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Abstract

Purpose — The paper aims to characterize anomaly detection in hyperspectral imagery.
Design/methodology/approach — This paper develops an adaptive causal anomaly detector (ACAD) to investigate several issues encountered in
hyperspectral image analysis which have not been addressed in the past. It also designs extensive synthetic image-based computer simulations and real

image experiments to substantiate the work proposed in this paper.

Findings — This paper developed an ACAD and custom-designed computer simulations and real image experiments to successfully address several

issues in characterizing anomalies for detection, which are — first, how large size for a target to he considered as an anomaly? Second, how an anomaly
responds to its proximity? Third, how sensitive for an anomaly to noise? Finally, how different anomalies to be detected? Additionally, it also
demonstrated that the proposed ACAD can be implemented in real time processing and implementation.

Originality/value ~ This paper is the first work en investigation of several issues related to anomaly detection in hyperspectral imagery via extensive
synthetic image-based computer simulations and real image experiments. In addition, it also develaps a new developed an ACAD to address these

issues and substantiate its performance.

Keywords Differential geometry, Correlation analysis, Image processing
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1. Introduction

Owing to very high spectral resclution provided by hyperspectral
sensors, many subtle targets that cannot be resolved by
multispectral imaging sensors can now be uncovered, such as
special species in agriculture, unusual rmigrations in ecology, rate
minerals in geology, toxic wastes in environments, drug trafficker
or smugglers in law enforcement, vehicles/tanks in battlefields,
cancerous cells or tumors in medical diagnosis, etc. just name a
few. Such targets generally appear as anomalics in a form of
abnormalities that are distinct from their surroundings.
Unfortunately, the issue of how to characterize anomalies in
rerms of existence, presence and populations has not been
addressed. The reason of being anomalies is because they are not
known a priori. On the other hand, anomalies usually occur with
low probabilities. Therefore, their existence generally cannot be
detected by any supervised means or visual inspection. As for
presence, the spatial extent of anomalies is rather limited since
they can be present as subpixel targets with their size smaller than
pixel size or as pixels mixed with the background or other
substances. Most importantly, once anomalies do appeatr, their
population is relatively small due to the nature of being
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anomalics. Interestingly, several issues arising in anomalies
have not been investigated or explored in the past. First of all,how
large is a target to be considered as an anomaly in terms of size?
Second, how does an anomaly respond to its surrounding
neighborhood? Third, how sensitive is an anomaly to noise?
Fourth, how can an anomaly distinguish itself from other
anomalies? Finally, how can these anomalies be detected
effectively by taking into account all the above-mentoned
issues? Many algorithms have been developed for anomaly
detection such as the well-known RX filter (RXF) developed by
Reed and Yu (1990}. However, the above-mentioned issues still
remain unsolved. This paper develops an approach, called
adaptive causal anomaly detector {ACAD) to resolve these
issues. It can perform causal anomaly detection in real time as
does the causal RXF (CRXF) {Chang and Chiang, 2002; Chang,
2003) while adaptively building up 2 library for anomalies it
detected. Several advantages are derived from the proposed
ACAD. It resolves the issue caused by RXF or CRXF that an
early detected anomaly may impair detectability of follow-up
anomalies. Second, it can use the built library to map out the
detected anomalies in the original image. This map is generated
simultaneously as the detection process moves on. Third, it
provides an effective means to investigate various issues related to
sensitivity of anomaly detection for performance evaluation and
analysis.

2. Anomaly detection

In this section, we describe three types of anomaly detectors, a
filter implemented by RXF {Reed and Yu, 1990), a CRXF
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(Chang and Chiang, 2002; Chang, 2003) and dual window-
based eigen separation transform (DWEST) (Kwon et al.,
2003). It should be noted that since a hyperspectral image is
an image cube, its image pixels are actually a column vector.
However, “pixel” instead of “pixel vector” is still used in this
paper for simplicity.

2.1 RX filter
A widely used anomaly detector was developed by Reed and
Yu (1990), referred to as RXF, which is a constant false alarm
rate (CFAR) detector and derived from the generalized
likelihood ratio test. It is specified by:
ST () = (r— p) K (r— u) (1)
where g is the sample mean and K is the sample data
covariance matrix. It should be noted that the form of 8 (r)
in equation (1) actually performs the well-known
Mahalancbis distance.

