
Survey and comparative analysis of entropy and
relative entropy thresholding techniques

C.-I Chang, Y. Du, J. Wang, S.-M. Guo and P.D. Thouin

Abstract: Entropy-based image thresholding has received considerable interest in recent years.
Two types of entropy are generally used as thresholding criteria: Shannon’s entropy and relative
entropy, also known as Kullback–Leibler information distance, where the former measures
uncertainty in an information source with an optimal threshold obtained by maximising
Shannon’s entropy, whereas the latter measures the information discrepancy between two different
sources with an optimal threshold obtained by minimising relative entropy. Many thresholding
methods have been developed for both criteria and reported in the literature. These two entropy-
based thresholding criteria have been investigated and the relationship among entropy and relative
entropy thresholding methods has been explored. In particular, a survey and comparative analysis is
conducted among several widely used methods that include Pun and Kapur’s maximum entropy,
Kittler and Illingworth’s minimum error thresholding, Pal and Pal’s entropy thresholding and
Chang et al.’s relative entropy thresholding methods. In order to objectively assess these
methods, two measures, uniformity and shape, are used for performance evaluation.
1 Introduction

Thresholding is an important technique in image segmenta-
tion, enhancement and object detection. Many methods
have been reported in the literature [1–5]. Of particular
interest is an information theoretic approach that is based
on the concept of entropy introduced by Shannon in infor-
mation theory [6]. The principle of entropy is to use uncer-
tainty as a measure to describe the information contained in
a source. The maximum information is achieved when no
a priori knowledge is available, in which case, it results in
maximum uncertainty. For instance, if an experiment is
conducted in an unknown environment that cannot be esti-
mated a priori, a reasonable approach is to assume that all
outcomes of the experiment are equally likely to avoid
introduction of any possible biased knowledge. Under this
situation, the ME is achieved by the maximum uncertainty.
This is intuitively appealing from an information theory
point of view. In other words, if one has no preference
among samples resulting from an experiment, the best
decision is not to introduce any biased knowledge into the
decision process. Instead, all samples must be treated
equally important. In this case, the probability distribution
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that describes the experiment is either uniformly distributed
in continuous probability space or equally likely in discrete
probability space, both of which yield the ME.

Using ME as an optimal criterion for image thresholding
was first proposed by Pun [7, 8]. It was later corrected and
improved by Kapur et al. [9]. The concept was further gen-
eralised to Renyi’s entropy [10]. Basically, the entropy-
based thresholding considers an image histogram as a
probability distribution, and then selects as an optimal
threshold value that yields the ME. More specifically, a
best entropy-thresholded image is the one that preserves
as much information as possible that is contained in the
original unthresholded image in terms of Shannon’s
entropy. Although such entropy thresholding seems promis-
ing, it also suffers from one drawback. It does not take into
account the image spatial correlation. Therefore different
images with an identical histogram will result in the same
threshold value. In order to mitigate this problem, two
approaches were proposed in the past. Both extended a one-
dimensional (1-D) image histogram to two-dimensional
(2-D) image histograms, both of which had taken care of
inter-pixel spatial correlation in different ways. One
approach was first proposed by Abutaleb [11] who used
the original 1-D histogram and its local average to form a
2-D histogram from which a pair of optimal threshold
values can be derived. Several extensions to Abutaleb’s
approach have been investigated [12–16]. Another
approach considers the grey-level co-occurrence matrix as
a means to capture transitions between grey levels [17].
Unlike Abutaleb’s approach that makes use of two separate
threshold values, the co-occurrence matrix-based approach
requires only one single threshold value. It is known that
the co-occurrence matrices are often used in texture
analysis. Haralick et al. [18] proposed 14 co-occurrence
matrix-based texture measures to extract information for
texture analysis. On the basis of the concept of the
co-occurrence matrix Pal and Pal [19] recently developed
two entropy-based thresholding techniques, called local
entropy (LE) and joint entropy (JE). They can be viewed as
an extension of Pun and Kapur et al.’s ME approach where
the LE and the JE maximise entropies of local quadrants
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and joint quadrants resulting from thresholding the
co-occurrence matrix, respectively. So, if we consider Pun
and Kapur et al.’s approach as a first-order entropy threshold-
ing method, Abutaleb’s method and Pal and Pal’s method can
be thought of as second-order entropy thresholding methods.

The entropy-based thresholding methods discussed earlier
are derived from maximisation of Shannon’s entropy.
Relative entropy, also known as Kullback–Leibler infor-
mation distance, direct divergence or cross entropy, has
been also proposed as an alternative thresholding criterion.
Two early approaches were minimum error thresholding
(MET) developed by Kittler and Illingworth [20] and
minimum cross entropy (MCE) developed by Li and Lee
[21]. The underlying assumption of Kittler and
Illingworth’s method is that the image to be thresholded
can be modelled by a mixture of two Gaussian distributions
with appropriate weights, in which the two Gaussian distri-
butions are used to describe the image background and fore-
ground, respectively, and the weights are determined by the
threshold. The desired optimal threshold that produces a two-
member Gaussian mixture best matches the original 1-D
image histogram where the relative entropy is used as such
a matching measure. Minimising relative entropy is equival-
ent to finding a two-member Gaussian mixture which has the
minimal discrepancy between the histogram of thresholded
image and the original histogram. This concept was further
generalised by Pal and Pal [22], in which the relative
entropy and Gaussian mixture model were replaced by the
divergence and a Poisson model, respectively. In contrast,
Li and Lee’s approach considered a constrained thresholding
problem with cross entropy used as an optimal criterion. It
minimised the cross entropy subject to two constraints that
the means of foreground and background must remain
unchanged before and after thresholding. Unfortunately, it
was shown that the MCE used in Li and Lee’s method was
not actually cross entropy [23].

More recently, Chang et al. [24] developed an alternative
relative entropy thresholding method that also used the rela-
tive entropy as a threshold criterion. Instead of using the
image histogram as the way considered in Kittler and
Illingworth’s MET and Li and Lee’s MCE, their approach
used the co-occurrence matrix and minimised the discre-
pancy of grey-level transitions in the co-occurrence matrix
before and after an image was thresholded. Conceptually,
what Pal and Pal’s approach was to Pun and Kapur
et al.’s entropy thresholding method is exactly what
Chang et al.’s relative entropic thresholding method was
to Kittler and Illingworth’s MET and Li and Lee’s MCE.
In other words, Kittler and Illingworth’s MET, Li and
Lee’s MCE and Pun and Kapur et al.’s method can be con-
sidered as first-order entropy-based thresholding methods,
as they only deal with the 1-D image histogram as
opposed to Pal and Pal’s and Chang et al.’s methods
which can be considered as second-order entropy-based
methods due to the use of the 2-D co-occurrence matrix.
The crucial difference between entropy thresholding and
relative entropy thresholding is that the former maximises
Shannon’s entropy, whereas the latter minimises relative
entropy. Chang et al.’s approach was further improved in
the work of Lee et al. [25] and was also extended to
Ali-Silvey distance measures in the work of Ramac and
Varshney [26]. In analogy with the idea that Pal and Pal
extended Pun’s ME approach to local entropy and joint
entropy methods, Lee et al.’s also extended Chang et al.’s
relative entropy approach to local relative entropy (LRE)
and joint relative entropy (JRE) methods. Interestingly,
their derived LRE and JRE were not actually relative
entropy, a similar error that was made in Li and Lee’s
838
MCE [23]. Nonetheless, like Li and Lee’s MCE, the LRE
and JRE proposed by Lee et al. [27] were also demonstrated
to be reasonable good criteria.

