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Abstract—In hyperspectral image analysis, the principal com-
ponents analysis (PCA) and the maximum noise fraction (MNF)
are most commonly used techniques for dimensionality reduction
(DR), referred to as PCA-DR and MNF-DR, respectively. The cri-
teria used by the PCA-DR and the MNF-DR are data variance and
signal-to-noise ratio (SNR) which are designed to measure data
second-order statistics. This paper presents an independent com-
ponent analysis (ICA) approach to DR, to be called ICA-DR which
uses mutual information as a criterion to measure data statistical
independency that exceeds second-order statistics. As a result, the
ICA-DR can capture information that cannot be retained or pre-
served by second-order statistics-based DR techniques. In order
for the ICA-DR to perform effectively, the virtual dimensionality
(VD) is introduced to estimate number of dimensions needed to be
retained as opposed to the energy percentage that has been used
by the PCA-DR and MNF-DR to determine energies contributed
by signal sources and noise. Since there is no prioritization among
components generated by the ICA-DR due to the use of random ini-
tial projection vectors, we further develop criteria and algorithms
to measure the significance of information contained in each of
ICA-generated components for component prioritization. Finally,
a comparative study and analysis is conducted among the three DR
techniques, PCA-DR, MNF-DR, and ICA-DR in two applications,
endmember extraction and data compression where the proposed
ICA-DR has been shown to provide advantages over the PCA-DR
and MNF-DR.

Index Terms—Dimensionality reduction (DR), ICA-DR/MNF-
DR, independent component analysis (ICA), maximum noise
fraction (MNF), PCA-DR, principal components analysis (PCA),
virtual dimensionality (VD).

I. INTRODUCTION

PRINCIPAL components analysis (PCA) is a widely
used technique for dimensionality reduction (DR) and

data compression [1]. It uses eigenvalues to determine the
significance of principal components (PCs) so that DR is ac-
complished by selecting PCs in accordance with magnitude of
their associated eigenvalues. Unfortunately, such PCA-DR may
not be effective or appropriate for hyperspectral image analysis.
A similar approach, called maximum noise fraction (MNF)
[2] or noise-adjusted principal components (NAPC) transform
[3] which was developed based on signal-to-noise ratio (SNR)
also suffers from the same drawbacks as the PCA does. One
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major issue for both PCA and MNF is that many subtle material
substances that are uncovered by very high spectral resolution
hyperspectral imaging sensors cannot be characterized by
second-order statistics. This may be due to the fact that the
samples of such targets are relatively small and not sufficient to
constitute reliable statistics. In this case, these targets may not
be captured by the second-order statistics-based PCA/MNF in
its PCs. Another key issue arising in the PCA/MNF is the deter-
mination of number of dimensions to be retained. A common
criterion to resolving this problem is to calculate the accumu-
lated sum of eigenvalues that represents a certain percentage
of energy needed to be preserved. Unfortunately, as demon-
strated in [4]–[6], this was not an effective measure. In order to
address these two issues, this paper proposes an independent
component analysis (ICA)-based approach to DR, referred to
as ICA-DR for hyperspectral image analysis. Interestingly,
using the ICA to perform DR has received little attention in
the past due to the fact that the ICA was not developed for this
purpose. When the ICA-DR is implemented, one immediate
issue is how to rank independent components (ICs) in terms
of significance since these ICs are generated by random initial
projection vectors. Consequently, the ICs generated earlier are
not necessarily more significant than those generated later.
Unlike the PCA/MNF which prioritizes principal components
in accordance with magnitude of eigenvalues or SNR, the ICA
does not have such a criterion to prioritize the order that ICs
are generated by the ICA. So, it must find a criterion higher
than variance to measure the significance of each independent
component (IC). The selection of an IC is then based on its
score produced by the measure. Two measures, skewness and
kurtosis are of interest and can be used to produce such score
for each IC. As a special case, when the significance of an IC
is measured by variance, the ICA is reduced to the PCA/MNF
and the score of a component for significance is the eigenvalue
associated with that particular component. Like the PCA/MNF,
the ICA also encounters the same issue as does the PCA/MNF,
that is, how many ICs are required to be retained without loss
of significant information. Obviously, using the accumulated
sum of eigenvalues as the PCA does is no longer an option for
the ICA. In order to mitigate this dilemma, two approaches are
proposed. One is to use a recently developed concept, virtual
dimensionality (VD) developed in [5] and [6] to estimate the
number of ICs for reduction. Another is to take advantage of
the nature in randomness caused by the use of random initial
projection vectors in the ICA. As a result, three algorithms
are developed for the ICA-DR. One is called ICA-DR1 which
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is designed by using the VD in conjunction with a criterion
for component prioritization and selection. Another is called
ICA-DR2 which implements the ICA as a random algorithm
with randomness characterized by random initial projection
vectors. Accordingly, the ICA-DR2 automatically determines
a desired set of ICs for DR without appealing for any criteria.
A third algorithm is called ICA-DR3 which makes use of a
custom-designed initialization algorithm in conjunction with
the VD to generate an appropriate set of initial projection
vectors to replace random projection vectors used by the ICA
to produce each of ICs. As a consequence of the particularly
selected initial projection vectors, the order of ICs generated
by the ICA is no longer random. All the ICs are prioritized
in accordance with the order of the selected initial projection
vectors used by the ICA. Interestingly, each of the proposed
three algorithms has its own advantages and all of them perform
better than the second-order statistics-based DR such as the
PCA-DR and MNF-DR. Additionally, according to conducted
experiments, these three algorithms seem to produce nearly the
same results.

In order to demonstrate the utility of the ICA in DR, two
applications in hyperspectral image analysis are investigated.
The first application is endmember extraction where the ICA re-
places the PCA or MNF which has been used in two well-known
endmember extraction algorithms, the pixel purity index (PPI)
[7] and the N-finder algorithm [8] for DR. A second applica-
tion is data compression where the PCA or MNF is replaced by
the ICA to compress spectral information for hyperspectral im-
agery where the issues of subpixel detection and mixed pixel
classification are investigated for DR. As shown in our experi-
ments, the ICA-DR generally performs better than the PCA-DR
and MNF-DR.