2.2 Causal RX filter

Since RXF involves the computation of the mean and
covariance matrix in equation (1), RXF cannot be
implemented in real time. In order to mitigate this problem,
we replace K in equation (1) with the sample data correlation
matrix to construct a real-time anomaly detector, called
CRXF, §%F(r] by:

5CRXE () = rf (R {rs))rs (2)

where:

R(ri) = (/R rie]

is called causal sample correlation matrix at 1, and R(iry)=R.
It should be noted that the sample data correlation matrix R(rp)
used in CRXF is the sample correlation matrix formed by
the sample vectors {ry,rz,...,fy} up t0 the pixel to be
processed, 1.

It is worth noting that we can make the causal sample
correlation matrix independent of the pixel 1o be processed by
replacing R(r;) with the sample auto-correlation matrix R.
The resulting anomaly detector is called correlation-based
RXF (R-RXF), 88 ®%F(r,) given by:

SRRXF () = R7'ry {3
Comparing equations (3) to (2), the only circumstance that
the S8 -RXF(p,) and §C%*F (r;) perform identically is the case
when SSRXF(r,) reaches the last pixel 1y in the image, ic.
k= N.

2.3 DWEST

A recently developed adaptive anomaly detector, referred to
as DWEST in Kwon et al. {2003) implements two windows,
called inner and outer windows which are designed to
maximize the separation between two-class data, target class
and background class. Let pioue(r} and Hinner(F} be the means
of the outer and inner windows, respectively , and Kyer
and Kpner be their respective covariance matrices, Define
Kus = Kinner — Kower as the difference covariance matrix
between Kouer a0d Kipper- AS @ result, the eigenvalues of K
can be divided into two groups, negative values and positive
values. Kwon et al. argued that the eigenvectors associated
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with a small number of the large positive cigenvalues of Ky
could successfully extract the spectrally distinctive materials
that are present in the inner window. If the eigenvectors
represented by the positive eigenvalues in this small set are
denoted by v}, the anomaly detector derived by DWEST,
SDWEST (y), projects the differential means of two windows,
.udi&'(r) = Mfouter(r) - F‘inncr(r) onto {v;} specified by:

SPWEST(4) = lzvl_v;r}-tduf(l')\

Two remarks are noteworthy:

1 The images generated by RXF and CRXF are gray scale.
Image analysts must interpret themselves to determine if a
pixel is anomalous pixel according to its Intensity.
However, such human interpretation is generally very
subjective. In order for interpretation to be objective, a
threshold must be implemented to threshold a gray scale
image to a binary image which segments anomalies from
the image background. In this case, how to choose the
threshold is crucial. This issue will be discussed in our
proposed ACAD.

2  One key parameter to determine the anomaly detection
performance is the ratio of image size to anomaly size.
This fact will be demonstrated by the experiments later.

(4)

3. Adaptive causal anomaly detection

One major issue encountered in RXF, R-RXF or CRXF is
that if an eatlier detected anomaly has a strong signature,
it may have significant impact on the detection of later
detected anomalies. This phenomenon is mainly caused by an
inappropriate use of the sample correlation matrix. According
to Chang (2005), an appropriate sample correlation matrix
should be one that removes all the carlier detected target
pixels being included in the sample correlation matrix.
Therefore, we should replace the R(r;) in equation (2) with a
sample spectral correlation matrix that removes all detected
anomalies, referred to as causal anomaly-removed sample
spectral correlation matrix, R(r;) defined by:

R(r:) = R{ry) - ere aebY (5}
where A(k) is the set of all earlier detected anomalous target
pixels t prior to the currently being processed image pixel ry.

Another major issue arising in RXF, R-RXF and CRXF is
that the size of anomalies to be detected cannot be too large.
This actually fits the nature of anomaly. However, the
dilemma is how large the size can be for a target to be
considered as an anomaly? Furthermore, a third issue is how
close is too close for two anomalies to be detected as two
separate anomalies? Finally, a fourth issue is how to
distinguish two detected anomalies one from another?