In this paper, we investigate the entropy-based and rela-
tive entropy-based thresholding criteria and explore
relationship among entropy and relative entropy threshold-
ing methods. In particular, we conduct a comparative study
and analysis between entropy-based and relative entropy-
based thresholding methods. Three new thresholding
methods, global entropy (GE), LRE and JRE are also intro-
duced, where the LRE and JRE are correct versions of the
LRE and JRE proposed by Lee et al. [27]. Interestingly,
Chang et al.’s [24] method can be reinterpreted in this
paper as global relative entropy (GRE), which complements
the LRE and JRE. With these interpretations, the three rela-
tive entropy thresholding methods, GRE, LRE and JRE can
be considered as counterparts of GE, LE and JE in entropy
thresholding methods. As many popular first-order thresh-
olding methods have been surveyed and compared in the
work of Yang et al. [1] as well as Abutaleb’s 2-D histogram-
based approaches were discussed in the work of Yang et al.
[14], there is no need to repeat their work here. Instead, this
paper is primarily focused on a comparative study and
analysis among Kittler and Illingworth’s MET, the three
co-occurrence matrix-based entropy thresholding tech-
niques and three relative entropy thresholding methods
plus Otsu’s [28] method. The reason of including Otsu’s
method in our study is because this method has been
widely used and proved to be one of the most successful
techniques in image thresholding. It should be noted that
Pun and Kapur et al.’s methods and Li and Lee’s MCE
are not included in our study. The former was shown not
comparable with Pal and Pal’s method and the latter per-
formed very poorly in most of our experiments. In addition,
two objective measures, uniformity and shape, suggested in
Sahoo et al. [1] are introduced to evaluate their comparative
performance.

2 Entropy thresholding

The concept of entropy has been widely used in data com-
pression to measure information content of an information
source. Suppose that a source X has L source alphabets
denoted by fxigi¼1

L and the probability of the ith source
alphabet xi is given by pi. In this case, a source can be speci-
fied by a probability vector p ¼ (p1, . . . , pL), where pi is the
probability of xi. For each source symbol xi for 1 � i � L,
we can define the so-called self-information of xi as
I(xi) ¼ 2log(pi) [29, 30]. Such self-information I(xi)
describes how much information or uncertainty produced
by a particular source alphabet xi. Furthermore, because
the significance of each source alphabet is also determined
by its occurrence generated by the source X, the probability
of each source alphabet must be factored in the description
of the information for X. As a consequence, an effective
means to describe the information for the source X is the
mean of self-information over the L source alphabets
fxigi¼1

L , which turns out to be EX [I(X )]. However, if we
expand the expression of EX [I(X )] as follows, EX [I(X )]
becomes the well-known entropy.

HðX Þ ¼ EX ½IðX Þ� ¼ EX ½� logðX Þ� ¼
XL

i¼1

pðxiÞIðxiÞ

¼
XL

i¼1

pi½� logð piÞ� ¼ �
XL

j¼1

pj log pj ð1Þ
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As an image can be viewed as an information source with a
probability vector described by its grey-level image histo-
gram, the entropy of the histogram can be used to represent
a certain level of information contained in the image. Pun
[7, 8] and Kapur et al. [9] had taken this concept to
derive entropy thresholding methods, that will be referred
to as ME methods. However, their approaches did not
take into account the correlation among grey levels. As a
result, two different images with an identical image histo-
gram will result in the same threshold value. One way to
resolve this problem is to consider the grey-level co-
occurrence matrix defined in the following section, which
contains the information of grey-level transitions in an
image. Two approaches have been investigated in the
past. One is Abutaleb’s 2-D histogram, that takes advantage
of the correlation between a grey level value and its local
average to capture image spatial correlation. Another is
the co-occurrence matrix that records transitions between
every pair of grey levels in an image histogram. As
Abutaleb’s 2-D histogram-based approaches require two
separate threshold values that are not in our scope, they
will not be discussed here. Instead, we will primarily
focus in this paper on single threshold value-based
approaches.

2.1 Grey-level co-occurrence matrix

Assume that an image has a size of M � N with L grey
levels denoted by G ¼ f0, 1, . . . , L 2 1g. Let f(x, y) be
the grey level of the pixel at the spatial location (x, y).
Then the image can be represented by an M � N matrix
F ¼ [ f(x, y)]M�N. A 1-D image histogram resulting from
f(x, y) and the image matrix F is a distribution of the L
grey levels G ¼ f0, 1, . . . , L 2 1g in accordance with the
frequency of their occurrence. Unfortunately, such a 1-D
histogram discards the correlation among grey levels,
which is crucial in image thresholding and segmentation.
In order to resolve this issue, a 2-D histogram that can
describe and capture image correlation is necessary to
improve thresholding performance. One such approach is
the use of co-occurrence matrix.

A co-occurrence matrix of an image is an L � L square
matrix, denoted by W ¼ [tij]L�L whose elements are speci-
fied by the numbers of transitions between all pairs of
grey levels in G ¼ f0, 1, . . . , L 2 1g in a particular way.
For each image pixel at spatial co-ordinate (m, n) with its
grey level specified by f(m, n), it considers its nearest four
neighbouring pixels at locations of (m 2 1, n), (mþ 1, n),
(m, n 2 1), (m, nþ 1) and referred to as the 4-adjacency
in the work of Gonzalez and Woods [17]. The
co-occurrence matrix developed by Haralick et al. [18] is
designed to dictate the grey level changes by comparing
its grey level f (m, n) to their corresponding grey levels,
f (m 2 1, n), f (mþ 1, n), f (m, n 2 1), f (m, nþ 1). It has
been shown that there is no significant difference between
considering all the four neighbouring pixels and using
only two neighbouring pixels at the horizontal and vertical
directions in the 4-adjacency of a pixel. One widely used
co-occurrence matrix is an asymmetric matrix that only
considers the grey level transitions between two adjacent
pixels. More specifically, let tij be the (i, j)th element of
the co-occurrence matrix W. Following the definition
given in the work of Chang et al. [24]

tij ¼
XM
m¼1

XN

n¼1

dmn ð2Þ
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and

dmn ¼ 1 if

f ðm; nÞ ¼ i and f ðmþ 1; nÞ ¼ j

and/or

f ðm; nÞ ¼ i and f ðm; nþ 1Þ ¼ j

8><
>:

¼ 0; otherwise

where ‘and/or’ used in the dmn defined earlier implies
‘either or both’.

Normalising the total number of transitions in the
co-occurrence matrix, a desired transition probability from
grey level i to grey level j is obtained by

pij ¼
tijPL�1

k¼0

PL�1
l¼0 tkl

ð3Þ

For more details on co-occurrence matrix, we refer to
previous studies [3, 17, 18].

