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Due to recent advances in hyperspectral imaging sensors
many subtle unknown signal sources that cannot be resolved by
multispectral sensors can be now uncovered for target detection,
discrimination, and identification. Because the information
about such sources is generally not available, automatic target
recognition (ATR) presents a great challenge to hyperspectral
image analysts. Many approaches developed for ATR are
based on second-order statistics in the past years. This paper
investigates ATR techniques using high order statistics. For
ATR in hyperspectral imagery, most interesting targets usually
occur with low probabilities and small population and they
generally cannot be described by second-order statistics. Under
such circumstances, using high-order statistics to perform target
detection have been shown by experiments in this paper to be
more effective than using second order statistics. In order to
further address a challenging issue in determining the number
of signal sources needed to be detected, a recently developed
concept of virtual dimensionality (VD) is used to estimate this
number. The experiments demonstrate that using high-order
statistics-based techniques in conjunction with the VD to perform
ATR are indeed very effective.
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I.  INTRODUCTION

Recently, a new generation of remote sensing
instruments with very high spectral resolution,
called imaging spectrometers or hyperspectral
imaging sensors have been developed to uncover
subtle material substances that generally cannot
be resolved by multispectral sensors. Therefore,
hyperspectral sensors provide a new dimension in
applications that cannot be addressed by classical
spatial domain-based techniques. One of such
applications is automatic target recognition (ATR) in
finding targets that are relatively small and generally
occur in low probabilities with no prior knowledge.
More importantly, when these targets appear, their
population is usually not too large. Of particular
interest is that the size of a target may be smaller than
the pixel size. In this case, the target is embedded in
a single pixel and cannot be identified by its spatial
presence. Unfortunately, many such targets exist,
such as special species in agriculture and ecology,
toxic/metal waste in environmental monitoring,
rare minerals in geology, drug trafficking in law
enforcement, and small combat vehicles in battlefield
to name just a few.

Two types of targets are generally of interest
for ATR and have been studied extensively in the
literature. One is anomaly with signature spectrally
distinct from its surroundings. Another is endmember
that is defined as an idealized and pure signature
for a class [1]. Depending upon which type of
targets is of interest, different approaches have
been investigated and developed. As for anomaly
detection, a popular and well-known algorithm,
generally referred to as RX algorithm was suggested
by Reed and Yu [2] who formulated a binary
composite hypothesis testing problem to derive a
constant false alarm probability (CFAR) detector
which turned out to be the Mahalanobis distance [3].
Others include Chang et al.’s RX algorithm-based
anomaly detection and classification in [4], Ashton’s
adaptive Bayesian classifier in [5], Schweizer and
Moura’s Gauss-Markov random field (GMRF) in
[6], independent component analysis (ICA)-based
linear spectral random mixture analysis [7] and
projection pursuit [8]. As for the endmember
extraction, two most popular and widely used
algorithms are pixel purity index (PPI) available
in the Research Systems ENVI software [9] and
N-finder (N-FINDR) developed by Winter et al.
[10]. Additionally, many other approaches have
been also developed, which include convex cone
analysis (CCA) [11], unsupervised fully constrained
least squares (UFCLS) [12], iterative error algorithm
(IEA) [13], automated morphological endmember
extraction (AMEE) [14], and projection pursuit [15].
A recently developed approach, called automatic
target detection and classification algorithm (ATDCA)
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[16-17], which made use of a sequence of orthogonal
subspace projections (OSPs) [18] has been shown to
be effective in automatic target extraction.

As mentioned above, since the targets of interest
generally occupy a few pixels, they may not be
able to constitute reliable second-order statistics. In
this case, their presence may be more effectively
captured through high-order statistics. In order to
take advantage of high-order statistics, projection
pursuit and ICA were introduced as alternatives
for anomaly detection [7-8, 17] and endmember
extraction [15, 19]. The idea was based on an
assumption that if the image background can be
characterized by second-order statistics, anomalies
can be then viewed as outliers as opposed to the
image background due to the fact that their sizes
are relatively small and spectral features are very
different compared with their surroundings. As a
result, anomaly detection can be performed more
effectively by searching for deviations from the
background distribution. Similarly, the occurrence
of pure signatures (endmembers) in a real image
scene is usually very low and rare. Therefore, their
existence can be more effectively characterized by
high-order statistics. In doing so, the simplest higher
order statistics are skewness and kurtosis which are
the normalized third and fourth central moments and
can be used to measure the asymmetry and flatness
of distribution respectively. If the image background
1s assumed to be Gaussian distributed, the skewness
and kurtosis can be used to measure the difference of
a distribution from Gaussianity. Using this property
as a criterion, skewness and kurtosis seem to be
appropriate measures in detection of anomalies or
small targets. This paper investigates ATR using
high-order statistics and also explores approaches
to finding optimal projection directions so that the
projected data have the maximal high-order statistics.
Since high-order statistics-based methods generally
require calculation of a sequence of projections
which can be very computationally expensive and
cumbersome, this paper further develops efficient
algorithms for finding these projections with greatly
reduced computational complexity.