In order to address these issues, we develop a new adaptive
anomaly detector, called ACAD, §ACAD(p,) via the causal
anomaly-removed sample spectral correlation matrix, R(r:)
defined in equation (5). It is also a matched filter but
implements the following causal filter form which replace
R(r;) in CRXF in equation (2) with R(ry) :

§ACAD(p,) = r}-ﬁ_l(rk)rk

(6)
Despite the fact that ACAD is a result of a simple

replacement of R{r,) with R(r;} in CRXF, ACAD has
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several advantages over CRXF and RXF. One is that while
performing anomaly detection, ACAD also simultaneously
builds and updates an anomaly library as well as generates an
anomaly map to provide spatial coordinates of all its detected
anomalies in the original image. This anomaly map can be
also used to classify all the detected anomalies and is similar
to the one, target discrimination map proposed in Chang and
Chiang (2002} and Chang {2003). In analogy with CRXF,
ACAD can be also implemented in real time except that
ACAD continues to remove an anomaly from its subsequent
process, once a target pixel was detected as an anomaly. Here
the term of “real time” implies that the process is carried out
by ACAD in a causal manner so that only the pixels which
were already processed and the currently being processed
pixel are used for anomaly detection. As a result, ACAD can
be still considered as a near real-time processor since the
process of a data sample vector is completed nearly at the
same time it comes in with probably a short time delay due to
data processing. A tricky issue of implementing ACAD is how
10 determine if a pixel is an anomaly.

Since ACAD is a causal filter, the pixels to be considered as
surrounding pixels must be those neighboring pixels which
have been already processed. Let macap be the pre-
determined number of pixels preceding the currently being
processed pixel. Then, #acap indicates how far back the
pixels in the past must be taken into account to find an
appropriate threshold value to determine if the currently
being processed pixel r, is an anomalous pixel. In doing so, we
first calculate the average of the abundance fractions of the
past pixels, Fe—1.%5-2, <+« Thonacan generated by ACAP(ry),
denoted by:

1 N
e = Z"ALAD SACAD (rk—i)

facap <)

as well as the difference between p, and SCAD(p), denoted
by 1 = 8"CAP(ry) — . If the e s smaller than a
predetermined threshold value 7, then the r, will not be
considered as an anomaly, in which case it will be retained in
subsequent data processing. Otherwise, the r, will be declared
as an anomaly. In this case, this pixel will be removed from
future data processing and added to the built anomaly library.
In the mean time, the spatial coordinate of this pixel is stored
in the anomaly map.

4. Issues arising anomaly detection

In this section, we conduct a comprehensive study of
computer simulations to investigate four issues related to
anomaly detection, which are:

1 How large for a target to be considered as an anomaly?
2  How an anomaly responding to its neighboring pixels?

3 How sensitive for an anomaly 10 noise?

4 How different anomalies to be detected?

The data set used for our computer simaulations to investigate
these four issues is the airborne visible/infrared imaging
specLrometer (AVIRIS) reflectance data (Harsanyi and
Chang, 1994) which contains five reflectance spectra,
blackbrush, creosote leaves, dry grass, red soil and
sagebrush shown in Figure 1 with spectral coverage from
0.4 to 2.5 um. There are 158 bands after water bands are
removed.
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Figure 1 Five AVIRIS reflectance signatures
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4.1 How large the size for a target to be considered as an
anomaly?

The first issue to be investigated is “how large size can an
anomaly be?”. Obviously, a target that can be identified
visually should not be considered as an anomaly. With this
interpretation, the size of an anomaly must be relatively small.
The issue is how large the size is for a pixel to be considered asan
anomaly. Interestingly, it has to do with the ratio of the entire
image size to the size of an anomaly, @ rather than the size of an
anomaly alone, According to our extensive experiments, the 8
can be empirically shown to be approximately 100, in which
case, the size of anomaly can be determined by:

N
HACAD = m

where N is the total number of pixels of the image and [x] is the
largest integer =x.

To make our analysis simple, we simulated a synthetic
background image shown in Figure 2(a), which has size of
30 X 30 pixels made up by 50 percent grass and 50 percent
red soil plus a Gaussian noise with signal-to-noise ratio (SNR}
30:1 as defined in Harsanyi and Chang (1994). Three panels
of 3 x 3 pixels that were simulated by 100 percent
blackbrush, 100 percent creosote leaves and 100 percent
sagebrush, respectively , were used for experiments.