2.2 Quadrants of the co-occurrence matrix

Let t be a value used to threshold an image. It partitions a
co-occurrence matrix into four quadrants, namely, A, B, C
and D, shown in Fig. 1. These four quadrants can be
further grouped into two classes, referred to as local quad-
rants and joint quadrants. We assume that pixels with
grey levels above the threshold are assigned to the fore-
ground (corresponding to objects), and those equal to or
below the threshold are assigned to the background. Then
quadrants A and C correspond to local transitions within
background and foreground, respectively, whereas quad-
rants B and D are joint quadrants which represent joint tran-
sitions across boundaries between background and
foreground. The probabilities associated with each quadrant
are then given by

P
t
A ¼

Xt

i¼0

Xt

j¼0

pij; P
t
B ¼

Xt

i¼0

XL�1

j¼tþ1

pij;

P t
C ¼

XL�1

i¼tþ1

Xt

j¼0

pij; P t
D ¼

XL�1

i¼tþ1

XL�1

j¼tþ1

pij ð4Þ

The probabilities of grey-level transition within each par-
ticular quadrant can be further obtained by so called ‘cell
probabilities’

p
t
ijjA ¼

pij

P t
A

; p
t
ijjB ¼

pij

P t
B

; p
t
ijjC ¼

pij

P t
C

; p
t
ijjD ¼

pij

P t
D

ð5Þ

2.3 LE, JE and GE methods

Three entropies can be derived on the basis of the cell prob-
abilities defined by (4) and (5), each of which yields a
different measure. The first two were proposed by Pal and
Pal [19], which are called LE and JE. The third one is a
new definition, which will be referred to as GE.

A
(BB) 

B
(BF) 

D
(FB)

C
(FF) 

t

t

Fig. 1 Four quadrants of a co-occurrence matrix
839



2.3.1 Local entropy: As local quadrants A and C contain
local transitions from background to background (BB) and
foreground to foreground (FF), respectively, the local tran-
sition entropy of BB, denoted by HBB(t) and the local tran-
sition entropy of FF, denoted by HFF(t) can be defined,
respectively.

HBBðtÞ ¼ �
Xt

i¼0

Xt

j¼0

pt
ijjA log pt

ijjA ð6Þ

HFFðtÞ ¼ �
XL�1

i¼tþ1

XL�1

j¼tþ1

pt
ijjC log pt

ijjC ð7Þ

where both HBB(t) and HFF(t) are determined by the
threshold t, thus they are function of t.

By summing up the local transition entropies of fore-
ground and background, Pal and Pal derived so-called LE,
denoted by HLE(t) as follows.

HLEðtÞ ¼ HBBðtÞ þ HFFðtÞ ð8Þ

Obviously, HLE(t) describes the grey-level transitions
entropy of the local quadrants A and C. Thus, it is more pre-
cisely to be called ‘local transition entropy’ to reflect the
characteristic of quadrants A and C. The LE method pro-
posed by Pal and Pal [19] finds a grey level value specified by

tLE ¼ arg max
t[G¼f0;1;...;L�1g

HLEðtÞ
n o

ð9Þ

which maximises HLE(t) defined by (8) over t.

2.3.2 Joint entropy: Alternatively, the joint quadrants B
and D provide edge information about joint transitions from
background to foreground (BF) and foreground to back-
ground (FB). In analogy with LE, another entropy, called
JE, HJE(t) was also derived by Pal and Pal, which is the
sum of the joint transition entropy HFB(t) resulting from
the joint quadrant B, and the joint transition entropy
HBF(t) from the joint quadrant D and is defined as follows.

HFBðtÞ ¼ �
XL�1

i¼tþ1

Xt

j¼0

pt
ijjB log pt

ijjB ð10Þ

HBFðtÞ ¼ �
Xt

i¼0

XL�1

j¼tþ1

pt
ijjD log pt

ijjD ð11Þ

HJEðtÞ ¼ HBFðtÞ þ HFBðtÞ ð12Þ

Similarly, HJE(t) is more accurately to be called ‘joint tran-
sition entropy’ to reflect the grey-level transition activities
in the joint quadrants B and D. A method of finding tJE

that maximises HJE(t) defined by (12) over t is called the
JE method, which is

tJE ¼ arg max
t[G¼f0;1;...;L�1g

HJEðtÞ
n o

ð13Þ

2.3.3 Global entropy: The GE HGE(t) defined below is
simply the sum of the LE HLE(t) and the JE HJE(t), that is

HGEðtÞ ¼ HLEðtÞ þ HJEðtÞ ¼ HBBðtÞ þ HFFðtÞ

þ HBFðtÞ þ HFBðtÞ ð14Þ

Finding a value, tGE that maximises HGE(t) defined by (14)
over t via the following equation

tGE ¼ arg max
t[G¼f0;1;...;L�1g

HGEðtÞ
n o

ð15Þ
840
is called the GE threshold method. It should be noted that the
GE defined by (14) was not defined by Pal and Pal [19].
However, it turns out to be a counterpart of Chang et al.’s
[24] GRE. Because GE is the sum of LE and JE, it can be
expected that the performance based on GE will be moderate
between LE and JE. The experiments seem to justify our
claim. So, when it is uncertain about which one should be
chosen, GE may be a good candidate for a compromise.

3 Relative entropy thresholding

Relative entropy has been used to measure the information
distance between two information sources. The smaller the
relative entropy is, the closer the two sources are in terms of
their probability distributions. As described in the beginning
of Section 2, a source can be specified by a probability
vector. Now, assume that there are two sources, X and
Y, each of which has L source alphabets. Let X and Y be
specified by the probability vectors p ¼ (p1, . . . , pL) and
h ¼ (h1, . . . , hL), respectively. The relative entropy
between two sources X and Y via their respective probability
vectors p and h (or the entropy of h relative to p), denoted
by J( p; h) is defined by

J ð p; hÞ ¼
XL�1

j¼0

pj log
pj

hj

ð16Þ

The definition given by (16) was first introduced by
Kullback [29] as an information distance measure
between two probability distributions. It is called
Kullback–Leiber’s information discriminant measure, and
is also known as cross entropy and directed divergence. It
implies that the smaller the relative entropy, the less the dis-
crepancy between p and h, thus, the better the match
between the two probability vectors. Relative entropy can
be used to measure the distance between an image and a
thresholded image. It is worth noting that the relative
entropy is not symmetric, that is J( p; h) = J(h; p). In this
paper, the original image is always designated as the
nominal image p, and the thresholded image is h, the one
which tries to match the original image.