Another challenging issue for ATR is to determine
the number of targets needed to be generated without
prior knowledge. This is equivalent to determining
how many projections are required to be generated for
projection pursuit-based approaches [7-8], how many
endmembers assumed to be present in the data for
endmember extraction [9—15], or how many targets
are extracted for target detection and classification
[16-17]. A general approach is either to use trial
and error or to compute the accumulated eigenvalues
to account for a certain percentage of total energy.
Unfortunately, neither method is effective as shown
in [17] and [20]. In order to address this issue, a
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recently developed concept of virtual dimensionality
(VD) is used to determine the number of projections
required for ATR. The idea of the VD has its root in
Neyman-Pearson detection theory [21] which uses
the false alarm probability as a criterion to estimate
the number of spectrally distinct signal sources
present in the data. Using the VD as an estimate, the
number of projections can be reasonably determined.
Experiments conducted in the work presented here
also support the use of the VD in determination of
number of projections for ATR.

In order to demonstrate advantages of our
proposed high-order statistics-based methods over
second-order statistics-based methods, the RX
algorithm [2] and the ATDCA [16—17] are selected for
comparative analysis in two applications, endmember
extraction and target detection and classification where
two real hyperspectral image data sets are used for
experiments. The reason for such selection is because
these two techniques are second-order statistics-based
methods and each of them uses a different type of
criterion. For example, the RX algorithm is derived
from a Gaussian kernel or Mahalanobis distance [2]
and the ATDCA is developed on the signal-to-noise
ratio (SNR)-based OSP [16-17].

The paper is organized as follows. Section II
presents iterative methods to find skewness and
kurtosis-based projections for ATR with extension
to any high-order statistics. Section III conducts real
hyperspectral image experiments to demonstrate
the performance of the higher-order statistics-based
ATR algorithms. Finally, Section IV draws some
conclusions.

II.  ATR USING HIGH-ORDER STATISTICS

Assume that there are N data points {x;}" , each
of which has dimensionality L and X = [x;X,---Xy/]
is an L x N data matrix formed by {x;}),. Let w
be an L-dimensional column vector and assumed
to be a desired projection vector. Then z = w'X =
(Zl,zz,...,zN)T is a 1 x N row vector which represents
the projection of data {x; f\i , mapped along the
direction of w, where T denotes the transpose of a
vector or matrix. Now, assume that F(-) is a function
to be explored and defined on the projection space
z = w'X. The selection of the function F depends
upon various applications. For example, in order to
detect small targets in a large unknown background,
skewness and kurtosis are generally used as criteria
to measure asymmetry and flatness of a distribution,
respectively. In this case, F(.) can be defined by
skewness (x3) with

El(z. — 3 E Ty _ )3
F(Zi) = K‘3(Zi) — [(Z103 ,U/) ] — [(W X13 ,LL) ]

g

foreach i=1,2,....N @))
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which is the normalized third central moment, kurtosis
(r4) with

E )4 E Ty _ )4
F(z) = ry(z) = [(z,a4 w1 _ Elw ; W1

i=1,2,...N (2

for each

which is the normalized fourth central moment and
any kth order statistic x5 with

E[(z, — )k ENwTx. — 1)k
F(z) = ry(z) = [(Z’Uk”)]= [(w % -]

i=12,...,N. 3)

for each

The 1 and o in (1)—(3) are the mean and standard
deviation of random variable z;, respectively. Since
small targets can be characterized by those pixels that
cause maximum magnitude of asymmetry and ripples
of a distribution, finding a projection vector w that
maximizes (1)—(3) is equivalent to finding a direction
which these pixels are most likely aligned with. By
projection of all data samples {x,;}¥, on the projection
vector w, the desired small targets can be detected by
those pixels that yield the largest projection along the
direction of w.

If we assume that most of image background
can be described by second-order statistics and the
statistical behaviors of targets of interest go beyond
second-order statistics, a logical preprocessing
for detecting such targets will remove the image
background prior to target detection. In doing so, we
first remove the sample mean and de-correlate the data
matrix X by the sphering method described as follows.

