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Automatic target recognition (ATR) in hyperspectral imagery
is a challenging problem due to recent advances of remote sensing
instruments which have significantly improved sensor’s spectral
resolution. As a result, small and subtle targets can be uncovered
and extracted from image scenes, which may not be identified
by prior knowledge. In particular, when target size is smaller
than pixel resolution, target recognition must be carried out at
subpixel level. Under such circumstance, traditional spatial-based
image processing techniques are generally not applicable and may
not perform well if they are applied. The work presented here
investigates this issue and develops spectral-based algorithms for
automatic spectral target recognition (ASTR) in hyperspectral
imagery with no required a priori knowledge, specifically, in
reconnaissance and surveillance applications. The proposed
ASTR consists of two stage processes, automatic target generation
process (ATGP) followed by target classification process (TCP).
The ATGP generates a set of targets from image data in an
unsupervised manner which will subsequently be classified by the
TCP. Depending upon how an initial target is selected in ATGP,
two versions of the ASTR can be implemented, referred to as
desired target detection and classification algorithm (DTDCA)
and automatic target detection and classification algorithm
(ATDCA). The former can be used to search for a specific
target in unknown scenes while the latter can be used to detect
anomalies in blind environments. In order to evaluate their
performance, a comparative and quantitative study using real
hyperspectral images is conducted for analysis.
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I. INTRODUCTION

Hyperspectral imaging is an emerging technique
due to recent advances of remote sensing instruments,
e.g., imaging spectrometers. Two currently in use
and operated in airborne platform are the NASA Jet
Propulsion Laboratory’s Airborne Visible/InfraRed
Imaging Spectrometer (AVIRIS) and the Naval
Research Laboratory’s HYperspectral Digital Imagery
Collection Experiment (HYDICE) sensor and many
more are yet to be developed. These sensors can
be used in a broad range of applications ranging
from geology, agriculture, and global change to
defense, intelligence, and law enforcement. One main
advantage of hyperspectral sensor technology is the
significantly improved spectral and spatial resolutions
so that many subtle material substances which
cannot be resolved by multispectral sensors such as
SPOT (Satellite Pour l’Observation de la Terra) and
LANDSAT can be now diagnosed by as many as
200 contiguous 10 nm wide spectral bands used in
hyperspectral sensors. However, this also comes at
a price that many unknown signal sources may be
also uncovered as anomalies without prior knowledge.
This is particularly true when targets with size smaller
than pixel resolution such as small man-made targets
are actually embedded in a single pixel. In order to
detect these targets, one must rely on their spectral
properties to extract them at a subpixel scale, a
task which cannot be accomplished by traditional
spatial-based image processing techniques. Therefore,
one of the major challenges for hyperspectral imaging
has been automatic spectral target recognition (ASTR)
in hyperspectral images as opposed to automatic
spatial target recognition, commonly referred to as
automatic target recognition (ATR) in the literature.
Most distinctively, a hyperspectral image is actually an
image cube with the third dimension is specified by
spectral wavelengths. Consequently, a hyperspectral
image pixel is indeed a column vector.

ASTR in an unknown image background can
be difficult. An early attempt was made to use an
unsupervised vector quantization-based clustering
method to find a number of clusters where each of the
cluster centers corresponds to one potential target [1].
This approach, however, requires the prior knowledge
of the number of clusters, which is a well-known
problem in unsupervised classification [2]. A similar
problem also arises in sensor array processing where
the number of signals must be known a priori or
estimated by an information theoretic criterion
(Akaike information criterion) [3–4] or minimum
description length (MDL) [4–5]. However, AIC or
MDL may not be appropriate to be used to determine
the number of targets present in remotely sensed
images as shown in [6]. This is because the noise
in remotely sensed imagery may not be stationary
and not even be independent identically distributed.
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Secondly, the data statistics may not be available or
may be difficult to obtain in order to implement the
likelihood functions used in these criteria.
This paper investigates the issue of the ASTR and

develops algorithms for the ASTR in hyperspectral
imagery. The proposed ASTR algorithms can be
implemented by an automatic target generation
process (ATGP) followed by a target classification
process (TCP). The ATGP generates a set of potential
targets from the image data in an unsupervised fashion
without any prior knowledge. Then the resulting
ATGP-generated targets are subsequently classified
by the TCP. The idea of the ATGP originates from
the concept of orthogonal subspace projection
(OSP) in signal processing, which was previously
used to develop an OSP classifier for hyperspectral
image classification [7]. The ATGP first selects an
initial target pixel vector, denoted by t0, then uses
the OSP to project all image pixel vectors into the
orthogonal complement space of the linear space
spanned by t0, denoted by t0 that is orthogonal
to t0. A pixel vector with the maximum length in
t0 is then selected as a first target pixel vector
extracted from the data, denoted by t1. Since t1
produces the maximum magnitude of projection in
t0 , we can expect that these two target pixel vectors
t0 and t1 have most distinct spectral features in the
sense of orthogonal projection. The same procedure
is repeated again to generate a second target pixel
vector t2, a third target pixel vector t3, etc. until a
stopping criterion is met. In this case, the ATGP is
terminated. Next, the targets produced by the ATGP
are processed by the TCP which classifies each of
the ATGP-generated targets. The classifier used in
the TCP is the OSP classifier developed in [7]. The
reason for this selection is because both the ATGP and
the TCP use the OSP as a criterion to generate and
classify targets. Nevertheless, it by no means claims
that the OSP classifier is the best classifier. Other
classifiers can be also used in the TCP in accordance
with different applications.
It should be noted that there is a difference