3.1 Kittler and Illingworth’s MET

The concept of using relative entropy as a thresholding cri-
terion was first suggested by Kittler and Illingworth [20], in
which they assumed that an image could be modelled by a
mixture of two Gaussian distributions, which can be used to
describe background and foreground, respectively. More
specifically, let ptrue ¼ (p0jtrue, p1jtrue, . . . , pL21jtrue) be an
image histogram. Assume that t is a threshold value used
to segment the image into background and foreground,
both of which are also modelled by Gaussian distributions,
pB(t) and pF(t), respectively. Define pmix(t) as a mixture of
these two Gaussian distributions by

pmixðtÞ ¼ apBðtÞ þ ð1� aÞpFðtÞ ð17Þ

where a is determined by the portions of background and
foreground in the image. Kittler and Illingworth’s MET
finds a grey level value tMET that minimises the mismatch
between ptrue and pmix(t) over t, that is

tmix ¼ arg min
t[G¼f0;1;...;L�1g

J ð ptrue; pmixðtÞÞ
n o

ð18Þ

where J( p; pmix(t)) is the relative entropy between p and ptrue

defined by (16) to measure the discrepancy between the two
probability vectors, p and ptrue. As expected, if the background
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006



and foreground are well separated in terms of grey levels,
Kittler and Illingworth’s MET may work well.
Unfortunately, this assumption is generally not true in many
practical applications. Pal and Pal [22] also proposed a
Poisson model approach to improve the Gaussian model in
MET.

3.2 Grey-level co-occurrence matrix used for
relative entropic thresholding

As noticed in Kittler and Illingworth’s MET, their method is
based solely on the grey level histogram of an image which
has not taken into consideration the correlation among grey
levels. This leads to an idea of using co-occurrence matrix
to extend the MET, called second-order relative entropy
as opposed to the MET referred to as first-order relative
entropy. In this case, the p ¼ (p1, . . . , pL) and
h ¼ (h1, . . . , hL) defined in (16) are replaced, respectively,
by the grey-level transition probabilities fpijgi¼0, j¼0

L21,L21

generated by the co-occurrence matrix of the original
image and the grey-level transition probabilities,
fhij

t
gi¼0, j¼0
L21,L21 generated by the co-occurrence matrix of a

thresholded image. The transition probabilities defined by
the co-occurrence matrix contain the spatial information
that reflects homogeneity of local grey-level transitions in
quadrants A and C, and joint grey-level transitions across
boundaries in joint quadrants B and D.

Let the second-order relative entropy of the grey-level
transition probabilities fpijgi¼0, j¼0

L21,L21 and fhij
t
gi¼0, j¼0
L21,L21 be

defined by

J ðf pijg; fh
t
ijgÞ ¼

XL�1

i¼0

XL�1

j¼0

pij log
pij

ht
ij

ð19Þ

where pij are the transition probabilities from grey level i to
grey level j of the original image and hij

t is the transition
probability generated by the thresholded binary image in
response to pij. Despite the fact that the thresholded
binary image has only grey level values of 0 (background)
and 1 (foreground), it should be noted that the subscript
of hij

t , ij corresponds to the same ij used as the subscript
of pij. Using (19) as a thresholding criterion to minimise
J(fpijg;fhij

t
g) over t generally renders a thresholded binary

image that best matches the original image.
Suppose that a threshold value t is selected for binarisa-

tion. By assigning 1 to all grey levels above t,
G1 ¼ ftþ 1, . . . , L 2 1g and 0 to all grey levels equal to
or below t, G0 ¼ f0, . . . , tg, we obtain a binary image.
Further assume that the grey levels in G0 and G1 are uni-
formly distributed in their respective regions. The resulting
hij

t for each quadrant can be found by

h
t
ijjA ¼ q

t
A ¼

P
t
A

ðt þ 1Þðt þ 1Þ
for i; j [ G0 ð20Þ

h
t
ijjB ¼ q

t
B ¼

P
t
B

ðt þ 1ÞðL� t � 1Þ
for i [ G0 and j [ G1

ð21Þ

h
t
ijjC ¼ q

t
C ¼

P
t
C

ðL� t � 1ÞðL� t � 1Þ
for i [ G1 and j [ G1

ð22Þ

h
t
ijjD ¼ q

t
D ¼

P
t
D

ðL� t � 1Þðt þ 1Þ
for i [ G1 and j [ G0

ð23Þ
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where PA
t , PB

t , PC
t and PD

t were defined by (4). For each
selected t, hijjA

t , hijjB
t , hijjC

t and hijjD
t are constants in each

individual quadrant and they only depend upon which quad-
rants they belong to. Therefore they can be simplified by qA

t ,
qB

t , qC
t and qD

t , respectively, which represent conditional
probabilities of each of four quadrants produced by hij

t .

3.3 Three relative entropy-based methods

Expanding (19) yields

J ðf pijg; fh
t
ijgÞ ¼

XL�1

i¼0

XL�1

j¼0

pij log
pij

ht
ij

¼ �Hðf pijgÞ �
X

i:j

pij log ht
ij ð24Þ

where H(fpijg) is the entropy of the probability vector
specified by fpijgi¼0, j¼0

L21,L21 and is independent of t. As the
relative entropy, J(fpijg;fhij

t
g) in (29) measures the discre-

pancy between two probability vectors specified by
fpijgi¼0, j¼0

L21,L21 and fhij
t
gi¼0, j¼0
L21,L21, which describe the original

image, and thresholded image, respectively. So, the
smaller the J(fpijg;fhij

t
g), the better the approximation of

fpijgi¼0, j¼0
L21,L21 to fhij

t
gi¼0, j¼0
L21,L21. Therefore the best threshold

will be the one that yields the smallest value of
J(fpijg;fhij

t
g). However, minimising J(fpijg;fhij

t
g) in the

left-hand-side of (24) is equivalent to maximising the
second term of the right-hand-side of (24),

P
i, j pij log hij

t

which can be further reduced to

P
t
A log q

t
A þ P

t
B log q

t
B þ P

t
C log q

t
C þ P

t
D log q

t
D ð25Þ

So, in order to minimise (24) over t, we only have to maxi-
mise (25) over t. In analogy with Section 2.3, three different
relative entropies can be defined via (25).

3.3.1 GRE thresholding: Equation (25) is identical to the
one proposed by Chang et al. [24] and is referred to as GRE,
HGRE(t) here and is expressed as follows

HGREðtÞ ¼ �ðP
t
A log qt

A þ Pt
B log qt

B þ Pt
C log qt

C

þ P
t
D log q

t
DÞ ð26Þ

It describes the global feature of grey-level transitions in the
image. So, the GE defined by (14) in entropy thresholding
can be viewed as its counterpart. Finding a threshold
value tGRE that minimises (26) is called GRE thresholding
method, that is

tGRE ¼ arg min
t[G

HGREðtÞ

� �
ð27Þ

3.3.2 LRE thresholding: Analogous to Pal and Pal’s LE,
we can also define its counterpart in relative entropy, called
LRE via (26). It was originally proposed by Lee et al. [27]
in which, fPA

t , PC
t
g did not constitute a probability distri-

bution. In order to make it a probability distribution, extra
care must be taken by normalising the probabilities in the
local quadrants A and C. If we define pijjAC

t ¼ pij/
(PA

t
þ PC

t ), then the correct version of LRE is given by

JLREðf pijjACg; h
t
ijÞ ¼

X
ði;jÞ[BB<FF

pijjAC log
pijjAC

ht
ij

¼ �HBBþFFðtÞ �
X

ði;jÞ[BB<FF

pijjAC log ht
ij

ð28Þ
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where

HBBþFFðtÞ ¼ �
X

ði; jÞ[BB<FF

pijjAC log pijjAC ð29Þ

is the entropy of local quadrants A and C in the
co-occurrence matrix W. The second term in (28) can be
further reduced toX
ði;jÞ[BB<FF