The remainder of this paper is organized as follows. Section II
briefly reviews DR and the ICA to be used in this paper. Sec-
tion III presents three new ICA-DR algorithms. Section IV con-
ducts two application-based experiments to demonstrate the per-
formance of the ICA-DR in comparison with the PCA-DR and
MNF-DR. Section V summarizes our contributions and con-
cludes some remarks.

II. INDEPENDENT COMPONENT ANALYSIS (ICA)

ICA has received considerable interest in recent years be-
cause of its versatile applications ranging from source separa-
tion, channel equalization to speech recognition and functional
magnetic resonance imaging [9]. Its applications to linear mix-
ture analysis for remote sensing images have been also found in
[10]–[13]. The key idea of the ICA assumes that data are linearly
mixed by a set of separate independent sources and demix these
signal sources according to their statistical independency mea-
sured by mutual information. In order to validate its approach,
an underlying assumption is that at most one source in the mix-
ture model can be allowed to be a Gaussian source. This is due
to the fact that a linear mixture of Gaussian sources is still a
Gaussian source. More precisely, let be a mixed signal source
vector expressed by

(1)

where is an mixing matrix and is a -dimensional
signal source vector with signal sources needed to be sepa-
rated. The purpose of the ICA is to find a demixing matrix
that separates the signal source vector into a set of sources
which are statistically independent. Several different criteria
have been proposed to measure source independency [9].
Nevertheless, they all originated from the concept of mutual
information which is a criterion to measure the discrepancy
between two random sources [14].

As a special case of (1), suppose that both and are zero-
mean -dimensional column random signal source vectors with
covariance matrices and ,
respectively. In order to decorrelate in a similar fashion that
the is demixed in (1), a whitening matrix defined by
the inverse of the square-root of the covariance matrix, can
be used to whiten the signal source vector . As a consequence,

and the resulting source vector
becomes an uncorrelated signal source vector in analogy with

the signal source vector in (1) to become a statistical indepen-
dent source vector by a demixing matrix found by the ICA
via (1). In the light of this interpretation, (1) is reduced to

(2)

where the mixing matrix and the signal source vector in
(1) are replaced with the square root of the covariance matrix,

and an uncorrelated random source vector , respectively.
By virtue of (2), the statistical independency measured by the
ICA is reduced to the second-order statistics decorrelation by
PCA. Accordingly, the ICA actually performs the PCA on the

-dimensional correlated signal source vector via a whitening
matrix to produce uncorrelated PCs represented by the
uncorrelated signal source vector in terms of second-order sta-
tistics. The process of decorrelating the second-order statistics
source vector into an uncorrelated signal source vector using
(2) is generally referred to as whitening in signal processing and
communications [15] with being used as a whitened ma-
trix. The only difference between (1) and (2) is that the mixing
matrix in (1) is unknown as opposed to the covariance matrix,

in (2) which can be calculated directly from the observed
signal source vector .

More interestingly, if we further interpret the mixed signal
source vector , the mixing matrix , and in (1) as a hyper-
spectral image pixel vector , an image endmember matrix
and an abundance vector , respectively, (1) becomes

(3)

which is exactly the linear mixture model used in hyperspec-
tral image analysis with no noise term. An approach based on
(3), called orthogonal subspace projection (OSP) was recently
developed for DR in hyperspectral image classification [16]. In
this particular case, the DR is performed by reducing the orig-
inal data dimensionality to endmember dimensionality where
each component is specified by a particular image endmember
with appropriated estimated abundance fractions for hyperspec-
tral image pixels.
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III. ICA-DR

Over the past years, DR is generally performed by the PCA
via (2). Interestingly, to the authors’ best knowledge, there is
little work of applying ICA to DR reported in the literature.
One possible reason is that the ICA was not originally devel-
oped for the purpose of DR. A second reason may be that the
similarity and relationship among the three equations, (1)–(3)
have not been recognized. A third one is that the mixing ma-
trices, in (2) and in (3) are assumed to be known or can
be generated directly from the data compared to the mixing ma-
trix in (1) which is totally unknown. Finally, unlike the PCA
which prioritizes its generated principal components according
to the magnitude of eigenvalues, there is no specific criterion
to rank components produced by the ICA. Since the ICA is a
well-established technique, we will only focus on the issues de-
scribed above that arise in DR.

In order to implement the ICA, the FastICA algorithm de-
veloped by Hyvarinen and Oja [9] was used to find ICs where
the deflation approach was applied to generate ICs one by one
sequentially and each of ICs is produced by maximizing the ne-
gentropy measured by kurtosis. Typically, non-Gaussianity can
be measured by the absolute value of kurtosis. But, the kur-
tosis also has some drawbacks as well. It is very sensitive to
outliers [9, p. 182] where a single sample can make the kur-
tosis very large. To alleviate this problem, some other criteria
such as negentropy is introduced as a measure for non-Gaus-
sianity. There are several approximations to negentropy using
various other nonlinear functions, such as skewness, tanh etc.
According to our applications in hyperspectral target detection,
the ICs of major interest are generally super-Gaussian which is
usually caused by outliers. In this case, the kurtosis seems to be
an appropriate criterion to be used to generate ICs. There is an-
other symmetric approach [9, p. 194] that can be used to find
ICs. However, this approach does not offer any advantage over
the deflation approach in our applications. Therefore, it is not
considered in this paper.

For each spectral band image, it was converted to a vector.
More specifically, assume that a hyperspectral image cube has
size of where is the number of spectral bands and

is the size of each spectral band image. The hyperspectral
image cube can then be represented by a data matrix of size

with rows and columns. In other words, each
row in the data matrix is specified by a particular spectral
band image. As a result, a total of ICs can be generated by
the FastICA. However, as noted in (3), a hyperspectral image
pixel can be generally considered as a linear mixture of a set of
known image endmembers where the number of endmembers,
is generally much smaller than , the number of spectral bands.
In this case, when the DR is performed, only ICs are required
and there is no need of producing all ICs for image analysis.
But, it also gives rise to an issue on that which ICs must be
selected for DR.