between the initial target pixel vector t0 and other
target pixel vectors tj for j = 0 generated in the
ATGP. While t0 could be selected with some judicious
reasoning, tj can only be generated by the OSP. As
a result, depending upon how the initial target pixel
vector t0 is selected in the ATGP, two versions of the
ASTR can be designed for different applications. If
the initial target t0 is selected by a priori knowledge,
the ASTR algorithm is referred to as desired target
detection and classification algorithm (DTDCA).
In this case, DTDCA can be used to search for a
specific target in unknown scenes. It is often the
case that in reconnaissance applications the targets
of interest are generally provided by prior knowledge.
Therefore, they can all be used as initial target pixel
vectors, not necessarily a single initial target pixel
vector. The DTDCA allows one to detect all such

target pixel vectors in the image data. On the other
hand, if the initial target is not specified and provided
a priori, it must be generated by the ATGP. To meet
this need an automatic detection and classification
algorithm (ATDCA) is developed. In this case,
the ATDCA can be used to detect anomalies in
completely blind and unknown environments. This
situation occurs in surveillance applications when no
prior knowledge is available, e.g., concealed target
detection, environmental monitoring, etc. Despite
that the only difference between the DTDCA and
the ATDCA lies in the selection of the initial target
pixel vector t0, it results in different applications as
demonstrated in experiments conducted here. For
the DTDCA it only classifies the target pixel vectors
specified by t0 and only these target pixel vectors are
shown in the classification images. By contrast, the
ATDCA classifies all the target pixel vectors specified
by the target pixel vectors generated by the ATGP.
As a result, each ATGP-generated target yields an
individual and separate classification image.

Several advantages can be benefited from the
ASTR. 1) The targets produced by the ATGP may
include interferers such as clutter and also natural
background signatures which cannot be identified
from image data a priori. They can be eliminated to
improve target detection performance. This is specially
crucial for hyperspectral images where interference
tends to have more dominant impacts than noise on
detection and classification [8]. As a consequence,
interference elimination and suppression is more
important than noise removal. However, interference
is generally difficult to identify in the image data.
The ATGP provides a feasible means for finding such
interferers. 2) Unless a complete target knowledge is
available a priori, the ASTR provides a mechanism
to find unknown targets and interferers. The ASTR
makes use of the ATGP to generate such potential
targets without appealing for prior knowledge.
3) The ASTR extends existing classifiers such as OSP
classifier in [7], signature subspace classifier (SSC),
oblique subspace classifier (OBC) in [9], maximum
likelihood classifier (MLC) [10–11] and Kalman
filter-based classifier [12] in an unsupervised fashion.
Moreover, it can be further used to detect anomalous
or concealed targets [13]. In order to evaluate both
ASTR algorithms, the DTDCA and the ATDCA,
a comparative and quantitative study is conducted
using a series of experiments using HYDICE data to
demonstrate their difference and performance analysis.

This paper is organized as follows. Section
II formulates hyperspectral image mixed pixel
classification as a linear mixing problem where the
OSP approach developed in [7] is also reviewed.
Section III develops the ASTR that comprises two
processes, the ATGP and the TCP implemented in
sequence. Two versions of the ASTR, DTDCA, and
ATDCA are also described in the section. Section
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IV presents a series of experiments using HYDICE
image data to demonstrate the difference between the
DTDCA and the ATDCA. In particular, a quantitative
study and comparative analysis is conducted for
their performance evaluation. Section V concludes a
general discussion on the ASTR and its applications.

II. ORTHOGONAL SUBSPACE PROJECTION

Linear spectral mixing analysis is a classic
approach in remote sensing image processing
to determine and quantify individual spectral
signatures (or endmembers) in a mixed pixel [14–15].
Many other approaches were also developed for
hyperspectral image analysis [16]. Of particular
interest is the OSP approach in [7–9, 17] which has
shown success and been widely used in hyperspectral
and multispectral data exploitation. It is also based on
a linear mixture model, but takes a slightly different
view from commonly used linear unmixing methods
such as maximum likelihood estimation [10–11]. It
separates the undesired targets from the desired target
in the mixture model, then utilizes an orthogonal
subspace projector to eliminate the undesired targets
prior to detection and classification. Unfortunately,
the OSP approach cannot be used for ATR since
it requires complete target knowledge. In many
practical and real applications, such prior knowledge
is either not available or difficult to obtain. Under
such circumstance, the required knowledge must
be generated directly from the image data in an
unsupervised means. This is particularly important for
reconnaissance and surveillance applications where
the image environment is generally unknown. The
proposed ASTR is designed and developed based
on this need. It extends the OSP approach to ATR
in two different aspects which result in two different
algorithms, DTDCA and ATDCA. As mentioned
previously, the OSP approach is a spectral-based
technique and we use the term ASTR in this work
instead of the commonly used ATR to make such a
distinction.