pijjAC log ht
ij

¼
X
ði;jÞ[BB

pijjAC log
q

t
A

Pt
A þ Pt

C

� �

þ
X
ði;jÞ[FF

pijjAC log
q

t
C

Pt
A þ Pt

C

� �

¼
P

t
A

Pt
A þ Pt

C

log
q

t
A

Pt
A þ Pt

C

� �
þ

P
t
C

Pt
A þ Pt

C

log
q

t
C

Pt
A þ Pt

C

� �

ð30Þ

Substituting (30) into (28) results in

JLREðfpijjACg; h
t
ijÞ ¼ �HBBþFFðtÞ �

P
t
A

Pt
A þPt

C

log
q

t
A

Pt
AþPt

C

� ��

þ
Pt

C

Pt
AþPt

C

log
qt

C

Pt
AþPt

C

� ��
ð31Þ

It should be noted that HBBþFF(t) given by (29) is different
from HLE(t) given by (8), in the sense that the former con-
siders quadrants A and C as an entity and normalises prob-
abilities to unity, whereas the latter considers quadrants A
and C as separate individual entities and normalises their
probabilities in two different quadrants A and C to unity sep-
arately. Interestingly, the JLRE(fpijjACg; hij

t ) in (31) captures
the local features of grey-level transitions within back-
ground and foreground that can be expressed by
2HBBþFF(t) minus an extra term given by (30). The LRE
thresholding method is to find a threshold value tLRE that
minimises JLRE(fpijjACg;hij

t ), that is

tLRE ¼ arg min
t[G

JLREðf pijjACg; h
t
ijÞ

� �
ð32Þ

3.3.3 JRE thresholding: The JE has also its counterpart,
JRE in relative entropy, which measures the information of
joint features of grey-level transitions from background to
foreground and foreground to background. Like the LRE,
the JRE defined by Lee et al. [27] was not correct in
terms of probability distribution. Analogous to (32), a nor-
malisation factor pijjBD ¼ pij/(PB

t
þ PD

t ) must be included
to normalise the probabilities in the joint quadrants B and
D. The correct JRE is given by

JJREðf pijjBDg; ht
ijÞ ¼

X
ði;jÞ[BF<FB

pijjBD log
pijjBD

ht
ij

¼ �HBFþFBðtÞ �
X

ði;jÞ[BF<FB

pijjBD log ht
ij

ð33Þ

JJREðf pijjBDg; h
t
ijÞ ¼ �HBFþFBðtÞ �

P
t
B

Pt
B þ Pt

D

log
q

t
B

Pt
B þ Pt

D

� ��

þ
Pt

D

Pt
B þ Pt

D

log
qt

D

Pt
B þ Pt

D

� ��
ð34Þ
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where

HBFþFBðtÞ ¼ �
X

ði;jÞ[BF<FB

pijjBD log pijjBD ð35Þ

is the entropy of the joint quadrants B and D in the
co-occurrence matrix W. So, finding a threshold tJRE that
minimises JJRE(fpijjBDg; hij

t ) is called JRE thresholding
method, that is

tJRE ¼ arg min
t[G

JJREðf pijjBDg; h
t
ijÞ

� �
ð36Þ

One comment is noteworthy. It should be noted that the
LRE and JRE originally defined by Lee et al. [27] are not
conditional probability distributions as they are not normal-
ised by probabilities of the two quadrants that constitute
LRE and JRE. Because of this reason, technically, they
cannot be called relative entropy, even these two seemed
to work well as threshold criteria [27].

4 Histogram compression and translation

It was reported by Ramac and Varshney [26] that Chang
et al.’s relative entropy method, GRE did not perform
well for some images. This was mainly due to fact that
their image histograms are distributed sparsely with large
gaps between two consecutive grey levels. Unlike entropy-
based methods, relative entropy-based methods are gener-
ally sensitive to such sparse image histograms. In this
case, in order for relative entropy-based methods to work
effectively, a sparse image histogram must be compressed
to a more compact histogram. This idea is called histogram
compression and translation (HCT), which is very similar to
the commonly used histogram equalisation. However,
instead of stretching a 1-D image histogram to cover the
entire grey-level range as the histogram equalisation does,
the HCT, does inversely by compressing the 2-D histogram
due to relationship of one grey level relative to another. This
is a major difference between the histogram equalisation
and the HCT, because the former deals with a 1-D image
histogram, whereas the latter has to take into account the
relative spatial relationship characterised by a 2-D histo-
gram resulting from a co-occurrence matrix, in which case
the image histogram must be compressed rather than
being stretched. In what follows, we develop a method for
this purpose.

Suppose that the total number of distinct grey levels in an
image is N. Without loss of generality, we assume that g1,
g2, . . . , gN are these N distinct grey levels that can be
arranged in accordance with g1 , g2 , � � � , gN, where
g1 ¼ gmin is the smallest grey level and gN ¼ gmax is the
largest grey level. Let n(gk) be the total number of pixels
in the image whose grey level is gk. Two parameters will
be used to measure the sparseness of a 1-D image histo-
gram. One parameter is the N. Another is the width of a his-
togram defined by w ¼ gN 2 g1. In general, w � N. If a 1-D
image histogram whose width w is very close to N, then its
histogram will be dense and distributed compactly. On the
contrast, if w is much greater than N, the histogram will
be distributed sparsely. In this case, a histogram com-
pression and translation is generally needed for relative
entropy-based thresholding methods. The process is
referred to as HCT, defined by mapping gk! k with

HCTðgkÞ ¼ k and nk ¼ nðgkÞ for 1 � k � N ð37Þ

Using (37), a new HCT-compressed and translated 1-D
image histogram can be created for the original image,
which is a plot of nk against k with 1 � k � N.
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5 Performance measures

In order to avoid human interpretation, two objective
measures, uniformity and shape [1, 2], will be used for
performance evaluation.

5.1 Uniformity measure

The uniformity measure is generally used to describe region
homogeneity in an image. For a given threshold t, it is
defined by

U ðtÞ ¼ 1�
s 2

BðtÞ þ s 2
FðtÞ

C
ð38Þ

where B and F represent background and foreground
regions, f(x, y) is the grey level of the pixel (x, y)

C ¼
1

2
ðgmax � gminÞ

2; mt
B ¼

P
ðx;yÞ[B f ðx; yÞ

nt
B

;

mt
F ¼

P
ðx;yÞ[F f ðx; yÞ

nt
F

;

s 2
BðtÞ ¼

1

nt
B

X
ðx;yÞ[B

ð f ðx; yÞ � mt
BÞ

2;

s 2
FðtÞ ¼

1

nt
F

X
ðx;yÞ[F

ð f ðx; yÞ � mFÞ
2;

nB
t is the number of pixels in background region and nF

t is
the number of pixels in foreground region.

5.2 Shape measure

The shape measure is generally used to measure geometric
features of objects present in an image. It is calculated as
follows.