According to the introduction, there is a need for the
ICA-DR to address problems that cannot be resolved by either
the PCA-DR or MNF-DR. However, there are some major
issues to implement the ICA for DR, in our case, the Fas-
tICA for DR. First of all, the FastICA-generated ICs are not

necessarily in order of information significance as the way
that PCs are generated by the PCA or the MNF in accordance
with decreasing magnitude of eigenvalues or SNRs. Another
is that ICs generated by the FastICA in different runs do not
necessarily appear in the same order. These issues are primarily
due to the nature that the initial projection unit vectors used to
produce ICs by the FastICA are randomly generated. Therefore,
an IC generated earlier by the FastICA is not necessarily more
significant than one generated later.

In order to resolve the issue on the use of the random ini-
tial projection unit vectors, three algorithms, called ICA-DR1,
ICA-DR2 and ICA-DR3 are developed for DR using the Fas-
tICA. In ICA-DR1, we consider each generated IC as a random
variable. In light of this interpretation, we assume that the th
component, can be described by a random variable with
values taken by the gray level value of the th pixel in the ,
denoted by . In this case, the FastICA-generated ICs can be
ranked and prioritized by high-order statistics-based criteria.

Unlike the ICA-DR1, the ICA-DR2 considers the FastICA
as a random algorithm with randomness caused by nature of
random initial unit projection vectors used by the FastICA. The
idea of the ICA-DR2 is to run the FastICA a number of times to
produce sample average of all ICs where the ICs common in all
runs will be considered as significant ICs and used for DR. By
contrast, the ICR-DR3 takes a complete opposite approach to
the ICA-DR1 and the ICA-DR2. In order to remove the random
nature caused by the initial projection unit vectors used by the
FastICA, the ICA-DR3 custom-designs a set of initial vectors to
initialize the FastICA to produce each of ICs. Consequently, the
ICs are always generated in a certain order and never appear in a
random order as generated by the ICA-DR1 and the ICA-DR2.

A. ICA-DR1

The idea of the ICA-DR1 is to first determine the number of
ICs needed to be retained, which can be estimated by the VD.
It then prioritizes the FastICA-generated ICs using a high-order
statistics criterion to select the first prioritized ICs.

ICA-DR1 Algorithm:

1) Use the VD to determine the number of dimensions
required to be retained.

2) Use the FastICA to find ICs, . It should be
noted that for each IC the FastICA randomly generates a
unit vector as an initial projection vector to produce the
final desired projection vector for that particular compo-
nent.

3) Calculate the following criterion for that combines
third and fourth orders of statistics for

(4)

where and
are sample means of

third and fourth orders of statistics in the . It should
be note that (4) is taken from [9, Eq. (5.35), p. 115],
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which is used to measure the negentropy by high-order
statistics.

4) Prioritize the in accordance with the magni-
tude of .

5) Select those ICs with the first largest to perform
DR.

It should be noted that the ICA-DR1 is supposed to run and
prioritize all the ICs, then selects the first prioritized ICs. How-
ever, in practice this is not necessary. According to our experi-
ments, the VD can be used to set an upper bound on the number
of ICs required to be generated by the FastICA without having
the FastICA run through all ICs. A good upper bound is empiri-
cally shown to be twice the VD to avoid small targets being left
out.

B. ICA-DR2

The idea of ICA-DR2 is to run the FastICA a number of times.
Here we define a run by running the FastICA a single time. Since
the initial projection vector randomly generated by the FastICA
for each run is different, the order of the generated ICs is also
different. Nevertheless, if the information contained in an IC is
significant, such an IC will always appear in each run. With this
assumption, if we keep running the FastICA to find common ICs
over all the runs until common ICs remain unchanged, in which
case the process is terminated. The ICs that are common in all
runs are the desired ICs for DR. The detailed implementation of
the ICA-DR2 is summarized as follows.

ICA-DR2 Algorithm:

1) Initialization: Set and .
2) At each , run the FastICA to find ICs,

where each IC, can be formed as a vector, denoted
by . It should be noted that the FastICA randomly
generates a unit vector as an initial projection vector.

3) If , and go to step 2. Otherwise,
continue.

4) Find common ICs for all runs up to th run. Two ICs for

different runs, and are considered to be dis-
tinct if the spectral angle mapper (SAM) between their
corresponding vectors, and is greater than a pre-

scribed threshold . Let denote the
common ICs obtained for all runs, .

5) , go to
step 2. Otherwise, the algorithm is terminated and

is the desired set of ICs for DR.

It is worth noting that ICA-DR2 does not really need the VD
in step 1 as was required by the ICA-DR1 since the ICA-DR2
generally becomes stable and converges very rapidly after a few
runs. Like the ICA-DR1, the ICA-DR2 does not have to run
through all the ICs to find the common ICs. So, a similar strategy
used for the ICA-DR1 can be also applied to the ICA-DR2 by
setting an upper bound on the number of ICs required to be
generated. A good upper bound for the ICA-DR2 is also twice
the VD which is empirically shown by our experiments.

C. ICA-DR3

In ICA-DR1 and ICA-DR2, the initial projection unit vector
used by the FastICA to produce each of ICs is generated ran-
domly. Therefore, the ICs produced by the FastICA in different
runs generally appear in different orders. When it comes to DR,
this becomes a serious issue because an IC appear earlier is not
necessarily more important or significant than an IC produced
later. In order to resolve this issue, a third ICA-DR algorithm,
ICA-DR3 is developed where the initial projection unit vector
used to produce each of ICs are selected in a specific manner so
that all the ICs will always appear in a fixed order rather than
a random order as produced by the ICA-DR1 or the ICA-DR2.
As a consequence, there is no need of using (4) to prioritize
ICs as the way the ICA-DR 1 does or it requires the FastICA to
run a number of times with different random orders as the way
the ICA-DR2 does to find the common ICs. A major advantage
of using the ICA-DR3 is that all ICs always appear in the same
order regardless of how many runs the FastICA is implemented.
An algorithm proposed to be used in the ICA-DR3 to generate
a set of initial projector unit vectors is called automatic target
generation process (ATGP) which is derived from the automatic
target detection and classification algorithm in [4] and [17].