A. Linear Mixing Problems

In order to describe the OSP approach, we first
review a linear mixing problem. Suppose that L is
the number of spectral bands and there are p target
signatures, m1,m2, : : : ,mp present in the image with
mj being an L 1 column vector represented by
the jth target signature. Let r be an L 1 column
vector and denote the spectral signature of an image
pixel vector in a hyperspectral image. A linear
mixing problem assumes that the spectral signature
r is a linear mixture of the p target signatures,
m1,m2, : : : ,mp; then finds their corresponding
abundance fractions, denoted by ®1,®2, : : : ,®p where

®j denotes the fraction of the jth target signature mj

resident in pixel vector r. More precisely, let M=
[m1 m2 mp] be an L p target signature matrix
formed from the p target signatures m1,m2, : : : ,mp

and ® be a p 1 abundance column vector denoted
by (®1 ®2 ®p)

T corresponding to m1,m2, : : : ,mp. A
linear mixture model for r is described by

r=M®+ n (1)

where n is an L 1 column vector representing
additive white noise with zero mean and variance
¾2IL L and IL L is the L L identity matrix. A linear
mixing problem is to solve a linear inverse problem
of (1) by finding an appropriate ® that represents true
abundance fractions of each of m1,m2, : : : ,mp present
in the r. So, a remotely sensed image pixel vector is
generally a mixed pixel whose signature is a mixture
of target signatures such as the one formed by (1). For
example, if the r contains only one target signature,
the abundance of this particular target signature will
be 100% and the rest of them will be zero. In this
case, the corresponding pixel vector is reduced to
a scalar pure pixel which is the case considered in
traditional image processing.

B. Orthogonal Subspace Projection

First of all, we rewrite model (1) as follows

r= t®p+U°+ n (2)

where t=mp is assumed to be a desired target
signature and U= [m1 m2 mp 1] is the undesired
spectral signature matrix made up of a set of the
remaining p 1 undesired target signatures. Here,
we assume without loss of generality that the last
target signature is the desired target signature t.
Nevertheless, (2) can be extended straightforwardly
to more than one desired target signature. Separating
U from M allows us to design an orthogonal subspace
projector to annihilate U from an image pixel vector
prior to detection and classification. One such
projector was an undesired target signature annihilator
developed in [7] and given by

PU = I UU# (3)

where U# = (UTU) 1UT is the pseudoinverse of U and
the notation U in PU indicates that the projector PU
maps the observed pixel r into the range U , the
orthogonal complement of U . Applying PU to model
(2) results in a new model

PU r= PU t®p+PU n (4)

where the undesired target signatures in U have
been eliminated and the original noise n has been
suppressed to PU n.

Equation (4) represents a standard signal detection
problem. Operating a pixel vector x on (4) and
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choosing maximization of the signal-to-noise ratio
(SNR) given by

SNR(x) =
(xTPU t)®

2
p(t

TPU x)

xTPU E[nn
T]PU x

(5)

as the optimal criterion, the maximum SNR of (5) can
be obtained by a matched filter, denoted by Mt with
x= ∙t where ∙ is a constant and the desired matched
signal happens to be the desired target signature t.
Based on the approach outlined by (2)–(5), the

OSP approach is carried out by a two-stage process,
i.e., an undesired target signature annihilator PU
followed by a matched filter Mt. More precisely, if
we want to classify a desired target signature t in the r
based on model (1), we first apply PU to model (2) to
eliminate U, then use the matched filter Mt to extract
t from the signal detection model (4). The operator
coupling PU with Mt is called an orthogonal subspace
classifier, POSP in [7] and denoted by

POSP =MtPU = tTPU : (6)

III. AUTOMATIC TARGET RECOGNITION (ATR)
ALGORITHM

As shown in (6), POSP requires the complete
knowledge of the desired target signature t and the
undesired target signatures in U. In many practical
applications, it is difficult to specify U. In this section,
we present an OSP-based ASTR approach which
does not require the prior knowledge about target
signatures in U. It comprises two processes, ATGP
followed by TCP.
Assume that t0 is an initial target signature. The

ATGP begins with the initial target signature t0 by
applying an orthogonal subspace projector Pt0 to
all image pixel vectors and finds a target signature,
denoted by t1 with the maximum orthogonal
projection in the orthogonal complement space,
denoted by t0 that is orthogonal to the space t0
linearly spanned by t0. The reason for this selection
is that the selected t1 generally has the most distinct
features from t0 in the sense of orthogonal projection
because t1 has the largest magnitude of the projection
in t0 produced by Pt0 . A second target signature
t2 can be found by applying an orthogonal subspace
projector P[t0t1] to the original image and a target
signature that has the maximum orthogonal projection
in t0, t1 is selected as t2. The above procedure is
repeated again to find a third target signature t3, a
fourth target signature t4, etc. In order to terminate
the ATGP a stopping rule is required. If we let Ui =
[t1 t2 ti] be the ith target signature matrix generated
at the ith stage, we define an orthogonal projection
correlation index (OPCI) by

´i = t
T
0PUi t0 (7)

which can be used to measure the similarity between
two consecutive generated target signatures. Since
Ui 1 Ui, ´i = t

T
0PUi t0 ´i 1 = t

T
0PUi 1t0 for all is. This

implies that the sequence tT0PUi t0 is monotonically
decreasing at i. In other words, the OPCI sequence
´i is monotonically decreasing at i. Using this
property as a stopping criterion, the ATGP can be
summarized as follows.