Figure 2 {a) A synthetic image of 30 x 30 pixels; (b} 3 X3
blackbrush at the center; {¢) 3 x 3 creosote leaves at the center;
(d) 3 x 3 sagebrush at the center, and (e} three 3 X 3 panels of
blackbrush, creasote leaves and sagebrush implanted at the center of (a)
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These three 3 X 3 panels were implanted at the center of the
synthetic image in Figure 2(a) separately in Figure 2(b)-(d)
and all together at the center in Figure 2(a) with three pixels
apart in Figure 2(e). It should be noted that the panel pixels
were implanted in a way that they were used to replace their
corresponding background pixels.

Figures 3-6 are anomaly detection results of applying RXF,
R-RXF, CRXF, DWESTwith inner/outer windows specified by
5/11 (i.e. inner and outer windows were specified by the size of
5% 5 and 11 X 11 pixels, respectively ) and ACAD 1o
Figure 2(b)-(d), respectively , with the corresponding ACAD-
generated anomaly maps shown in Figure 7. It should be noted

Figure 3 Anomaly detection of RXF. R-RXF, CRXF, DWEST and ACAD in

¢} CRXF

Figure 2{b}

(d) DWEST {e) ACAD

Figure 4 Anomaly detection of RXF, R-RXF, CRXF, DWEST and ACAD in
Figure 2{c)

" (a) RXF il R-RXF ﬂ CRXF

(d) DWEST {e) ACAD

Figure 5 Anomaly detection of RXE, R-RXF, CRXF, DWEST and ACAD in

Figure 2{d)
CRXF

{a) Ri-w‘}: |

(d)DWEST (o) ACAD
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that the dual windows 5/11 for DWESTwere selected based our
experiments that gave the best possible performance.

As we can see, RXF and R-RXF performed very similarly in
terms of visual detectiorn. Interestingly, when CRXF was
implemented, the first panel pixel was clearly detected.
Afterwards, the amounts of detected subsequent panel pixels
were decreased significantly and vanished eventually. This
cause was due to the real-time processing of the causal sample
correlation matrix where the first detected target dominated
subsequent detected targets. However, this problem was
remedied by ACAD shown in figures labeled by (e) in
Figures 3-6 where all the panel pixels were detected with
substantial abundance fractions. It was also found that
DWEST did not perform as well as it was claimed (Kwon
et al., 2003) where the blurring effects around three separate
3 X 3 panels in Figure 6(d} were caused by the use of dual
windows. Comparing the results in Figures 3-6, it is clearly
demonstrated that ACAD significantly improved all the other
four anomaly detectors, RXF, R-RXF, CRXF and DWEST.

Next we increased the size of the image in Figure 2(a) from
30 X 30 to 35 X 35 pixels while retaining the same size for
the three separate 3 X 3 panels in Figure 2(e) as shown in
Figure 8(a).

Compared to Figures 6(a)-(e) to 8(b)-(f), there were no
visible differences. Interestingly, this was no longer true if the
size of the image in Figure 2(e) was decreased 10 25 X 25
pixels shown in Figare 9(a) with the same three separate
3 x 3 panels in Figure 2(e} implanted in the image
background. Figure 9(b)-(g) shows anomaly detection
results of applying RXF, R-RXF, CRXF, DWEST with 5/11

Figure 6 Anomaly detection of RXF, R-RXE, CRXF, DWEST and ACAD in
Figure 2{e)

{d) DWEST

(e) ACAD

Figure 7 Anomaly map generated by ACAD for Figure 2(b)-(e)

Figura 2(b} Figure 2(c)
Figure 2(d) Figure 2(e)
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Figure 8 (a} A synthetic image of 35 X 35 pixels with three separate
3 x 3 panels at the center; {b) RXF; (c} R-RXF; (d) CRXF; (e} DWEST
with 5/11; () ACAD; and {g) ACAD-generated anomaly map

“WE
ﬂ ‘b) ﬂ
) 8 N

{a}

dual windows and ACAD to Figure 8(a) with ACAD
generated anomaly map in Figure 9(g). As shown in
Figure 9(b)-(d) RXF, R-RXF and CRXF had difficulty with
detecting all the three separate 3 X 3 panel pixels, while
ACAD did not have any problem at all. As for DWEST, the
result remained largely unchanged compared to those in
Figures 6(d) and 8(e).