A. Sphering

The idea of sphering is to centralize the mean
of the data samples {x;}, at the origin while
normalizing the data variances to one. In this case,
two sets of data samples can be categorized. One set
is made up of all data samples lying on the surface of
a sphere centered at the origin with unit radius. The
set of these data samples represents uninteresting data
samples which may include most image background
pixels. The second set of data samples contains all
data samples which are not on the sphere, i.e., either
inside or outside the sphere. Only these data samples
are of major interest and can be further explored by
orders of statistics higher than variance. So, working
only on this set of data samples may exclude most of
image background samples.

In order to perform sphering, we first remove
the sample mean of data set by X = X — p- 1T =
[X; — 4, Xy — i,...,Xy — ], where p = (1/N)Zf’:1xi is
the sample mean vector and 1 = [11---1]T is column

N
vector with all ones in the components. Next step we

de-correlate the zero-mean data sample matrix X.
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Assume that {\,}%, are the eigenvalues of the
sample covariance matrix X = (1/N)XXT formed by

X and {v,}., are their corresponding eigenvectors.
The covariance matrix can be decomposed into

Vizv=A 4)

where V = [v,v,---v,] is a matrix made up of the
eigenvectors {v,}-, and A = diag{\}l | is a diagonal
matrix with L eigenvalues {)}/-, as the diagonal
elements. Let A~1/2 = diag {1/,/X,},_,. Multiplying
both sides of (4) by A~!/2 results in

A2VISVA- 2 =1L (3)

From (5), we obtain the desired sphering matrix A,
given by
A=VA ' (6)

so that AT A = 1. The data set resulting from
applying the sphering matrix A to the original data
set, {X;}), is denoted by {y,}, and the process of
using (4)—(6) is called sphering which is also known
as a whitening process of X. In this case, the data
matrix Y has zero mean and an identity matrix as its
covariance matrix.

If we replace the original data samples {x,}
with sphered data samples {y;}Y, in (3) then z =
wiY = wily,y, -yl = Wy why,,....wly )T =
(21,23,---,2y)". Equation (3) can be reduced to

ri(z) = E[(W'y)¥]  foreach i=1,2,....N

)
with subscript k indicating k-order statistic for k > 3.

B. Algorithm for Finding Projection Images for ATR

After the data are sphered, the next task is to
search a projection vector that is optimal in some
sense. If the skewness is used as a criterion, the
projection vector should be the one that points
to the direction where the projected data has the
most asymmetric histogram. If the kurtosis is used
as a criterion, the projected data will yield the
most heavy-tailed histogram. In this section, an
iterative method is proposed to search for the optimal
projection vector based on these criteria.

To find the projector which yields the maximum
skewness, we impose a constrained problem as
follows

N N
1 30 _ 1 Ty vTorwT
mvzle{ﬁzzi } = mvavtx{ﬁ2w V.Y WWY;
= 1=
subject to wiw =1 8
where z; is the projection resulting from the sphered

data sample y; via the projection vector w. The
constraint wiw = 1 is used for normalization such
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that the skewness of the resulting data after projection
will not be affected by the magnitude of w. Using the
Lagrange multiplier method, an objective function is
obtained by

Jw) = E[w'y,y/wwly,] — A\(w'w—1). 9)

Differentiating (9) with respective w results in

0J (W) = 3E[yiyiTwyiT]w —2\w =0. (10)
ow
Setting X' = (2/3)\ yields
(Ely,y; wy/1— XDw = 0. (11)

Solving (11) is equivalent to finding the eigenvalue
N of the matrix E[y;yfwy!] and its corresponding
eigenvector w*.

When using kurtosis as the searching criterion, the
constrained problem becomes

N N
1 4\ _ 1 T T T T
m;lX{ﬁ Elzi } —mgX{ﬁ > Wiy wwyylw
i=

i=1

subject to wlw=1.  (12)

In analogy with (11) we can also obtain

(Ely;yfww'y,yI1—XDw =0 (13)

which once again is to solve the eigenvalue N
and its associated eigenvector wx of the matrix
E[y,yfww'y,y[]. The obtained w* is a desired the
projector that yields the maximum kurtosis.