Automatic Target Generation Process:
1) Initial condition:
Select an initial target signature of interest denoted
by t0. Let " be the prescribed error threshold. Set
i = 0 and U0 = Á.

2) Apply Pt0 via (3) to all image pixel vectors r in the
image.

3) Find the first target signature, denoted by t1 which
has the maximum orthogonal projection

t1 = arg max
r
[(Pt0 r)

T(Pt0 r)] : (8)

Set i = 1 and U1 = t1.
4) If ´1 = t

T
0PU1t0 < ", go to step 8. Otherwise, set

i = i+1 and continue.
5) Find the ith target ti generated at the ith stage by

ti = arg max
r
[(P[t0Ui 1]r)

T(P[t0Ui 1]r)] (9)

where Ui 1 = [t1 t2 ti 1] is the target signature
matrix generated at the (i 1)st stage.

6) Let Ui = [t1 t2 ti] be the ith target signature
matrix, calculate OPCI, ´i = t

T
0PUi t0 and compare

´i to a prescribed threshold ".
7) Stopping rule: If ´i > ", go to step 5. Otherwise,
continue.

8) At this stage, the ATGP is terminated. At this
point, the target matrix Ui generated at this point
contains i target signatures which does not include
the initial target signature t0.

After the ATGP is terminated, the ATGP-generated
targets are then fed to the TCP which is used for
target classification. Depending upon whether or not
partial knowledge is used to select the initial target
t0 in the ATGP two versions of the ASTR can be
implemented, referred to as DTDCA and ATDCA.

A. Desired Target Detection and Classification

On many occasions, some partial knowledge may
be available and can be useful. In reconnaissance
applications, it is often the case that some specific
targets are of interest and this knowledge should
be included in algorithm design. For simplicity, we
assume that there is one specific target of interest.
In this case, we should take advantage of this
information by selecting it as initial target t0. Such
target can be either directly extracted from the image
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scene or obtained from a spectral library. However,
other than t0 no prior knowledge is required. The
DTDCA is designed to detect and classify such a
specific target t0 and can be implemented as follows.

Desired Target Detection and Classification Algorithm:
1) The initial target signature t0 is selected by a
specific target of interest.

2) Use t0 as the initial target signature in the ATGP to
generate a set of targets signatures to form Ui.

3) Use the TCP to classify t0:
It should be noted that when we classify the target
signature t0, any target signature in Ui generated
by the ATGP will be considered as an undesired
target signature with respect to t0 no matter what
this target signature is. In this case, the generated
target matrix Ui will substitute for the U in (2) to
yield the desired OSP classifier given by POSP =
tT0PUi . The resulting image will detect and classify
all target pixels specified by t0.

B. Automatic Target Detection and Classification
Algorithm

Unlike the DTDCA where the initial target in
the ATGP was assumed to be known a priori, the
ATDCA assumes no prior knowledge including t0.
In this case, the ATGP must be implemented in an
unsupervised fashion. In order to initialize the ATGP
without knowing t0, we select a target signature with
the maximum length as the initial target t0, namely,
t0 = arg maxr[r

Tr] . The t0 resulting from this
selection may not necessarily be a target signature.
It could be an interfering signature, a background
signature or something which is not of interest. Since
no prior knowledge is available, we must classify the
t0 and all other targets generated by the ATGP in Ui
individually and separately. This is a subtle but crucial
difference between the DTDCA and the ATDCA,
which also results in different applications.
A detailed implementation of the ATDCA is given

as follows.

Automatic Target Detection and Classification
Algorithm:
1) Select t0 = arg maxr[r

Tr] .
2) Use t0 as the initial target signature in step 1 of the
ATGP.

3) Follow steps 2–8 outlined in the ATGP to generate
Ui.

4) Use the TCP to classify t0 and all the targets in Ui
individually.
Apply the OSP classifier POSP = t

T
j PU to

classify all individual targets tj with U=
[t0 t1 tj 1 tj+1 ti]. Since there are i+1 target
signatures (i.e., t0 and i target signatures t1, t2, : : : , ti
in Ui), i+1 images will be generated by the TCP,

each of which detects and classifies one particular
target.

C. Comments on ASTR

Five comments are noteworthy.
1) It should be noted that each cycle from step 5

to step 7 in the ATGP generates one target at a time.
2) Despite the fact that the OSP classifier

is suggested to be used in the TCP in both the
DTDCA and the ATDCA, other classifiers such as
a posteriori OSP classifiers (SSC, OBC, MLC) [9]
or Kalman-filtering-based classifier [12] can be also
used to replace the OSP classifier in the TCP to
meet different purposes. However, when the OSP
classifier is used in the TCP, the ATR algorithm can
be viewed as an extension of the OSP classifier to an
unsupervised OSP classifier.