ICA-DR3 Algorithm:

1) Use the VD to determine the number of dimensions, ,
required to be retained.

2) Perform sphereing on the data matrix and let the re-
sulting sphered data matrix be denoted by .

3) Apply the ATGP to to find target pixel vector, .
4) Use the FastICA to find ICs, where the th

is generated by the FastICA with the th target pixel
vector chosen to be the initial projection vector instead
of being generated randomly.

Two comments on the ICA-DR3 are noteworthy.

a) There is a good reason to choose the ATGP to pro-
duce initial projection unit vectors for each of ICs.
This is because the ATGP generates target pixels
by a sequence of OSP which is also used in the
FastICA to produce a sequence of ICs. Therefore,
the ATGP-generated target pixels, , are mutual
orthogonal each other. This implies that one target
pixel used as an initial projection vector to generate
an IC will not be used again as an initial projection
vector to generate other ICs.

b) It may seem to be intuitive to use eigenvectors as
initial projection vectors to generate ICs. Unfortu-
nately, according to our experiments this approach
does not always work and results were not consistent.
On the other hand, the ATGP used in the ICA-DR3
worked consistently well and better than the use of
eigenvectors. Therefore, the ATGP was chosen in the
ICA-DR3.

As a concluding remark for Section III, it is worthwhile
having a discussion on the three algorithms developed in this
section. First of all, the three developed algorithms are com-
pletely unsupervised with no need of human intervention. In
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TABLE I
COMPARISON AMONG THREE ALGORITHMS, ICA-DR1, ICA-DR2, AND ICA-DR3

particular, there is no try-out by users. These three algorithms
are also based on completely different design rationales and
each of them deserves its own merit. The ICA-DR1 prioritizes
ICs according to a high-order statistics-based criterion which
is a combination of the third order statistics, skewness and
the fourth order statistics, kurtosis. On the other hand, the
ICA-DR2 does not rely on any criterion. Instead, it runs itself
as if a random algorithm with an arbitrary set of random initial
projection vectors in a given run. The algorithm is then ter-
minated when different runs of the FastICA produce common
ICs. As a result of such a random nature, the ICA-DR2 requires
the FastICA to run in a number of times with different sets of
randomly generated projection vectors. In this case, the VD is
only used to estimate an upper bound on the number of ICs
that the FastICA must generate in each run. Compared to the
ICA-DR1 and ICA-DR2, both of which use randomly gener-
ated vectors as initial projection vectors, the ICA-DR3 takes a
complete opposite approach. It makes use of an initialization
algorithm, called ATGP to produce an appropriate set of initial
projection vectors to be used for the FastICA. Since the targets
generated by the ATGP are spectrally distinct in terms of OSP,
each of these ATGP-generated targets represents one type of
signal sources. The FastICA then uses these ATGP-generated
targets as initial projection vectors to make sure that these
ATGP-generated target sources are separated in individual
ICs so and no two or more ATGP-generated target sources
are present in one single IC. Additionally, all the ICs will be
also prioritized in a simple way by the same order that the
ATGP-generated targets are generated. One salient difference
among the three ICA-DR algorithms is the number of compo-
nents required by the FastICA to generate. The ICA-DR1 and
the ICA-DR2 generally require to generate all the ICs before
IC selection. However, it is found empirically that twice the
VD, provides a good upper bound on the number of ICs
required to be generated. Compared to the ICA-DR1 and the
ICA-DR2, the ICA-DR3 only has to generate ICs without
performing IC selection as do the ICA-DR1 and ICA-DR2.
So, from a computational complexity point view, the ICA-DR3
has least computing time and the ICA-DR2 may suffer from
highest computation since it must run the FastICA in a number
of runs before the algorithm is terminated. Moreover, the
ICA-DR1 produces and then selects the first ICs prioritized
by (4). Like the ICA-DR1, the ICA-DR2 also produces
ICs. Its difference from the ICA-DR1 is that the ICA-DR2
repeatedly runs the FastICA with different sets of random
initial projection vectors and in the mean time it also finds
their common set of ICs in all runs until the two consecutive

Fig. 1. (a) Spectral band number 50 (827 nm) of the Cuprite AVIRIS image
scene. (b) Spatial positions of five pure pixels corresponding to minerals: alunite
(A), buddingtonite (B), calcite (C), kaolinite (K), and muscovite (M).

runs produce the same common set of ICs. So, there is no need
for ICA-DR2 to select or prioritize ICs. To the contrary, the
ICA-DR3 generates ICs by the FastICA using a specific set
of the targets generated by the ATGP as its initial projection
vectors. In this case, the ICs are prioritized and selected by the
order that the ATGP-generated targets appear. As expected,
the running time required for the ICA-DR3 is generally less
than that for the ICA-DR1 and the ICA-DR2 because the latter
must generate ICs, while the former always takes advantage
of generating ICs one by one in sequence. In next section, we
will show by experiments that both ICA-DR1 and ICA-DR3
are very suitable to DR with applications in data compression
and endmember extraction. Finally, we summarize comparison
among these three algorithms in Table I where the value of the

is estimated by the VD.

IV. EXPERIMENTS

In order to demonstrate the utility of the ICA-DR in hy-
perspectral image analysis, two applications are considered,
endmember extraction and data compression. Two sets of real
hyperspectral image data were used for experiments, which
are Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
Cuprite data and HYperspectral Digital Image Collection
Experiment (HYDICE) data.

