SAM BETWEEN FOUND

ENDMEMBERS AND THE GROUND TRUTH ENDMEMBERS FOR LCMV-CBS
BCM/BDM. (C) SPECTRAL SIMILARLY VALUES MEASURED BY SAM

BETWEEN FOUND ENDMEMBERS AND THE GROUND TRUTH

ENDMEMBERS FOR LCMV-CBS BCC/ BDC

(A)

(B)

(C)

According to Table VI, it is worth noting that none of ground
truth mineral pixels were found by the N-FINDR even though
full bands were used. Nevertheless, the spectral similarity values
produced by the SAM in Table VI should provide information
about closeness between the N-FINDR found mineral pixel and
the ground truth mineral pixels. Using the values in Table VI as
a measure of effectiveness, the LCMV-CBS with BCM/BDM in
Table VI(B) was the best among all band-selection methods and
LCMV-CBS was also the best on the average and even better
than the one produced by the full bands.

Three concluding remarks are noteworthy.

1) On some occasions, an appropriate band selection may
be more effective than one with full bands as demon-
strated by the endmember extraction experiments. This
could be due to the fact that spectral information from
real data may be distorted by unknown signal sources and
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TABLE VI (Continued.)
(D) SPECTRAL SIMILARLY VALUES MEASURED BY SAM BETWEEN

FOUND ENDMEMBERS AND THE GROUND TRUTH ENDMEMBERS FOR

UNIFORM BAND SELECTION. (E) SPECTRAL SIMILARLY VALUES

MEASURED BY SAM BETWEEN FOUND ENDMEMBERS AND THE

GROUND TRUTH ENDMEMBERS FOR MVPCA. (F) SPECTRAL

SIMILAR VALUES MEASURED BY SAM BETWEEN FOUND

ENDMEMBERS AND THE GROUND TRUTH ENDMEMBERS FOR ID

(D)

(E)

(F)

too much such contaminated information may eventually
hinder data analysis. As a consequence, a judicious se-
lection of appropriate bands can avoid such dilemma and
further improve performance.

2) Moreover, the applications presented in this section only
serve as an illustrative purpose to demonstrate the utility
of the CBS. The performance of CBS is also determined
by the algorithms used for applications. Therefore, when
a comparative analysis was conducted, the same algo-
rithm was applied to various band-selection methods to
make sure that all conditions were held to the same situa-
tion so that the only difference is selected bands used for
analysis.

3) It should be noted that, in order to make a fair compar-
ison among different band-selection criteria, the same
algorithm must be implemented in conjunction with
the VD which determines the same number of bands
to be selected for all the criteria. Only the same algo-
rithm coupled with the same VD-determined number of
bands can ensure that the difference in performance only
comes from a specific band-selection criterion. In this
section, we demonstrated effectiveness of band-selection
criteria with the number of bands determined by the VD

in three different applications where three algorithms,
the CEM for target detection, the UFCLS for unsuper-
vised mixed-pixel classification, and the N-FINDR for
endmember extraction were used for performance evalu-
ation. According to our conducted experiments, the CBS
outperformed other band-selection criteria in all the case.

4) Our experimental results showed that the CBS per-
formed robustly and uniformly well compared to the
other band-selection methods. Although only three ap-
plications, target detection, mixed-pixel classification
and endmember extraction were considered in this paper,
some other applications, such as mixed-pixel quantifi-
cation, data compression were also investigated for the
CBS. Similar conclusions can be also drawn. So, in order
to avoid replication, their results are not included.

V. CONCLUSION

The CEM/LCMV has enjoyed success in hyperspectral
target detection and classification. Its applications to hyper-
spectral data exploitation has been yet to be explored. This
paper presents another new application of the CEM/LCMV in
band selection. Seemingly, it is difficult to make a connection
between the CEM/LCMV and band selection. However, if we
interpret the desired target signature used in the CEM/LCMV
as a particular band to be selected, the CEM/LCMV that was
originally minimizes interfering effects resulting from all
other signal sources is equivalent to the CEM/LCMV-CBS
that minimizes band correlation/dependence resulting from all
other bands. With this interpretation it is natural to expand the
ability of the CEM/LCMV in target detection and classification
to that in band selection. This paper presents two versions
of such an approach to band selection, CEM-based CBS and
LCMV-based CBS for band selection. In order to resolve
the issue in determination of the number of bands required
to be selected, , a recently developed concept of VD is im-
plemented in conjunction with the proposed CBS to estimate
the . However, it should be noted that the VD only provides
a reasonable guideline for a band-selection method in deter-
mining a least number of bands required to be retained but does
not necessarily imply that the number of bands to be selected
must be equal to the VD. Experiments demonstrate that the
CBS is indeed a promising, robust and effective band-selection
technique. We believe that our proposed CBS method will
become a very useful band-selection technique once people
realize its potential in hyperspectral data exploitation. As a final
concluding remark, we would like to point out that the VD is
completely determined by the image data to be processed and
is independent of applications. Therefore, the VD is a versatile
technique and can be used for various applications [23] and the
band selection is only one of its applications.
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