On the other hand, if the image size was fixed at 30 X 30,
but the size of the three separate 3 X 3 panels was increased
from 3 X 3 to 5 X 5 as shown in Figure 10(a). Figure 10(b)-
(g) shows anomaly detection results of applying RXF, R-RXF,
CRXF, DWEST with 5/11 dual windows and ACAD to
Figure 10(a) with ACAD anomaly map in Figure 10(g).

Once again, Figure 10(f) and (g) shows that ACAD
detected all 5 X 5 panel pixels very effectively, but both RXF

Figure 9 (a} A synthetic image of 25 x 25 pixels with three separate
3 x 3 panels at the center; {b) RXF; {c) R-RXF; {d) CRXF; e} 511
DWEST: () ACAD; and (g) ACAD-generated anomaly map
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Figure 10 (a) A synthetic image of 30 X 30 pixels with three separate
5 x 5 panels at the center; {b) RXF; (&) R-RXF; {d) CRXF; {8} 511
DWEST: (f} ACAD; and (g) ACAD-generated anomaly map
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and R-RXF in Figure 10(b} and (c) had even greater difficulty
with detecting these three separate panel pixels. On the other
hand, CRXF in Figure 10(d) did improve performance
slightly compared to the result in Figure 9(d). Interestingly,
DWEST performed worse than it did in Figure 9{e) where it
did not detect the center pixels in each of three 5 X 5 panels
due to an inappropriate use of the dua! window 5/11. The
above four experiments simply demonstrated that the
effectiveness of RXF, R-RXF, CRXF and DWEST was
closely related to the size of anomalies relative to the size of
the entire image. Additionally, DWEST was also very sensitive
to the size of dual windows, However, ACAD was very robust
throughout all the experiments and was the best among all the
evaluated anomaly detectors. According to our experimental
study, RXF, R-RXF and CRXF can be only effective if the
ratio of the image size to the size of an anomaly to greater or
equal to a certain number, such as 100:1 as demonstrated in
Figures 3-10, but may fail if the ratio lower than 100:1 as
shown in Figures 9 and 10 with the image size-to-anomaly
size ratios, 625:1 = 64.44:1 and 36:1, respectively.

It is worth noting that the performance of ACAD is
determined by the parameter, Zacap- In the above
experiments, the nacap Was chosen 1o be:

N
racaD = 750

which can be determined, but not necessarily by the ratio of
image size to anomaly size, B set to 100:1. Interestingly, once
it was chosen properly, ACAD performs very robustly
regardless of the ratio of image size to anomaly size, B was
below 100:1 as demonstrated in Figures 9 and 10, This
implies that the performance of ACAD is not determined by
the relative size of the entire image to the anomaly, but rather
by the number of pixels considered in #acap. In this paper,
the nacap Was set [o:
159
HACAD = TR0

100
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4.2 How does an anomaly respond to its surroundings?
This section investigates the issue of how an anomaly
responds to its surrounding pixels. To simplify simulations,
only three signatures in Figure 1, creosote leaves, dry grass
and red soil were used to simulate 401 mixed pixels, {ri— }?E }
as follows. We start the first pixe] with 100 percent red soil
and O percent dry grass, then began to increase 0.25 percent
dry grass and decrease 0.25 percent red soil every pixel until
the 401st pixel which contained 100 percent dry grass. We
then added creosote leaves, denoted by fo, to pixel numbers
198-202 at abundance fractions 10 percent while reducing the
abundance of red soil and dry grass evenly. For example, after
addition of creosote leaves, the resulting pixel 200 contained
10 percent creosote leaves, 45 percent red soil and 45 percent
dry grass. White Gaussian noise was also added to each pixel
to achieve a 30:1 SNR. Figure 11(2) and (b) shows antomaly
detection of five creosote leaves pixels {r;-;}2%%, by 8%F(r)
and SR R¥F(y) where both 88%F(r) and §* **F(r) performed
very similarly in detection of creosote leaves.

Since both CRXF and ACAD were implemented causally,
Figure 12(a) and (b) shows progressive detection results of
CRXF and ACAD as pixel numbers starting from 197 to 203
with R{r,) and R(r;) defined in equations (2) and (5),
respectively.