A. Endmember Extraction

The first application is endmember extraction which is one of
fundamental tasks in hyperspectral image analysis. It finds and
identifies the purest signatures in image data. Since it requires
intensive computing process, DR is generally performed prior
to endmember extraction. For example, two most widely used
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TABLE II
VD ESTIMATES FOR THE CUPRITE SCENE IN FIG. 1 WITH VARIOUS FALSE ALARM PROBABILITIES

TABLE III
(a) THREE ENDMEMBERS EXTRACTED BY PPI WITH PCA-DR. (b) THREE ENDMEMBERS EXTRACTED BY PPI WITH MNF-DR. (c) FIVE ENDMEMBERS EXTRACTED

BY PPI WITH ICA-DR1. (d) FOUR ENDMEMBERS EXTRACTED BY PPI WITH ICA-DR2. (e) FOUR ENDMEMBERS EXTRACTED BY PPI WITH ICA-DR3

(a)

(b)

(c)

(d)

(e)

endmember extraction methods, PPI and N-FINDR algorithm
implement either PCA or MNF for DR to reduce computational
complexity. In this section, these two algorithms were used as
benchmark comparative analysis where the five DR techniques,
PCA-DR, MNF-DR, ICA-DR1, ICA-DR2 and ICA-DR3 are
evaluated for performance.

1) AVIRIS Cuprite Data: The first image data was collected
over the Cuprite mining site, Nevada, in 1997 and shown in
Fig. 1(a). It is a 224-band AVIRIS image scene with size of 350

350 pixels and well understood mineralogically, and has re-
liable ground truth in the form of a library of mineral spectra,
collected at the site by USGS available at website1 where the
five minerals, alunite (A), buddingtonite (B), calcite (C), kaoli-
nite (K), and muscovite (M) are specified by pixels white-cir-
cled and labeled by A, B, C, K, and M in Fig. 1(b) according to
the ground truth provided by the USGS. This fact has made this
scene a standard test site for endmember extraction. It should

1[Online]. Available: http://speclab.cr.usgs.gov/cuprite.html.

be noted that bands 1–3, 105–115, and 150–170 have been re-
moved prior to the analysis due to water absorption and low
SNR in those bands. As a result, a total of 189 bands were used
for experiments.

The VD estimated for this image scene with different values
of false alarm probability is given in Table II where the
Harsanyi–Farrand–Chang (HFC) method developed in [5] and
[6] was used for VD estimation. For those who are interested
in the HFC method, a brief description of it is provided in the
Appendix.

In the following experiments, the VD was chosen to be 22
with the false alarm probability set to . In order to
demonstrate the performance of ICA-DR in comparison with
the PCA-DR and the MNF-DR in applications of endmember
extraction, the two well-known endmember extraction algo-
rithms, PPI [7] and N-FINDR algorithm [8] were implemented
with DR to 22 components. Using the ground truth provided by
Fig. 1(b) and the spectral angle mapper (SAM) as the spectral
similarity measure for signature identification, Table III(a)–(e)
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Fig. 2. Spatial locations of ground truth endmembers and PPI-extracted endmembers. (a) PCA-DR. (b) MNF-DR. (c) ICA-DR1. (d) ICA-DR2. (e) ICA-DR3.

tabulates endmembers extracted by the PPI with five different
DR techniques, PCA-DR, MNF-DR, ICA-DR1, ICA-DR2, and
ICA-DR3, where the first row lists five ground truth endmem-
bers with their spatial coordinates and the first column lists
the PPI-extracted endmembers with their spatial coordinates.
The values in the tables were produced by SAM between the
PPI-extracted endmembers and ground truth endmembers, and
the numbers in parentheses are the scores produced by the PPI
where the shade is used to highlight the identification results.
Additionally, the numbers in the last column of Table III(c)–(e)
indicate the order of the IC that extracts its corresponding
endmembers in the first column and the primes “ ” were used
in the first column to indicate that the found mineral pixels
were not the same ground truth pixels marked by white circles
in Fig. 1(b).

According to the identification results in Table III(a)–(e),
ICA-DR1 performed the best and was the only one successfully
extracted all the five mineral signatures, while the PCA-DR and
MNF-DR were the worst and extracted only three endmem-
bers. The ICA-DR2 and ICA-DR3 were right in between and
extracted four endmembers with missing the mineral “A.” It is
also worth noting that the ICA-DR generally extracted pixels
more pure than PCA-DR and MNF-DR did except the alunite
in Table III(a) and Table III(c).

In order to compare the locations of PPI-extracted endmem-
bers against that of the ground truth endmembers, Fig. 2(a)–(e)

shows their respective spatial locations produced by the PPI
using the five DR techniques where the locations of the ground
truth endmembers are marked by circles and the locations of
the PPI-extracted endmembers are marked by crosses. From
Fig. 2(a)–(e) and Table III(a)–(e), the endmembers extracted by
the PPI using the five DR techniques were generally not the
same pixels specified by the ground truth, but their signatures
were very close in terms of SAM.

Finally, for the purpose of endmember detection and classifi-
cation, Figs. 3 and 4 show all the 22 components produced by
the PCA-DR and MNF-DR, and Figs. 5–7 only show the compo-
nents produced by ICA-DR1, ICA-DR2, and ICA-DR3, respec-
tively, in which the minerals corresponding to Table III(a)–(e)
were found to be present where the number underneath each of
components indicates the order of components generated by DR
techniques.

Since the PCA-DR and MNF-DR are generally designed for
information preservation, not designed for detection and classi-
fication, it is nearly impossible to conduct such analysis by vi-
sual inspection without appealing for a spectral measure. There-
fore, Figs. 3 and 4 include all the 22 components to demonstrate
the difficulty with identifying endmembers of interest. On the
other hand, Figs. 5–7 show otherwise. The ICA-generated com-
ponents not only can be used for ednember extraction, but also
can be used for endmember detection and classification where
different minerals were detected and extracted in individual and
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Fig. 3. Twenty-two PCs produced by the PCA-DR.

Fig. 4. Twenty-two component images produced by the MNF-DR.

separate components for classification. It should be noted that
Fig. 7 included one extra IC labeled by (a) that was found to
contain the mineral “A” for which the PPI failed to extract ac-
cording to Table III(e). Interestingly, this mineral “A“ could be
extracted by the N-FINDR algorithm as shown below.