3) The criterion OPCI ´i given by (7) is
particularly designed for a stopping rule. It measures
how much of the residual of the orthogonal projection
of the undesired signatures in Ui leaked into the initial
target t0. It provides an important indication about
how many targets are needed to generate for the TCP
in classification. Another criterion can also be used
is the differential OPCI (DOPCI) defined by d´i =
´i 1 ´i which measures the discrepancy between
two consecutive OPCIs. If d´(Ui 1,Ui) is small, it
means that the currently generated target has very
similar signature to previously generated targets in the
sense of orthogonal projection. In this case, the new
target does not make too much projection contribution
to the OPCI which results in a small DOPCI. On
the other hand, if ´i is small, it implies that the Ui
generated contains by far the most significant targets
in the image. In this case, it indicates that the number
of targets produced by the ATGP is sufficient to
warrant good classification results. However, we
may use both indices as stopping rules to further
ensure that 1) the number of targets is sufficient
because of ´i < "1, and 2) no significant targets are
left out because of d´(Ui 1,Ui) = ´i 1 ´i < "2 as
long as thresholds "1 and "2 are sufficiently small. It
should be noted that the choice of epsilons is rather
empirical, generally less than 0.01. Alternatively,
instead of using epsilons in the DTDCA and the
ATDCA as a stopping rule we can terminate the
algorithms by setting an upper bound on the number
of targets needed to be generated. In this case, this
upper bound must be determined in advance.

4) The initial target signature t0 used in the
DTDCA is not necessarily limited to one single target.
If there are more than one target of interest, they can
all be used for initial targets. These multiple targets
are then further classified individually thereafter. The
algorithm using multiple targets will be expected to
be terminated faster than using a single target. But this
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Fig. 1. (a) Band 30 HYDICE panel scene which shows no sign of 15 panels. (b) Band 80 HYDICE panel scene which contains
15 panels. (c) Ground truth map of spatial locations of 15 panels. (d) Spectra of P1, P2, P3, P4, and P5 generated from Fig. (a).

is also traded for more information required to know
about the multiple targets.
5) It may be worthwhile to reiterate two subtle

differences in implementation of the DTDCA and the
ATDCA. One difference is the selection of the initial
target signature t0 used in the ATGP. The DTDCA
requires the knowledge of t0 while the ATDCA
does not. So, the DTDCA can be considered to be
partially supervised as opposed to the ATDCA which
is completely unsupervised. The second difference is
the target classification implemented in the TCP. The
DTDCA only classifies the initial target signature t0

which is assumed to be the desired target. By contrast,
the ATDCA must classify all targets generated by
the ATGP since we do not know which targets are
desired or undesired. As a result of these differences,
the DTDCA and the ATDCA can be used for different
applications.

6) It should be noted that the proposed ASTR
requires no optimization method. Consequently, there
is no issue of local or global optima. In addition, the
computational complexity is very fast. For example,
an OSP classifier is an operator implemented by
an orthogonal projector PU followed by a matched
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filter. Both operations are simple and computationally
efficient.

IV. EXPERIMENTS

In this section, a quantitative study and
comparative analysis for the DTDCA and the ATDCA
is conducted by a series of experiments using two
HYDICE image scenes with size of 64 64 pixels
where the low signal/high noise bands: bands 1–3
and bands 202–210; and water vapor absorption
bands: bands 101–112 and bands 137–153 have
been removed. Additionally, their difference is also
demonstrated. The first HYDICE scene to be studied
has 15 panels located in the center of the scene. Two
bands of the same scene in Figs. 1(a)–1(b) show that
the information provided by a band varies with its
spectral coverage interval. Fig. 1(a) is band 30 which
shows no sign of the presence of these 15 panels in
the scene compared to band 80 in Fig. 1(b) where
the panels are clearly visible in the scene. These 15
panels are arranged in a 5 3 matrix. Each element in
this matrix is a square panel and denoted by pij with
row indexed by i = 1, : : : ,5 and column indexed by
j = a,b,c. For each row i = 1, : : : ,5, the three panels
pia,pib,pic were painted by the same material but have
three different sizes. For each column j = a,b,c, the
five panels p1j ,p2j ,p3j ,p4j ,p5j have the same size but
were painted by five different materials. The sizes of
the panels in the first, second, and third columns are
3 m 3 m, 2 m 2 m, and 1 m 1 m, respectively.
So, the 15 panels have five different materials and
three different sizes. The ground truth map provided
in Fig. 1(c) shows the precise spatial locations of
these 15 panels. Black (B) pixels in Fig. 1(c) are the
panel center pixels of all the 15 panels and white
(W) pixels are panel pixels mixed with background
pixels which can be considered as mixed pixels. Fig.
1(d) plots the spectra of 5 panel signatures, si

5
i=1

generated by averaging B pixels in each row. The
1.5 m spatial resolution of the image scene suggests
that except for p2a,p3a,p4a,p5a which are two-pixel
panels, all the remaining panels are single-pixel
panels.
Two sets of experiments were conducted to

illustrate the difference between the DTDCA and the
ATDCA and their performance.

A. Experiments for DTDCA

The first set of experiments assumed that the panel
signatures in row 1 were known and given by s1 in
Fig. 1(d). In this case, t0 = s1 and we applied Pt0 to
project all image pixel vectors to the space, t0
that is orthogonal to the space linearly spanned by
t0. Then the pixel vector in t0 with the maximum
length was selected as a first target with its signature
specified by t1. Now the OSP classifier POSP =

tT0PU1 was applied to the image with U1 = t1 as the
undesired signature for elimination. The resulting
image is shown in Fig. 2(a) where the corresponding
OPCI ´1 = 0:08147 is shown underneath the image.
As we can see, none of the panels in row 1 were
detected. So, the orthogonal projector P[t0t1] was
applied to the original image to find a pixel vector
with the maximum length in the space t0, t1 which
was selected as a second target with its signature
specified by t2. The OSP classifier POSP = t