(a) We first define a generalised gradient function D(x, y)
by

Dðx; yÞ ¼

P4
k¼1

D 2
k þ

ffiffiffi
2
p

D1ðD3 þ D4Þ

�
ffiffiffi
2
p

D2ðD3 � D4Þ

2
664

3
775

1=2

ð39Þ

where D1 ¼ f(xþ 1, y) 2 f(x 2 1, y), D2 ¼ f (x, y 2 1) 2
f(x, yþ 1), D3 ¼ f(xþ 1, yþ 1) 2 f(x 2 1, y 2 1) and
D4 ¼ f(xþ 1, y 2 1) 2 f(x 2 1, yþ 1), and assign its
value to every pixel (x, y). It should be noted that the
gradient D1 dictates the grey-level changes along x-axis
(i.e. 08–1808 horizontal line), whereas the gradient D2 dic-
tates the grey-level changes along the y-axis (i.e. 908–2708
vertical line). Additionally, the gradient D3 dictates the
grey-level changes diagonally (i.e. 458–2258 diagonal
line) compared with the gradient D4 that dictates the grey-
level changes anti-diagonally (i.e., 1358–3158 second diag-
onal line). Basically, these four gradients cover all the eight
orientations, 08, 458, 908, 1358, 1808, 2258, 2708, 3158,
which can be used to capture image shape features.
(b) Second, if the pixel (x, y) has a grey value higher than
the average of its neighbours, then assign ‘þ’ sign to D(x, y)
and assign ‘2’ sign, otherwise.
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(c) Third, compute the shape measure using the following
formula

SFðtÞ ¼

P
ðx;yÞ[F signð f ðx; yÞ � �f BÞDðx; yÞsignð f ðx; yÞ � tÞ

CF

ð40Þ

where

signðxÞ ¼
þ1; if x � 0

�1; if x , 0

�

is the sign function, CF is a normalisation constant given by

CF ¼ max
t

X
ðx;yÞ[F

signð f ðx; yÞ � �f BÞDðx; yÞ

(

� signð f ðx; yÞ � tÞ
�

and

�fB ¼
1

8

Xxþ1

i¼x�1

Xyþ1

j¼y�1

f ði; jÞ � f ðx; yÞ

" #
:

6 Experiments

In this section, seven entropy-based thresholding methods
(LE, JE, GE, Kittler and Illingworth’s MET, LRE, JRE,
GRE) will be implemented and compared via a series of
experiments. They can be categorised into three groups.
The first group contains one first-order thresholding
method, Kittler and Illingworth’s MET, which relies on
1-D image histograms without taking into account inter-
pixel spatial correlation. The second and third groups are
made up of second-order thresholding methods, which
utilise a co-occurrence matrix to account for spatial corre-
lation among pixels. The second group comprises of three
entropy thresholding methods, LE, JE and GE and the
third group consists of three relative entropy thresholding
methods, LRE, JRE and GRE, which are considered to be
counterparts of the methods in the second group.

In order to make our comparative study more complete,
we also include Otsu’s [28] method as a benchmark com-
parison. Otsu’s method is a widely used thresholding
method and has been shown to perform well in general. It
is based on a criterion that maximises ratio of between-class
variance to within-class variance and can be described
briefly as follows.

6.1 Otsu’s method

Otsu’s method is a special case of two-class Fisher’s linear
discriminant analysis (LDA) in pattern classification [31],
where the optimal criterion is the ratio of between-class
variance to within-class variance. Let the 1-D histogram
of an image be described by a probability vector, (p0,
p1, . . . , pL21), where pi ¼ ni/n, ni is the number pixels
with grey-level value i and n is the number of image
pixels. Suppose that t is a selected threshold value. Then
probabilities of background and foreground of the
t-thresholded binary image can be defined by

P
t
B ¼

Xt

i¼0

pi and P
t
F ¼ 1� P

t
B ¼

XL�1

i¼tþ1

pi ð41Þ

Using (41), the means and variances associated with back-
ground and foreground can be further defined, respectively,
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as follows

mt
B ¼

1

Pt
B

Xt

i¼0

ipi and mt
F ¼

1

Pt
F

XL�1

i¼tþ1

ipi ð42Þ

vart
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1

Pt
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ði� mt
BÞ

2
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vart
F ¼

1

Pt
F

XL�1

i¼tþ1

ði� mt
FÞ

2
pi ð43Þ

It further considers the between-class variance and within-
class variance defined similarly in Fisher’s LDA by

vart
between-class ¼ Pt

Bðm
t
B � mÞ2 þ Pt

Fðm
t
F � mÞ2

¼ P
t
BP

t
Fðm

t
B � mt

FÞ
2

ð44Þ

where m ¼
P

i¼0
L21 ipi is the global mean of the image and

vart
within-class ¼ P

t
Bvar t

B þ P
t
Fvar t

F ð45Þ

It then finds a threshold value, tOtsu that maximises
varbetween-class

t , or equivalently minimises varwithin-class
t ,

that is

tOtsu ¼ arg max
1�t�L
fvart

between-classg

� �

¼ arg min
1�t�L
fvart

within-classg

� �
ð46Þ

Conceptually, Otsu’s idea is very similar to Pal and Pal’s JE
method. If we interpret the local quadrants in Fig. 1 as within-
class quadrants and the joint quadrants in Fig. 1 as between-
class quadrants, Otsu’s method is essentially similar to the JE
and JRE methods, despite the fact that they are technically
different methods. Otsu’s method is a first-order method,
which uses the 1-D image histogram to form within-class
and between-class variances and maximises the between-class
variance, whereas JE and JRE are second-order methods,
which maximise the entropy and relative entropy of joint
quadrants of a co-occurrence matrix, respectively.
Additionally, the measure used in Otsu’s method is variance
compared with the self-information (i.e. 2log pi) in the
joint quadrant used in the JE and the discrepancy of self-
information between two joint quadrants (i.e. log(pijjBD/
hij

t ) ¼ 2 log hij
t 2 log pijjBD) used in JRE methods.

More interestingly, sB
2(t), sF

2(t) in (38) can be
re-expressed as

s 2
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X
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From (43), we obtain

vart
within-class ¼ Pt

Bvart
B þ Pt

Fvart
F ¼

1

n
½s 2

BðtÞ þ s 2
FðtÞ� ð49Þ

By virtue of (49), maximising U(t) in (38) is equivalent to
minimising varwithin-class

t , which is also equivalent to maxi-
mising varbetween-class

t according to (46). As a result, the
threshold value produced by Otsu’s method, tOtsu is identi-
cal to the t that maximises U(t) in (38). It should be noted
that the values of U(t) vary with images. However, the nor-
malisation constant C in U(t) is independent of the threshold
value t. In this case, C can be chosen to normalise the values
of U(t) to the range of [0, 1] such that the minimum and
maximum of U(t) for each image were always set to 0
and 1 respectively for comparison. Using this process, the
uniformity values calculated from U(t) in the following
experiments are always in between 0 and 1.