Similarly, the N-FINDR algorithm was also implemented
for endmember extraction via the five DR techniques.
Table IV(a)–(e) tabulates endmembers extracted by the
N-FINDR algorithm with five different DR techniques,
PCA-DR, MNF-DR, ICA-DR1, ICA-DR2, and ICA-DR3,
where the first row lists five ground truth endmembers with
their spatial coordinates and the first column lists the N-FINDR
algorithm-extracted endmembers with their spatial coordinates.
The values in the tables were produced by SAM between the
N-FINDR algorithm-extracted endmembers and ground truth
endmembers and the shade is used to highlight the identifica-
tion results. The numbers in the last column of Table IV(c)–(e)
indicate the order of the IC that extracts its corresponding end-
members in the first column. Also, primes “ ” were used in the
first column to indicate the found mineral pixels were not the
same ground truth pixels marked by white circles in Fig. 1(b).

According to Table IV, the best ones were PCA-DR,
ICA-DR1 and ICA-DR3 which extracted all the five minerals,

while the other two, MNF-DR and ICA-DR2 failed to extract
one mineral. Comparing Table IV to Table III, the N-FINDR
algorithm using the ICA-DR2 missed the same mineral as did
the PPI using the ICA-DR2. However, this was not the case for
the MNF-DR which missed the minerals “A” and “K” with the
PPI and missed only mineral “B” with the N-FINDR algorithm.
Our experiments demonstrated that the PCA-DR and MNF-DR
may not be consistent if different endmember extraction algo-
rithms are used. Additionally, the experiments also showed an
interesting, yet surprising finding that MNF-DR was generally
not as good as PCA-DR for endmember extraction.

Like Fig. 2(a)–(e), Fig. 8(a)–(e) plots the spatial locations
produced by the N-FINDR algorithm using the five DR tech-
niques where the locations of the ground truth endmembers are
marked by circles and the locations of the PPI-extracted end-
members are marked by crosses.

Fig. 8(a)–(e) and Table IV(a)–(e) also concluded that the
endmembers extracted by the N-FINDR algorithm using the
five DR techniques were generally not the same pixels as
those specified by the ground truth, but their signatures were
very close in terms of SAM. It is worth noting that the same
ICs in Figs. 5–7 were used for the N-FINDR algorithm for
endmember extraction.

2) HYDICE Data: The second data used for endmember ex-
traction was the HYDICE image shown in Fig. 9(a), which has
size of 64 64 pixels with 15 panels in the scene. Within the
scene there has a large grass field background, a forest on the left
edge and a barely visible road running on the right edge of the
scene. It was acquired by 210 spectral bands with a spectral cov-
erage from 0.4 to 2.5 m. Low signal/high noise bands: bands
1–3 and bands 202–210; and water vapor absorption bands:
bands 101–112 and bands 137–153 were removed. So, a total
of 169 bands were used. The spatial resolution is 1.56 m and
spectral resolution is 10 nm.

Each element in this matrix is a square panel and denoted by
with row indexed by and column indexed

by . For each row , the three panels
, , were painted by the same material but have three

different sizes. For each column the five panels ,
, , , have the same size but were painted by five

different materials. It should be noted that the panels in rows 2
and 3 are made by the same material with different paints, so did
the panels in rows 4 and 5. Nevertheless, they were still consid-
ered as different materials. The sizes of the panels in the first,
second and third columns are 3 3 m, 2 2 m, and 1 1
m, respectively. So, the 15 panels have five different materials
and three different sizes. Fig. 9(b) shows the precise spatial lo-
cations of these 15 panels where red pixels (R pixels) are the
panel center pixels and the pixels in yellow (Y pixels) are panel
pixels mixed with background. The 1.56-m spatial resolution
of the image scene suggests that most of the 15 panels are one
pixel in size except that , , , which are two-pixel
panels. Since the size of the panels in the third column is 1
1 m, they cannot be seen visually from Fig. 9(a) due to the fact
that its size is less than the 1.56-m pixel resolution. With the
ground truth in Fig. 9(b), this 15-panel HYDICE image scene
provides another excellent example for experiments where the
signatures of the pure R pixels in first and second columns can
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Fig. 5. ICs produced by the ICA-DR1, in which the five minerals, A, B, C, K, and M were present. (a) A (alunite). (b) B (buddingtonite). (c) C (calcite). (d) K
(kaolinite). (e) M (muscovite).

Fig. 6. ICs produced by the ICA-DR2 in which four minerals, B, C, K, and M were present. (a) B (buddingtonite). (b) C (calcite). (c) K (kaolinite). (d) M
(muscovite).

Fig. 7. ICs produced by the ICA-DR3 in which five minerals A, B, C, K, and M were present. (a) A (alunite). (b) B (buddingtonite). (c) C (calcite). (d) K (kaolinite.
(e) M (muscovite).

be considered as endmembers. The VD for this image scene was
estimated in Table V.

For our experiments, the VD was chosen to be 9 with the
false alarm probability set to . Figs. 10–13 show
the nine components obtained by the PCA, MNF, ICA-DR1,
ICA-DR2, and ICA-DR3, respectively, where the upper bound
on the number of ICs was set to 18. Since both ICA-DR1 and
ICA-DR2 produced nearly the same nine ICs shown in Fig. 12,
we used the notation “ICA-DR1(2)” to indicate both ICA-DR1
and ICA-DR2.

The results in Figs. 10–13 provided more clear evidence than
those in Figs. 3–7 in that the second order statistics-based DR
techniques, PCA and MNF preserved most of the image back-
ground as opposed to the statistical independence-based ICA
which retained panels of interest while discarding the image
background. The reason for this is largely due to the fact that the
image background is generally characterized by second order
statistics rather than high-order statistics. Since the results of
implementing the PPI using the nine components in Figs. 10–13
are available in [18], Figs. 14–17 only show endmembers ex-
tracted by the N-FINDR algorithm using the 9 components in
Figs. 10–13, respectively.

It is worth noting that instead of using tables (Tables III and
IV) as we did for the Cuprite data, we have used images to
better demonstrate the experimental results for visual inspection
where the endmembers extracted by the N-FINDR algorithm
in these figures were exactly R pixels in the first column of
the ground truth map in Fig. 9(b). Comparing Figs. 15–17
to Figs. 13 and 14, it clearly shows that using the N-FINDR
algorithm with the ICA-DR performed significantly better
than using the N-FINDR algorithm with the PCA-DR and the
MNF-DR in the sense that the former extracted all the five
distinct R panel pixels compared to the latter only extracted
three and two distinct R panel pixels, respectively. Similar
results were also obtained in [18] by the PPI with the ICA-DR,
PCA-DR, and MNF-DR.