In order to extend the above treatment to any
kth order central moment we solve the following
eigen-problem

(Ely,(yIw)*2yI1—=NDw = 0 (14)

which is the eigenvector of E[y,(yfw)~2y[]. Using
the property of eigen-decomposition, (14) can be
reduced to

wl(ELy, (v W) 2y hw = X (15)
because of w'w = 1. Equation (15) can be further
simplified to

E[w'y,(y;w)* yjw] = E[(y; W] = Elz{] = X
(16)

which turns out to be the kth central moment of
z=(w")TY.

Since a single projection vector w* that solves
(14) can only detect one type of anomaly. In order
to detect more types of anomalies present in an image
scene a sequence of projections must be performed.
In doing so, when a projector vector w* is found, the
de-correlated data Y is then mapped into the linear
subspace (w*)* orthogonal to (w*) that is the space
linear spanned by w*. The next projection vector w*
is then found by solving (14) in the space (w*)=*.
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The same procedure is continued on until a stop
criterion is satisfied such as the predetermined number
of projections required to be generated. A detailed
implementation of finding a sequence of projection
vectors can be described as follows.

Projection Vector Generation Algorithm

1) Sphere the original data set X. The resulting
data set is denoted by Y.

2) Find the first projection vector w} by solving
(13) to find the optimal projection vector based on
maximizing the kth normalized central moment.

3) Using the found wj, generate the first
projection image Z!' = (w)TY = {z} | z! = (w)Ty,}
which can be used to detect the first type of anomaly.

4) Apply the OSP specified by Py, =1—
w,(wiw,)"'w] to the data set Y to produce the first
OSP-projected data set denoted by Y', Y! =P, Y.

5) Use the data set Y! and find the second
projection vector w3 by solving (14).

6) Apply Py, =T—w,(Wiw,) 'w] to the
data set Y' to produce the second OSP-projected
data set denoted by Y2, Y? = PéZYl which can
be used to produce the third projection vector w;
by solving (14). Or equivalently, define a matrix
projection matrix W2 = [w,w,] and apply Py, =
I-W2((W>)TW2)"1(W?)T to the original sphered data
set Y to obtain Y? = Py, Y.

7) Repeat the procedure of steps 5 and 6 to
produce wj,...,w; until a predetermined number of
projection vectors is reached.

It should be noted that the implementation of
step 2 in the above algorithm is not trivial. In order
to solve (14) for the optimal projection vector wj the
following iterative procedure is proposed to execute
the step 2.

a) Initialize a random projector w(lo) and set n =0

b) Calculate the matrix E[y,(yf w(”)*"2y]]
and find an eigenvector V(ln) corresponding to the
largest magnitude of eigenvalues of the matrix
Ely;(y] w{"Y2y[1.

¢) If the Euclidean distance [[w(” — w"*D|| > ¢
or [[w” + W™V > ¢, then let w"*V = v\ and n —
n+ 1, go to step (b). Otherwise, W(l”)

projector wi. Let wi = w(l") and return to step 3 in the

projection vector generation algorithm.

is the desired

[Il. EXPERIMENTS

Two sets of real hyperspctral image data,
airborne visible infrared imaging spectrometer
(AVIRIS) Cuprite data and hyperspectral digital
image collection experiment (HYDICE) data were
used for experiments. The Cuprite data was used to
demonstrate advantage of high-order statistics-based
methods over second-order statistics-based methods
in endmember extraction, while the HYDICE

1375



(a)

Fig. 1.

(b)

(a) Spectral band number 50 (827 nm) of Cuprite AVIRIS image scene. (b) Spatial positions of five pure pixels corresponding

to minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K), muscovite (M).

data was used to show superior performance of
high-order statistics-based methods to second-order
statistics-based methods in target detection and
classification.

A. Endmember Extraction

Endmember extraction is one of fundamental
tasks in hyperspectral image analysis. It finds and
identifies the purest signatures in image data for
various applications such as image endmembers used
for linear spectral unmixing, training samples for
unsupervised image classification, etc. The proposed
high-order statistics-based endmember extraction was
evaluated for performance analysis where the widely
used endmember extraction algorithm N-FINDR was
used as benchmark comparison. The reason to choose
N-FINDR over the PPI was due to the fact that the
N-FINDR is available in the literature compared with
the PPI which is only available in the ENVI software.

The first image data was collected over the
Cuprite mining site, Nevada, in 1997, and is shown
in Fig. 1(a). It is a 224 band AVIRIS image scene
with a size of 350 x 350 pixels, is well understood
mineralogically, and has reliable ground truth available
at website [23] where the five pure pixels representing
the five minerals, alunite (A), buddingtonite (B),
calcite (C), kaolinite (K), and muscovite (M), referred
to as endmembers are white-circled and labeled by A,
B, C, K, and M in Fig. 1(b). This fact has made this
scene a standard test site for endmember extraction.