As shown in Figure 12(a), CRXF did not detect the
creosote leaves until it reached the pixel 198 which is the first
creosote leaves pixel and missed the remaining four creosote
leaves pixels from 199 to 202 afterwards. This makes sense
because after the first creosote leaves pixel was detected at
198, the spectral signature of the creosote leaves was not
considered as an anomalous signature any more due to the
fact that the following four pixels appeared to have the same
signature. Interestingly, as shown in Figure 12(b}, ACAD
detected all the five creosote leaves pixels {ri—;} 5., once a
creosote leaves pixel was detected and removed subsequently.
This experiment demonstrated the significant impact of
detected anomalies on subsequent anomaly detection. It
should be noted that as the processed pixel r reached the last
pixel, i.e. r =401, R(401) = R. In this case, 8**F(401) is
the same as 88 F¥F(401), It should be noted that since no
spatial correlation exists among simulated pixels, DWEST
was not implemented.

4.3 How sensitive an anomaly to noise?

This section investigates the noise sensitivity to anomaly
detection. In doing so, we used the same image in Figure 2(e)
with additive Gaussian noise of SNR = 20:1, 10:1 and 5:1,
respectively. Figure 13 shows the results of RXF, R-RXF,
CRXF, DWEST with 5/11 dual windows and ACAD
obtained with SNR = 20:1, 10:1 and 5:1, respectively.

Figure 11 Detection results of RXF and R-RXF
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As shown, the noise also had significant impact on
performance of RXF, but relatively less effect on CRXF,
but had less effect on ACAD and almost no effect on
DWEST. This experiment concluded that noise did not have
as much effect as the ratio of the image size to anomaly size
did to RXF, R-RXF and CRXFE

4.4 How different anomalies to be detected?

This section demonstrates that the detectability of anomalies
does not depend on whether the anomalous pixels are pure or
mixed; rather their actual spectral signatures. In other words,
the spectral signature of an anomaly is immaterial as long as it
has a spectrally distinct spectral signature and “sufficiently”
different from its surrounding background.

Two scenarios were conducted to address this issue.
One scenaric was designed to see if the anomaly detectors
are sensitive to pure pixels. In this scenario, we replaced the
three pancls made up of pure pixels in Figure 2(e) with
three mixed-pixel paneis made by 50 percent
blackbrush + 50 percent creosote leaves, 50 percent
blackbrush + 50 percent sagebrush, 50 percent crecsole
leaves + 50 percent sagebrush as shown in Figure 14{a)-(f)
are the anomaly detection results of applying RXF, R-RXF,
CRXF, DWEST and ACAD to Figure 14(a) with ACAD
generated anomaty map in Figure 14(g). The results obtained
in Figure 14(b)-(f) were very comparable to those in Figure 9.
This implied that anomaly detection has nothing to do with if
an anomaly is pure or mixed.

The second scenario was designed to see how distinct
anomalies have impact on RXF, R-RXF, CRXF, DWEST and
ACAD. The experiments conducted previously demonstrated
that RXF, R-RXF, CRXF, DWEST and ACAD could detect
anomalies regardless of whether they are of the same type or
distinct types, and the effectiveness of their anomaly detection
ability is closely related to the spectral signatures of pixels
surrounding an anomaly. This is particularly evident for the
case of CRXF where once the first target pixel was detected,
subsequent target pixels with the same type of the signature
could be not detected unless the previously detected target
pixels were removed as the way performed by ACAD. In this
scenario, we created four sets of panels. The first panel is a
1 X 3 panel of three pixels concatenated together and all were
made by the same blackbrush signature, This first three-pixel
panel was then implanted in Figure 2(a) at the center. The
second panel is also a 1 X 3 panel of three pixels
concatenated together. Unlike the first three-pixel panel
made by a single pure signature, the three pixels in the second
three-pixel panel were made by three different pure
signatures, blackbrush, creosote leaves, sagebrush,
respectively. The second panel was then implanted five-pixel
right below the first three-pixel panel as a second row in
Figure 2(a). Similarly, the third panel wasa 1 X 6 panel made
up of six pixels and was also implanted five-pixel below the
second panel as a third row in Figure 2{(a) where the first two
pixels in the six-pixel panel are made by blackbrush
concatenated by next two pixels made by creosote leaves
and the last two concatenated pixels made by sagebrush. The
fourth panel is a 2 X 6 panel consisting of 12 pixels implanted
five-pixel below the third panel as a fourth row in Figure 2(a)
where the first 2 X 2 panel in the 2 X 6 panel was made by
blackbrush concatenated by another 2 x 2 panel made by
creosote leaves, then concatenated by a third 2 X 2 panel
made by sagebrush. These four sets of panels, a 1 X 3 panel
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Figure 12 Results of CRXF and ACAD
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of three pixel with the same spectral signature, 1 x 3 panel of
three pixels with three distinct signatures, a 1 X 6 panel of six
pixels with three distinct signatures and the 2 X 6 panel of
twelve pixels with three distinct signatures were arranged
in the first, second, third and fourth rows as shown in
Figure 15(a).