6.2 Experiments

The following experiments are conducted to demonstrate
the performance of nine thresholding methods: a
classification-based thresholding method, Otsu’s method,
a first-order entropic thresholding method; Pun and Kapur
et al.’s ME, a first-order relative entropic thresholding
methods; Kittler and Illingworth’s MET, three second-order
entropy thresholding methods; Pal and Pal’s JE and LE, GE;
three second-order relative entropy thresholding methods:
LRE, JRE and GRE with/without HCT where the uniform-
ity and shape measures were also used for objective
performance criteria. Additionally, the two parameters w
and N were also studied to evaluate the need of HCT.
Four different images were selected for experiments.
Experiment 1: Watch: The image studied in this experiment
is a watch shown in Fig. 2a. Its 1-D histograms before and
after HCT are nearly the same. They are plotted in Figs. 2b
and c with w and N shown in Fig. 2b. The plots of the
co-occurrence matrices of Figs. 2b and c are shown in
Figs. 2d and e. The values of uniformity and shape were cal-
culated and also plotted in Figs. 2f and g. Figs. 3a– l show
the binary images resulting from ME, MET, Otsu, JE, LE,
GE, LRE with HCT, JRE with HCT, GRE with HCT,
LRE, JRE and GRE, respectively. As we can see from the
thresholded images in Fig. 3, the best results were produced
by the MET and Otsu’s method in Figs. 3b and c, which out-
performed all the second-order entropy and relative entropy
thresholding methods. Table 1 tabulates the uniformity and
shape values of their threshold values where the MET and
the Otsu’s method yielded largest values. As noticed,
most thresholding methods generated higher uniformity
values than shape values. This implies that the uniformity
of the watch image had more influence than shape does
on the thresholded images.
Experiment 2. House: The w and N of the watch image
studied in Experiment 1 were approximately the same
where HCT did not have impact on the thresholded
results. This experiment shows another extreme as
opposed to Experiment 1. The image is shown in Fig. 4a
with its 1-D histograms before and after HCT plotted in
Figs. 4b and c where w and N are also shown in Fig. 4b,
g1 ¼ gmin ¼ 78 and gN ¼ gmax ¼ 255 with N ¼ 68 and
w ¼ 238. In this case, the width, w, is much greater than
N with w/N ¼ 3.5. The original histogram in Fig. 4b
looks very sparse with grey-level values spread from 78
to 255. In contrast, the HCT-compressed and translated his-
togram in Fig. 4c was compacted with grey-level values in a
compressed and translated range from 1 to 69. The plots of
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
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Fig. 2 Watch image

a Watch b 1-D histogram c 1-D histogram with HCT d 2-D histogram e 2-D histogram after HCT f Uniformity
g Shape
the co-occurrence matrices of Figs. 4b and c are shown in
Figs. 4d and e. As we can see, the inter-pixel spatial corre-
lation between grey-level values in Fig. 4e was much denser
than that in Fig. 4d. The values of uniformity and shape
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
were also calculated and plotted in Figs. 4f and g.
Figs. 5a– l show the thresholded binary images resulting
from the methods of ME, MET, Otsu, JE, LE, GE, LRE
with HCT, JRE with HCT, GRE, with HCT, LRE, JRE
Fig. 3 Binary thresholded images resulting from various methods

a ME (t ¼ 166) b MET (t ¼ 63) c OTSU (t ¼ 81) d LE (t ¼ 165) e JE (t ¼ 107) f GE (t ¼ 165) g LRE with HCT
(t ¼ 101) h JRE with HCT (t ¼ 109) i GRE with HCT (t ¼ 102) j LRE (t ¼ 101) k JRE (t ¼ 109) l GRE (t ¼ 102)
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Table 1: Uniformity and shape values resulting from nine thresholding methods in this paper

Uniformity Shape

Watch House Tank Text Watch House Tank Text

ME 0.0473 0.9149 0.9043 0.4564 0.0526 0.9449 0.8486 0.7307

MET 0.9439 0.9952 0.8967 0.9212 0.9818 0.6052 0.9957 0.5927

Otsu 1 1 1 1 0.8290 0.6687 0.9258 0.7472

LE 0.0480 0.9098 0.9043 0.5906 0.0535 0.9712 0.8486 0.9124

JE 0.8745 0.9874 0.6746 0.4229 0.4907 0.5849 0.8028 0.6771

GE 0.0480 0.9874 0.8329 0.4638 0.0535 0.5849 0.8182 0.7427

LRE with HCT 0.9007 0.9098 0.9977 0.9106 0.5539 0.9712 0.9331 0.5775

JRE with HCT 0.8653 0.9874 0.6746 0.4229 0.4680 0.5849 0.8028 0.6771

GRE with HCT 0.8959 0.9874 0.9991 0.9866 0.5427 0.5849 0.9108 0.6831

LRE 0.9007 0.9149 0.0656 0.9106 0.5539 0.9712 0.1052 0.5775

JRE 0.0185 0.0032 0.3414 0.2876 0.2666 0.5849 0.7277 0.3735

GRE 0.8959 0.9868 0.0208 0.9866 0.5427 0.5849 0.0289 0.6837
and GRE respectively. Table 1 also tabulates their respect-
ive uniformity and shape values. Apparently, the best thre-
sholded images were those produced by the LE, the LRE
with HCT and the LRE which yielded very high values of
uniformity and shape measures, where the shape values
were higher than uniformity values. In contrast to the
watch image in Fig. 2a where the uniformity was more
important than the shape, this observation suggested that
the shape of the house image was more crucial than its uni-
formity. This was also verified by Otsu’s method where it
generated the highest uniformity value 1, but a low shape
value of 0.6687.
Experiment 3. Tank: This experiment was conducted to
show the need of HCT for relative entropy-based entropy
thresholding to be effective. The image is a tank parked
on the grass field shown in Fig. 6a. with N ¼ 138 and
w ¼ 212. In this case, the width, w, is much greater than
N with w/N ’ 1.5. The original 1-D histogram in Fig. 6b
was compressed and translated by HCT in Fig. 6c. The
plots of the co-occurrence matrices of Figs. 6b and c are
846
shown in Figs. 6d and e. As we can see, the inter-pixel
spatial correlation among grey-level values in Fig. 4e is
much more denser than that in Fig. 6d. The values of uni-
formity and shape were calculated and plotted in Figs. 6f
and g. Fig. 7a– l shows the binary images resulting from
the methods of ME, MET, Otsu, JE, LE, GE, LRE with
HCT, JRE with HCT, GRE with HCT, LRE, JRE and
GRE, respectively, with their respective uniformity and
shape values tabulated in Table 1. Obviously, the relative
entropy thresholding methods with HCT performed better
than their counterparts without HCT as shown in
Figs. 7a– i and Figs. 7j, and k. According to visual inspec-
tion, the best results came from the Otsu method, LRE
with HCT, and GRE with HCT which also produced the
highest values of uniformity and shape. Unlike
Experiments 1 and 2, the uniformity and shape measures
of the tank image were equally important. For example,
the MET method produced the highest shape value,
0.9957, but the fifth highest uniformity value, 0.8967. The
thresholded image shown in Fig. 7b was not good as
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Fig. 5 Binary thresholded images resulting from various
methods