B. Data Compression

One of major applications for DR is data compression. The
PCA has been commonly used for DR. Until recently, the MNF
began to emerge as another alternative for DR in hyperspectral
image analysis. Both the PCA and MNF are considered as
second order statistics-based transforms. Unfortunately, in
many applications, preserving information of second-order
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TABLE IV
(a) FIVE ENDMEMBERS EXTRACTED BY N-FINDR ALGORITHM WITH PCA-DR. (b) FOUR ENDMEMBERS EXTRACTED BY N-FINDR ALGORITHM WITH MNF-DR.

(c) FIVE ENDMEMBERS EXTRACTED BY N-FINDR ALGORITHM WITH ICA-DR1. (d) FOUR ENDMEMBERS EXTRACTED BY N-FINDR ALGORITHM WITH

ICA-DR2. (e) FIVE ENDMEMBERS EXTRACTED BY N-FINDR ALGORITHM WITH ICA-DR3

(a)

(b)

(c)

(d)

(e)

statistics is generally not sufficient in subtle signature char-
acterization, such as small or rare targets, anomalies which
cannot be generally captured by second-order statistics. Under
such a circumstance, the second-order statistics-based DR may
be very likely to sacrifice or compromise these targets during
data compression. In order to resolve this dilemma, ICA-based
DR was developed to cope with this problem. Since a detailed
study and analysis was conducted in [4] and [19], many results
available in [4] and [19] will not be included here. Instead,
we demonstrate the superior performance of target detection
performed on the ICA-DR compressed images compared to the
PCA-DR and MNF-DR compressed images. The constrained
energy minimization (CEM) developed in [3] was used for
detection. Figs. 18–21 show the detection results produced by
the CEM based on images obtained by the PCA-DR, MNF-DR,
ICA-DR1(2), and ICA-DR3, respectively.

As we can see from Figs. 18–21, the results by the ICA-DR in
Figs. 20 and 21 were significantly better than those in Figs. 18
and 19 by the PCA-DR and the MNF-DR where the former

extracted all the pure panel R pixels even including some sub-
pixels, while the latter could not separate the panels in the first
three rows from the panels in the last two rows even all panel
pixels were detected. In order to make further comparison, the
CEM was applied to the original uncompressed image and the
results are shown in Fig. 22.

Compared to Fig. 22, the results in Figs. 20 and 21 were
comparable to those in Fig. 22. This implies that the ICA-DR
preserves the critical information that the PCA-DR and the
MNF-DR cannot in panel detection and classification.

As final remarks, several conclusions are noteworthy.

1) As demonstrated in our experiments, ICA-DR generally
performed significantly better than PCA-DR or MNF-DR
in the sense that the former preserves crucial and critical
information such as endmembers, anomalies, small tar-
gets which generally contribute little to second-order sta-
tistics such as variance compared to the latter which pre-
serves second-order statistics such as image background
that accounts for most of variance.
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Fig. 8. Spatial locations of ground truth endmembers and N-FINDR-extracted endmembers. (a) PCA-DR. (b) MNF-DR. (c) ICA-DR1. (d) ICA-DR2. (e)
ICA-DR3.

Fig. 9. Fifteen-panel HYDICE image. (a) Fifteen-panel image scene. (b) Ground truth map of 15 panels.

TABLE V
VD ESTIMATES FOR THE HYDICE SCENE IN FIG. 9 WITH VARIOUS FALSE ALARM PROBABILITIES

2) We did not include experiments using the percentage of
accumulated eigenvalues as a criterion for DR due to the
fact that the eigen-analysis is also a second-order statistics
approach. It has been shown in [4]–[6], [19], and [20] that
such a criterion was not effective.

3) In the application of hyperspectral data compression, it
has been shown in [19] and [20] that commonly used
objective measures for compression, mean squared error

(MSE) or SNR were not effective in preserving tar-
gets with subtle information since missing these types
of targets can only result in very small MSE or SNR.
Therefore, exploitation-based criteria for compression are
generally preferred in applications such as endmember
extraction, target detection and classification. ICA-based
DR for data compression is proposed particularly to
address this issue. However, when both second-order
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Fig. 10. Nine PCs produced by PCA.

Fig. 11. Nine components produced by MNF.

Fig. 12. Nine ICs produced by ICA-DR1(2).

Fig. 13. Nine ICs produced by ICA-DR3.

statistics and high-order statistics are required to be
preserved during data compression, a mixed PCA/ICA
compression was recently developed for this purpose in
[21].

4) Among all the three ICA-DR algorithms the ICA-DR1
and ICA-DR3 were shown to be most promising in appli-
cations. However, due to the use of different initial pro-
jection vectors (i.e., random vectors for the ICA-DR1 and
ATGP-generated target vectors for the ICA-DR3) both
may produce different results. Interestingly, all needed
information for designated applications is preserved in
the prioritized ICs by the ICA-DR1 using the criterion
(4) and the ICs generated by the ICA-DR3 using the

ATGP-generated as initial projection vectors. Because

Fig. 14. Panel pixels extracted by N-FINDR algorithm using PCA-DR.

Fig. 15. Panel pixels extracted by N-FINDR algorithm using MNF-DR.

Fig. 16. Panel pixels extracted by N-FINDR algorithm using ICA-DR1(2).

Fig. 17. Panel pixels extracted by N-FINDR algorithm using ICA-DR3.

Fig. 18. CEM detection results in PCA-compressed image.

Fig. 19. CEM detection results in MNF-compressed image.

of that, both performed similarly on many cases and also
well in our experiments.

5) The measure used to evaluate the ICA-DR1 and ICA-DR3
is quite different. The performance of the ICA-DR1 is
completely determined by the criterion given by (4). It
can be also extended by any other high-order statistics,
but may not have much advantage according to our ex-
periments [22]. On the other hand, the ICA-DR3 depends
heavily on its initial projection vectors produced by its ini-
tialization algorithm, ATGP. Fortunately, the ATGP has
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Fig. 20. Detection results of CEM in ICA-DR1(2)-compressed image.