T
0PU2 with

U2 = [t1t2] was further applied to the image scene
again where the undesired target signatures t1, t2 were
eliminated by orthogonal projection. The resulting
image is shown in Fig. 2(b) with the corresponding
OPCI ´2 = 0:03742. The same procedure was repeated
over and over again to find a third target with its
signature specified by t3, a fourth target with its
signature specified by t4, etc. Fig. 2 shows that a
total of 20 undesired target signatures was generated
by the ATGP for elimination in sequence to classify
the desired target signature t0 = s1. Five stages in
the detection process were interesting and worth
mentioning. The first stage is demonstrated by
Figs. 2(a)–2(c) where no panels were detected. The
second stage is shown in Fig. 2(d) where t0 = s1
was classified after four target signatures t1, t2, t3,
t4 were generated and eliminated subsequently by
orthogonal projection. Its corresponding OPCI was
reduced to ´4 = 0:00174. From this image, the panels
in rows 1–3 were detected. The third stage occurred
in Figs. 2(e)–2(k) after the fifth target signature t5
was generated and eliminated where the panels in
rows 2–3 detected in Fig. 2(d) began to fade away
and vanish. The fourth stage was observed by Figs.
2(l)–2(t) where the image background was cleaned up
after the 12th target signature t12 was generated and
eliminated. Also demonstrated is the change between
Fig. 2(p) and 2(q) where panels in rows 2–4 detected
in Figs. 2(l)–2(p) were eventually eliminated after
the 17th target signature t17 was eliminated. As a
matter of fact, as shown in Figs. 2(q)–2(t) very little
change was made after elimination of the 17th target
signature t17. Such drastic transitions from the first
stage to the fourth stage resulted from elimination
of the 4th, 5th, and 12th target signatures t4, t5,
t12, t17. This implies that t4, t5, t12, and t17 possess
very distinct spectral features. These phenomena
are also illustrated by rapid reduction in the values
of the OPCI, from ´3 = 0:01807 to ´4 = 0:00174,
from ´4 = 0:00174 to ´5 = 0:00114, ´11 = 0:00069
to ´12 = 0:00026, ´16 = 0:00022 to ´17 = 0:00018. It
should be noted that the panels in the third column
has size of 1 m 1 m which is smaller than the 1.5 m
pixel resolution. As a result, they cannot be visualized
in Fig. 1(b). Interestingly, some of these panel pixels
were detected in Figs. 2(l)–2(p). In particular, the
panel pixel p13 was embedded in a single pixel. It
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Fig. 2. Results produced by DTDCA using s1 as initial target signature t0.

was not shown in Fig. 1(b) but was detected by the
DTDCA in Figs. 2(q)–2(t). This further shows that the
DTDCA has capability of detecting targets at subpixel
level.
Similar experiments were also conducted for

detection of panels in rows 2–5 using the panels
signatures s2,s3,s4,s5 as the desired target signatures t0

for each row. Their classification results are shown in
Figs. 3–6 respectively. For the purpose of comparison,
the maximum number of target signatures required to
generate was set to 20 to terminate the ATGP, which
was the same number used for Fig. 2. As shown in
these figures, the DTDCA detected panel pixels in
each row separately and effectively where the OPCI
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Fig. 3. Results produced by DTDCA using s2 as initial target signature t0.

values used to generate 20 target signatures were
different.
In order to evaluate the performance of the

DTDCA, we compared it to the OSP classifier
specified by (6) which was developed in [7, 9]. Two
reasons lead us to choosing the OSP classifier as a
benchmark comparison. 1) The OSP is a widely used

linear unmixing method and has become a standard
hyperspectral imaging technique [18]. 2) As shown
in [9, 11, 19] the OSP approach was a very general
linear unmixing method, which includes the MLC as a
special case. Figs. 7(a)–7(e) show results produced by
the OSP classifier for classification of panels in rows
1–5, respectively. Since the OSP classifier requires the
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Fig. 4. Results produced by DTDCA using s3 as initial target signature t0.

complete knowledge of target signatures present in the
image scene, seven target signatures were selected to
represent the image scene and to produce Fig. 7. The
used seven target signatures were 5 panel signatures,
si

5
i=1 plotted in Fig. 1(d) plus two background

signatures, a tree signature and a grass signature
selected by visual inspection of the scene. Comparing

Fig. 7(a) to Fig. 2(t), Fig. 7(b) to Fig. 3(t), Fig. 7(c)
to Fig. 4(t), Fig. 7(d) to Fig. 5(t) and Fig. 7(e) to
Fig. 6(t), we can see that the DTDCA performed
significantly better than did the OSP classifier because
the DTDCA made use of the ATGP to generate 20
undesired target signatures for elimination as opposed
to only 6 undesired target signatures used by the OSP
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Fig. 5. Results produced by DTDCA using s4 as initial target signature t0.

classifier for elimination. However, it should be noted
that the OSP made full use of the knowledge of the
five panel signatures si

5
i=1, while the DTDCA only

required the knowledge of the desired target signature,
si without knowing sj for j = i.
Since the images generated in Figs. 2–6 were

actually abundance fractional images of panel pixels
which were gray scale, their classification was

performed by visual inspection. With the ground
truth map provided in Fig. 1(c), we can further
conduct quantitative study by tabulating the results
of detection and classification of B panel pixels in
each row. In order to do so, we need to convert gray
scale abundance fractional images to binary images.
One such technique was developed in [19], referred
to as abundance percentage cut-off thresholding.
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Fig. 6. Results produced by DTDCA using s5 as initial target signature t0.