a ME (t ¼ 134) b MET (t ¼ 156) c OTSU (t ¼ 145)
d LE (t ¼ 130) e JE (t ¼ 166) f GE (t ¼ 166)
g LRE with HCT (t ¼ 130) h JRE with HCT (t ¼ 166)
i GRE with HCT (t ¼ 166) j LRE t ¼ 132
k JRE t ¼ 254 l GRE t ¼ 166
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
Fig. 7 Binary thresholded images resulting from various
methods

a ME (t ¼ 97) b MET (t ¼ 131) c OTSU (t ¼ 116)
d LE (t ¼ 96) e JE (t ¼ 77) f GE (t ¼ 88)
g LRE with HCT (t ¼ 118) h JRE with HCT (t ¼ 77)
i GRE with HCT (t ¼ 113) j LRE (t ¼ 113)
k JRE (t ¼ 53) l GRE (t ¼ 166)
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Fig. 6 Tank image

a Tank b 1-D histogram c 1-D histogram with HCT d 2-D histogram e 2-D histogram after HCT f Uniformity g Shape
847



those in Figs. 7c, g and i, all of which produced the uniform-
ity values �0.99 and shape values �0.91.
Experiment 4. Text video image: In Experiments 1–3 we
have shown that the uniformity and shape provided good
objective measures of thresholded results as expected in
the literature. On the basis of the results of the previous
experiments, we may promptly jump into a conclusion
that a good threshold value should result in high uniformity
or shape values. Unfortunately, such a conclusion is mis-
leading and is generally not true. The following experiment
offers a counterexample. The image studied in this exper-
iment was a video image shown in Fig. 8a with its 1-D his-
tograms without/with HCT and their corresponding
co-occurrence matrices plotted in Figs. 8b and c and
Figs. 8d and e, respectively. Because the w and N shown
underneath Fig. 8b are the same, there was no need to
perform HCT. However, w ¼ N ¼ 256 suggested that the
video image used up all grey-level values to describe the
complicated image background where the main scene was
simple text shown in the centre of the image. The values
of uniformity and shape were calculated and plotted in
Figs. 8f and g. Figs. 9a– l show the binary thresholded
images resulting from the methods of ME, MET, Otsu,
JE, LE, GE, LRE with HCT, JRE with HCT, GRE with
HCT, LRE, JRE and GRE, respectively, where their
respective uniformity and shape values are also tabulated
in Table 1. From an application of information retrieval
and index, the best thresholded image is the one produced
by the JRE where the text in the video image was clearly
extracted. However, if we compare the uniformity and
shape values in Table 4, the JRE yielded the lowest
values in both uniformity and shape. This is because the
video image in Fig. 8a has very complicated image back-
ground where the effectiveness of shape and uniformity
were substantially impaired by low resolution and distorted
image background.

In addition to the previous experiments, an extensive set
of experiments was also conducted for performance evalu-
ation of the nine methods described in this paper.
Unfortunately, including all of these experiments in this
paper is not possible. Instead, we have chosen to include
only four representatives of these experiments in this
paper for illustration. Table 2 summarises these experiments
848
where a ‘yes’ of HCT implies that the thresholded image
can be improved by relative entropy methods; a ‘yes’ of uni-
formity means that uniformity plays a more crucial role in
thresholding than does shape, and similarly for a ‘yes’ of
shape. Nevertheless, several observations resulting from
our experiments are noteworthy and can be briefly described
as follows.

1. No single thresholding technique could claim the best
method among all the experiments. However, second-order
entropy thresholding methods generally performed better
than first-order entropy thresholding methods. This is also
true for relative entropy thresholding methods.
2. Interestingly, Otsu’s method generally performed
reasonably well in most of our experiments due to its
classification-based thresholding criterion, which results in
the highest uniformity value of 1. Nonetheless, in our con-
ducted experiments, there always existed at least one or
more from entropy and relative entropy methods that
could perform comparably or better than Otsu’s method.
This suggested that entropy-based thresholding methods
are generally a better approach than traditional thresholding
methods.
3. A good threshold value generally produced high uni-
formity and shape values.
4. In most of our experiments, relative entropy thresholding
methods with HCT performed better than their counterparts
without HCT. However, on some occasions, relative
entropy thresholding methods without HCT could perform
better than their counterparts with HCT. More experiments
for such comparison can be found in the work of Wang et al.
[32].
5. Owing to the complicated image background shown
in Experiment 4, first-order thresholding methods generally
performed poorly compared with second-order thresholding
methods, because it requires second-order statistical
information to better capture background variations.
More interestingly, Experiment 4 also demonstrated that
for images with complicated background the commonly
used objective measures, uniformity and shape might not
be good criteria to be used for performance evaluation
after all.
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f Uniformity g Shape
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006



Fig. 9 Binary thresholded images resulting from various methods (text)

a ME (t ¼ 172) b MET (t ¼ 73) c OTSU (t ¼ 99) d LE (t ¼ 156) e JE (t ¼ 177) f GE (t ¼ 171) g LRE with HCT
(t ¼ 71) h JRE with HCT (t ¼ 205) i GRE with HCT (t ¼ 87) j LRE (t ¼ 71) k JRE (t ¼ 205) l GRE (t ¼ 87)
Table 2: Summary of experiments resulting from nine
thresholding methods in this paper

(w, N) HCT Uniformity Shape Best

thresholding

methods

Watch (256,256) Yes Yes No MET

House (238,68) Yes No Yes LE, LRE w/o HCT

Tank (212,138) Yes Yes Yes LRE with HCT,

GRE with

HCT, Otsu

Text (256,256) No No No JRE
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 6, December 2006
Table 3: One-to-one correspondence between entropic
thresholding and relative entropic thresholding methods

Entropic thresholding

methods

Relative entropic

thresholding methods

Pun/Kapur et al.’s ME [8, 9] Kittler and Illingworth’s

MET [20]

GE GRE [24]

LE [19] LRE

JE [19] JRE
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Table 4: Relationship among entropic thresholding and relative entropic thresholding

Entropic thresholding Relative entropic thresholding

Criterion (information theoretic measures) Shannon’s entropy Kullback–Leibler information measure (also known as

directed divergence, cross entropy, relative entropy)

First-order methods (histogram-based) Pun/Kapur et al.’s ME Kittler and Illingworth’s MET

Second-order methods (co-occurrence

matrix-based)

GE

LE

JE

GRE

LRE

JRE
7 Conclusion

In this paper, a comprehensive and comparative study of
entropy thresholding and relative entropy thresholding tech-
niques is presented. A total of eight different entropy-based
information theoretic methods, ME, MET, LE, JE, GE,
LRE, JRE, GRE, along with Otsu’s method are considered
and evaluated by two objective measures, uniformity and
shape. There are several contributions made in this paper.
One major contribution is to provide a detailed treatment
on entropy thresholding and relative entropy thresholding
with their counterparts tabulated in Table 3 and correspond-
ing relationship summarised in Table 4. Another contri-
bution is three new thresholding methods, an entropy
thresholding method, GE; and two relative entropy thresh-
olding methods, LRE and JRE. A third contribution is an
introduction of the HCT to improve relative entropy thresh-
olding methods. A fourth contribution is to show that uni-
formity and shape are generally good thresholding
measures for grey-scale images, but not necessarily true
for video images.
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