Figure 15(b)-(f) shows the results of RXF, R-RXF, CRXF,
DWEST and ACAD. As we can see from Figure 15, ACAD
was still the best among all the evaluated detectors.
Interestingly, DWEST was the worst detector. Once again
this was also due to its sensitivity to its used dual windows.
While RXF and R-RXF performed relatively the same and
better than CRXF, an observation on CRXF in Figure 15(d)
is worthwhile. It should be noted that CRXF was carried out
causally in real time. Once the blackbrush was detected in the
first pixel of the first 1 X 3 panel in the first row, the
blackbrush was then largely discarded afterwards. This was
witnessed in detection of subsequent panel detection. Most
noticeably was anomaly detection of the second panel in the
second row which was made up in order by three distinct
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signatures, blackbrush, creosote leaves, sagebrush. CRXF
discarded the first pixel in the second panel which was the
blackbrush and went ahead to detected the second signature,
creosote leaves instead as shown by the brightest pixel in the
second pancl, The ability of CRXF in anomaly detection of
the third and fourth rows was reduced due to effects caused
by the detected anomalies in previous rows. This interesting
experiment demonstrated that CRXF performed differently
from RXF and R-RXF when anomalies were distinct. This
may be an advantage of CRXF over RXF and R-RXFE.
However, whether or not anomalies are distinct seems to have
no impact at all on ACAD. The only effect resulting from a
sequence processing of anomaly detection on ACAD was that
the gray scale values of earlier detected anomalies were
suppressed by the subsequent detected anomalies. This was
mainly due to causality required for real-time processing,
which was also true for CRXF and will also be demonstrated
in the following sections of real image experiments with real
time implementation. Nevertheless, such visual assessment
does not have impact on anomaly detection because ACAD
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Figure 13 Results of RXF, R-RXF, CRXF, DWEST and ACAD with
SNR = 20:1, 10:1 and 5:1

DWEST
(@) SNR 20:1

DWEST ACAD
{c) SNR 5:1

can build and update its anomaly library once a new annomaly
was detected while the detection process is taking place.
A similar process was first developed for CRXF in Chang and
Chiang (2002) and Chang (2003).

Finally, a concluding remark is worthwhile. In order to
address the issues of interest, the simulations presented here
were custom-designed and relatively simple to simulate
various scenarios. They can be used as a base to simulate
more sophisticated synthetic images for further exploration.

5. Real hyperspectral image experiments

In this section, we conducted real hyperspectral image
experiments to substantiate the utility of ACAD in real
hyperspectral data exploitation. The image scene to be used
for our experiments is shown in Figure 16(a) (band 80) which
was considered in Kwon er al. (2003). It is a 210-band
HYDICE image scene of size 90 X 33 pixels with five vehicles
parked vertically in a large grass field along the tree line. The
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Figure 14 {a) A synthetic image with mixed pixel targets; (b) RXF;

{©) R-RXF; (d) CRXF; {e} DWEST, () ACAD; and {g) ACAD-generated
anomaly map

“
{d J i}

@

Figure 15 (a} Two 1 x 3 panels, a 1 X 6 panel and the 2 X 6 panel
implanted in Figure 2(a}; (b) RXE: (¢} R-RXF: (d) CRXF; (e} DWEST; and

() ACAD
- -
{d) (e) i)

ground truth map of the five vehicles is provided in
Figure 16(b) where the pixels marked by red are the center
pixels of the vehicles and the pixels marked by yellow are
considered as vehicle pixels mixed with background pixels.
The spectral resolution and spatial resolution are 10nm and
1.56 m, respectively.

Figure 17(a)-(e) shows anomaly detection results of RXF,
R-RXF, CRXF, DWEST with 7/13 dual windows used in
Kwon et al. (2003) and ACAD, tespectively , along with
ACAD-generated anomaly map shown in Figure 17(f).