It normalized abundance fractions of each pixel to
the range of [0,1], then chose a cut-off abundance
percentage a% as a threshold value. If the abundance
fraction of a pixel was greater than or equal to the
specified a% (i.e., a=100), the pixel would be
declared as a target pixel and be assigned by 1 and
those pixels with abundance fractions less than a%,
i.e., < a=100 would be considered as background

pixels and assigned by 0. Using this abundance
percentage cut-off thresholding we tabulate the
DTDCA results of Figs. 2(t)–6(t) in Table I and the
OSP classification results of Figs. 7(a)–7(e) in Table
II where a% was chosen to be 10%, 25%, 50%. In
particular,
N = total number of black panel pixels in the scene;
NB(i) =number of B panel pixels in row i;
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Fig. 7. Results of the OSP classifier. (a) Panels in row 1. (b) Panels in row 2. (c) Panels in row 3. (d) Panels in row 4.
(e) Panels in row 5.

TABLE I
Detection Results of DTDCA for B Panel Pixels Using a%= 10%, 25% and 50%

a= 10% a= 25% a= 50%

Row NB(i) NBD(i) NM (i) NF (i) NBD(i) NM (i) NF (i) NBD(i) NM (i) NF (i)

row 1 3 3 0 1036 2 1 1 2 1 0
row 2 4 4 0 3745 4 0 386 4 0 0
row 3 4 4 0 1110 4 0 0 3 1 0
row 4 4 4 0 3730 4 0 26 3 1 0
row 5 4 4 0 2140 3 1 1 3 1 0

Total 19 19 0 11761 17 2 414 15 4 0

TABLE II
Detection Results of OSP for B Panel Pixels Using a%= 10%, 25% and 50%

Using Background Signatures

a= 10% a= 25% a= 50%

Row NB(i) NBD(i) NM (i) NF (i) NBD(i) NM (i) NF (i) NBD(i) NM (i) NF (i)

row 1 3 3 0 3879 3 0 3441 3 0 297
row 2 4 4 0 3609 4 0 3200 4 0 1446
row 3 4 4 0 4051 4 0 3825 4 0 712
row 4 4 4 0 4046 4 0 3957 4 0 1674
row 5 4 4 0 4049 4 0 3776 3 1 1019

Total 19 19 0 19634 19 0 18199 18 1 5148

Without Using Background Signatures

a= 10% a= 25% a= 50%

Row NB(i) NBD(i) NM (i) NF (i) NBD(i) NM (i) NF (i) NBD(i) NM (i) NF (i)

row 1 3 3 0 3822 3 0 1560 0 3 241
row 2 4 4 0 4046 4 0 4010 4 0 3706
row 3 4 4 0 4030 4 0 3404 3 1 572
row 4 4 4 0 4049 4 0 4042 4 0 3865
row 5 4 4 0 3896 3 0 2511 3 1 181

Total 19 19 0 19843 19 0 15527 14 5 8565
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Fig. 8. Different HYDICE scene from Fig. 1. (a) Band 30. (b) Band 80.

NBD(i) =number of B panel pixels which were
detected as B pixels in row i;
NF(i) = number of false-alarmed B panel pixels in

row i, where a false-alarmed B pixel is defined by a
non-B pixel which was detected as a B panel pixel;
NM(i) = number of B panel pixels in row i, which

was not detected.
According to Tables I and II, when a%= 10%,

both the DTDCA and the OSP detected all 19
B pixels in all five rows with large numbers of
false-alarmed B pixels. As the a% was increased to
25%, there was little difference in performance for the
OSP where all 19 B pixels were detected with a slight
reduction of false-alarmed B pixels. By contrast, the
DTDCA reduced the total number of false-alarmed B
pixels substantially from 11761 to 414 at the expense
of missing two B pixels, p13 in row 1 and p53 in
row 5. Specifically, NF(2) = 386 accounted for most
of the false-alarmed B pixels with NF(1) =NF(5) = 1,
NF(3) = 0, and NF(4) = 26. If a% was further increased
to 50%, the OSP only missed one B pixel in row
5 while the total number of false-alarmed B pixels
was reduced significantly from 18199 to 5148, a
two-thirds reduction. Compared with the OSP, the
DTDCA missed two more B pixels, p33 in row 3
and p43 in row 4 with no false-alarmed B pixels,
NF(i) = 0 for i = 1, : : : ,5. However, if we compare
the five detection images in Figs. 2(t)–6(t) produced
by the DTDCA to the five detection images in Figs.
7(a)–7(e) produced by the OSP, the DTDCA clearly
performed significantly better than the OSP since the
gray scale images provide better image interpretation
than Tables I and II. Such visual advantage cannot
be obtained from quantitative results, which do
not show spatial locations of detected pixels and
their spatial correlation. For example, the OSP
extracted a considerably large number of image
background pixels that may obscure a very small
number of panel B pixels as shown in Figs. 7(b) and
7(d). Therefore, despite that Tables I–II provide a
quantitative analysis of detection results, they do not
offer gray level information that is very useful for
visual interpretation.