Fig. 21. CEM detection results in ICA-DR3-compressed image.

Fig. 22. CEM detection results in the original uncompressed image.

been shown in various applications to be very effective in
capturing targets of interest such as unsupervised linear
spectral mixture analysis, unsupervised target detection
and classification [5] and endmember extraction [23].

6) Finally, it should be noted that the proposed ICA-DR was
evaluated based on two particular image scenes, AVIRIS
Cuprite data for endmember extraction and HYDICE
15-panel data for data compression in target detection
and classification. For these specific applications, the
ICA-DR was shown to be a very effective and promising
technique. Many more applications are yet to be investi-
gated for different image data to explore the potential of
the ICA-DR.

V. CONCLUSIONS

This paper presents an ICA-DR. Theoretically, we can gen-
erate all ICs and examine all of them to select which compo-
nents that we would like to retain. Practically, this is not real-
istic, particularly for hyperspectral data which have hundreds
of components. The issue is how do we know and select which
components are really desired for our applications? To the au-
thors’ best knowledge, there has been no such work reported
on how to prioritize and select ICs based on exploitation cri-
teria. Although the eigenvectors have been used for this pur-
pose, it has been shown in [5] and [6] that it was not effective
because eigen-analysis is limited to second-order statistics. Fur-
thermore, it is a common practice that the PCA or MNF has been
widely used for DR to avoid the issue of prioritizing compo-
nents. Once again, if the transform used for DR is second-order
statistics like PCA or MNF, it also runs into the same issue en-
countered in the eigen-analysis. This paper resolves these chal-
lenging issues described above with four contributions. First of
all, the concept of VD which was originally developed for es-
timating number of spectrally distinct signatures is suggested
to estimate number of dimensions needed to be retained. This
is quite different from a common approach which is the use of

eigenvalues to calculate percentage of energy as a criterion to
determine how many PCs required to be retained by the PCA or
MNF. Second, despite that the PCA and MNF also use eigen-
values to prioritize their PCs, there is no similar guide avail-
able for ICA to prioritize ICA-generated ICs. This paper in-
troduces three different criteria for IC prioritization and selec-
tion. Third, according to these three different criteria, three al-
gorithms, ICA-DR1, ICA-DR2, and ICA-DR3 are developed
to select a set of desired ICs to achieve DR. Finally, a fourth
contribution is to conduct a comprehensive study via two sets
of different real hyperspectral images to evaluate the perfor-
mance of the three proposed ICA-DR techniques in comparison
with commonly used the variance-based PCA-DR, SNR-based
MNF-DR in two major applications, endmember extraction and
data compression. The experimental results demonstrate that the
ICA-DR algorithms generally outperformed second-order sta-
tistics-based transforms such as PCA, MNF to perform DR.

APPENDIX

The purpose of this appendix is to provide a brief introduction
of the concept of the VD and a method, called Harsanyi–Far-
rand–Chang (HFC) method developed in [24] to estimate the
VD. The details about the VD can be found in [5] and [6]. The
name of VD was originally coined in [5] and later in [6]. It was
designed to determine the number of spectrally distinct signa-
tures. If a component such as PC or IC is used to accommodate a
spectrally distinct signature for classification and identification,
the number of required components happens to be the number
of spectrally distinct signatures, which is the VD. Despite sev-
eral methods were developed in [2], the method developed by
Harsanyi et al. [24], referred to as HFC method is selected for
two reasons. One is simple to implement. Another is that it was
shown to be effective in determining the number of spectrally
signatures for AVIRIS data [24]. Its idea is very simple. It first
calculates the sample correlation matrix, , and sample covari-
ance matrix, , then finds the difference between their corre-
sponding eigenvalues.

More specifically, let and
be two sets of eigenvalues generated by and

, called correlation eigenvalues and covariance eigenvalues,
respectively, where the is the number of spectral channels. By
assuming that signal sources are nonrandom unknown positive
constants and noise is white with zero mean, we can expect that

for (A1)

and

for (A2)

Using (A-1) and (A-2), the eigenvalues in the th spectral
channel can be related by

for

and

for (A3)

where is the noise variance in the th spectral channel.
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In order to determine the VD, Harsanyi et al. [24] formulated
the VD determination problem as a binary hypothesis problem
as follows:

versus for (A4)

where the null hypothesis and the alternative hypothesis
represent the case that the correlation-eigenvalue is equal to its
corresponding covariance eigenvalue and the case that the cor-
relation-eigenvalue is greater than its corresponding covariance
eigenvalue, respectively. In other words, when is true (i.e.,

fails), it implies that there is an endmember contributing to
the correlation-eigenvalue in addition to noise, since the noise
energy represented by the eigenvalue of in that particular
component is the same as the one represented by the eigenvalue
of in its corresponding component.

Despite the fact that the and in (A1)–(A3) are unknown
constants, according to [25], we can model each pair of eigen-
values, and , under hypotheses and as random vari-
ables by the asymptotic conditional probability densities given
by

for (A5)

and

for

(A6)

respectively, where is an unknown constant and the variance
is given by

for (A7)

It has been shown that when the total number of samples, is
sufficiently large, and .
Therefore, the noise variance in (A-6) can be estimated and
approximated using (A-7).

From (A5), (A6), and (A9), we define the false alarm prob-
ability and detection power (i.e., detection probability) as
follows:

(A8)

(A9)

A Neyman–Pearson detector for , denoted by
for the binary composite hypothesis testing problem speci-

fied by (A4) can be obtained by maximizing the detection power

in (A9), while the false alarm probability in (A8) is fixed
at a specific given value, which determines the threshold value

in (A8) and (A9). So a case of indicating that
fails the test, in which case there is signal en-

ergy assumed to contribute to the eigenvalue, , in the th data
dimension. It should be noted that the test for (A4) must be per-
formed for each of spectral dimensions. Therefore, for each
pair of , the threshold is different and should be -de-
pendent, that is .
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