As mentioned previously, due to causality processed by
CRXF and ACAD in real time the gray scale values of the top
four vehicles were suppressed by the gray scale values of the
bottom vehicle in Figure 17(c) and (€). As a result, the
bottom vehicle was visually brighter than the other four
vehicles. However, it did not affect their detection
performance as will be shown in Figure 18. Additionally,
despite the fact that RXF, R-RXF and CRXF scemed to
perform comparably according to the visual inspection of
Figure 17, CRXF performed better thart RXF and R-RXF.
Similarly it was also true for ACAD.
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Figure 16 Five-vehicle HYDICE image scene {a) five-vehicle image
scene; and {b} ground truth map of five vehicles

{a}

Figure 17 Anomaly detection results {a) RXF; (b} R-RXF; {c} CRXF; (d)
DWEST with 7/13 dual windows; {e} ACAD; and {f} ACAD-generated

anomaly map
I l
(e} n
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Figure 18 Real-time progressive anomaly detection by ACAD

(a) row 20 {b) row 40 {c) row 60

{d) row 70

{e) row 90

Obviously, DWEST had shown blurring artifacts around the
five vehicles which were caused by the use of dual windows. It
could not identify the spatial locations of the five vehicles as
also shown in Kwon er al. (2003). It is worth noting that all
the five anomaly detectors detected the tree line with various
gray scale values. This made sense since the tree line could be
considered as anomalies with their spectral signatures distinct
from their neighborhood.

6. Real-time implementation of ACAD

One of advantages resulting from ACAD is its ability in real-
time implementation. Since the sample correlation matrix
R(r;} can be expressed as:

k-1
R(ry) = ({k — 1)/k) [ki—lzr,ﬂ] + (1/R)rer}

—k

= ({k = 1)/k)R(rs-1) + (1/R)rery

(7)

where R(r;) can be updated by the incoming pixel r, and the
one-step past sample correlation matrix R{r,—;). Using the
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QR decomposition the computation of the inverse of R(re)
can be easily implemented in systolic arrays to realize real-
time implementation (Hsueh, 2004). Using a similar
approach, the sample correlation R(r;) implemented in
ACAD can be also realized in real time, A detailed description
of real-time implementation of ACAD can be found in Hsueh
(2004). Therefore, in this section, we only demonstrate
experiments that show the real-time processing of ACAD
operating on the image scene in Figure 16(a). Figure 18
shows real-time progressive anomaly detection carried out by
ACAD.

As another example, reai-time processing of a 15-panel
HYDICE image scene by CRXF and ACAD can be found in
Hsueh and Chang (2004) and Hsuch (2004).

7. Conclusions

Anomaly detection has been investigated extensively in the

past. However, it seems that its characterization has not been

addressed. This paper explores several issues to characterize

anomalies for detection, which are:

+ How large size for a target to be considered as an
anomaly?

+  How an anomaly responds fo its proximity?

» How sensitive for an anomaly to noise?

«  How different anomalies to be detected?

In order to address these issues, this paper develops a new
ACAD that improves commonly used anomaly detectors
including the RXF (Reed and Yu, 1990), the CRXF (Chang
and Chiang, 2002; Chang, 2003) and an adaptive anomaly
detector, DWEST (Kwon et al, 2003). Most importantly,
ACAD has advantages in several aspects. It can be
implemented causally and processed in real time. It detects
various anomalies regardless of whether they are of the same
type or distinct types. In other words, it can detect anomalies
regardless of their spectral signatures are similar or distinct. It
also produces an anomaly map, which can spatially locate the
detected anomalies in the original image. Such a map can be
used for target classification and discrimination for future
data processing. Additionally, this paper also explores an
interesting finding that the ratio of the image size to the size of

Sensor Review
Volume 26 + Number 2 - 2006 - 137-146

an anomaly is crucial and determines if a pixel is an anomaly.
Furthermore, it also shows that anomaly detection is sensitive
to noise, but does not have as much impact as the image size
to anomaly size ratio does to the anomaly detection. Finally, it
is worth noting that a field programmable gate arrays design
for ACAD has been developed in Hsueh (2004) which
provide feasibility of ACAD 1o be implemented in real-time.
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