In the above experiments the targets of interest
were assumed to be present in the image scene. On
some occasions the targets which we are interested
may not be in an image scene. In this case, how do
we detect their absence in the image scene? The
following experiment provides another advantage of
the DTDCA which can be used for this purpose.

Fig. 8 is another HYDICE scene similar to that
in Fig. 1, which also contains 15 panels in the scene.
However, these 15 panels were painted by materials
that are different from those used to paint the 15
panels in Fig. 1. Suppose that the targets of interest
were panels in row 1 in Fig. 1 and we would like to
know if any pixel in Fig. 8 was also painted by the
same material that was used to paint the panels in row
1. In this case, we used s1 as the desired initial target
signature t0 for the scene in Fig. 8. Figs. 8(a)–8(t)
show the detection results of applying the DTDCA
with t0 = s1 to the scene in Fig. 8 where 20 was set
to the maximum number of target signatures required
to generate for elimination. As we can see from these
figures, the images in Figs. 9(m)–9(t) after elimination
of 16 target signatures are completely dark and show
no sign of any target pixel whose signature matched
s1. As a consequence, we can conclude that there was
no pixel in the image scene in Fig. 8 that was painted
by the same material used to paint the panels in row 1
in Fig. 1.

B. Experiments for ATDCA

Unlike the DTDCA, the ATDCA does not assume
any prior target knowledge. In this case, the initial
target signature t0 must be generated from the image
scene. As a result, it cannot be used to detect targets
which are not supposed to be in an image scene as did
the DTDCA in Fig. 8.

Additionally, in order to make comparison with the
DTDCA, the same image scene used for Figs. 2–6
was also used for the experiments for the ATDCA
where the maximum number of target signatures
generated by the ATGP was also set to 20. Figs.
10(a)–10(t) show the classification results of the
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Fig. 9. Results of DTDCA applied to image scene in Fig. 8 when s1 was used for t0.

ATDCA where each image was produced by one
particular ATGP-generated target signature for
detection and classification. Three major differences
between the DTDCA and the ATDCA need to be
clarified. One is the initial target signatures t0 used
in the ATGP. In the DTDCA the t0 is the desired
target signature and is used as a matching signature
for target detection and classification. On the other

hand, the initial target signature t0 in the ATDCA is
a target pixel with the maximum vector length, which
corresponds to a brightest pixel in an image scene.
So, the generated t0 is not necessarily of our interest.
For example, Fig. 10(a) shows the classification of
the initial target signature t0 which was a strong
interferer located at the upper left corner. Another
difference is that the ATDCA must classify each of
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Fig. 10. Results of ATDCA applied to image scene in Fig. 1.

the ATGP-generated target signatures individually and
separately. As a result, there were 20 classification
images produced by the ATDCA where Figs. 10(c),
10(e), 10(f), 10(q), and 10(r) detected panels in
rows 5, 3, 1, 2, and 4, respectively. By contrast,
the DTDCA produced only one classification for
panels in each row as shown in Figs. 2–6. A third
difference is that the 20 target signatures generated

by the ATGP in the ATDCA included the initial target
signature t0. This is different from the DTDCA where
t0 was not part of the 20 target signatures generated
by the ATGP in the DTDCA. If we compare Figs.
10(c), 10(e), 10(f), 10(q), and 10(r) to Figs. 2(t), 3(t),
4(t), 5(t), and 6(t), there was no visible difference
in classification results between the DTDCA and
ATDCA.
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In analogy with Tables I and II, we can also
tabulate the classification results of Figs. 9(c), 9(e),
9(f), 9(q) and 9(r) where the abundance percentage
cut-off threshold a% was also chosen to be 10% and
25%. Interestingly, the results were identical to those
in Table 1. These experiments demonstrate that the
ATDCA could perform as well as the DTDCA even
though the former did not have prior target knowledge
as the latter did.

V. CONCLUSION

In this paper, we investigated the problem of
ASTR in hyperspectral imagery and developed a
two-stage process, ATGP and TCP for the ASTR.
The ATGP extracts potential targets directly from
image data which may include interferers, unwanted
targets, natural background signatures, and clutters.
Since hyperspectral images generally contain many
unidentified targets in an image scene, the proposed
ATGP is particularly attractive in this regard. It
overcomes this dilemma and suggests a useful means
of extracting potential targets directly from the image
scenes without a priori information. Additionally,
the proposed ASTR is a versatile technique and
can be implemented in two versions, DTDCA and
ATDCA to meet various applications. As a matter
of fact, one does not necessarily imply another
as demonstrated by experiments. For example,
the ATDCA can be used for applications such as
detection of anomalies and concealed targets in
unknown environments [13]. On the contrary, the
DTDCA can be used to detect whether a desired
target is in the image scene, a task that the ATDCA
cannot accomplish as shown in Fig. 9. One intrinsic
constraint of the ASTR is that the data dimensionality
must be sufficiently large for the ATGP to carry
out a sequence of orthogonal projections so that no
two target signatures can be accommodated in one
dimension, in which case these two targets cannot
be distinguished from each other. Apparently, this
constraint is not an issue for hyperspectral image
data, but it is certainly a problem for multispectral
imagery [12, 17]. In order to alleviate this limitation,
a generalized OSP method was recently proposed in
[17] which can extend the applicability of the ASTR
to 3-band SPOT data and Landsat image data for land
cover classification rather than target detection and
classification.
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