It should be noted that in the Cuprite image data,
bands 1-3, 105-115, and 150-170 have been removed
prior to the analysis due to water absorption and low
SNR in those bands. As a result, a total of 189 bands
were used for experiments.

The VD estimated for this image scene with
different values of false alarm probability A is given
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TABLE I
VD Estimated by HFC Method with Various False Alarm
Probabilities

— -1 — -2 — -3 — -4 — -5
B=10"" B=102 B =103 B =10* B =10

VD 34 30 24 22 20

TABLE II
Four Endmembers Extracted by N-FINDR with MNF-DR

A B C K M

A 0.0235 0.1665 0.2143 0.1012 0.1542
c 0.2235 0.1002 0.0511 0.2276 0.1222
K’ 0.0812 0.1434 0.1771 0.0418 0.1010
M 0.1675 0.0933 0.0971 0.1483 0.0381

in Table I where the Harsanyi-Farrand-Chang (HFC)
method in [17, 20] was used for estimation.

In order to ensure that all mineral signatures
of interest were included in high-order
statistics-generated components, the false alram
rate B: chosen for the VD was set to 10~ which
resulted in VD = 22. However, it should be noted
that this was an emiprical choice. Since each
component image represents a specific class of
targets it can be used to serve as abundance map
for this particular class. Endmember signature is
identified as the purest signature in the scene, in this
sense, the brightest pixel in the image component
(IC) can be extracted as an endmember. Using the
spectral angle mapper (SAM) in [1] as a spectral
similarity measure, the pixels whose signatures were
identified to be closet to the ground truth mineral
endmembers were extracted as candidate endmembers.
Table II tabulated their SAM values between the four
N-FINDR-extracted signatures, denoted by A’, C/,
K’, M’ and the five ground truth endmembers, A, B,
C, K, M, with no signature found to correspond to
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TABLE Illa
Five Signatures Extracted by Skewness

TABLE Illc
Five Signatures Extracted by 5th Moment

A B C K M Order of IC A B C K M Order of IC
A’ 0.0172 0.1645 0.2115 0.0961 0.1476 15 A 0 0.1576  0.2038 0.0961 0.1421 15
B’ 0.1591 0.0745 0.0793 0.1767 0.0969 13 B’ 0.1412 0.0589 0.0847 0.1521 0.0777 21
C" 0.2192 0.1069 0.0362 0.2196 0.1174 11 C’ 02192 0.1069 0.0362 0.2196 0.1174 19
K’ 0.1029 0.1619 0.2025 0.0300 0.1183 2 K’ 0.0888 0.1835 0.2284 0.0341 0.1453 7
M 0.1650 0.0844 0.1162 0.1508 0.0808 17 M 0.1067 0.1293 0.1558 0.0688 0.0711 14

TABLE IIIb TABLE IIId
Five Signatures Extracted by Kurtosis Five Signatures Extracted by FastICA

A B C K M Order of IC A B C K M Order of IC
A’ 0.0172 0.1645 0.2115 0.0962 0.1476 10 A 0 0.1576  0.2038 0.0961 0.1421 17
B’ 0.1591 0.0749 0.0793 0.1768 0.0969 11 B’ 0.1385 0.0623 0.079 0.1584 0.0826 13
C’ 02192 0.1069 0.0362 02196 0.1174 18 C’ 0.2192 0.1069 0.0362 0.2196 0.1174 21
K’ 0.0888 0.1834 0.2283 0.0341 0.1453 7 K’ 0.1029 0.1619 0.2026 0.03 0.1183 6
M’ 0.1458 0.0781 0.1141 0.1347 0.0706 21 M 0.1650 0.0844 0.1162 0.1508 0.0809 18

the mineral endmember C. It should be noted that
when the N-FINDR was implemented, it required
dimensionality reduction which was performed by the
maximum noise fraction (MNF) [24] and the number
of dimensions to be retained was set to p, in this case,
p =22

In order to implement the proposed high-order
statistics-based ATR for endmember extraction, the
three criteria of skewness, kurtosis, Sth moment as
well as the FastICA were evaluated for performance
analysis.

There are three different ways to generate initial
projection vectors to be used for the high-order
statistics-based algorithms and FastICA:

1) random-generated initial projection vector: a
unit vector with components randomly generated,

2) unity-based initial projection vector: a unit
vector with all ones in its components,

3) eigenvector-based initial projection vectors:
the eigenvectors corresponding to the p largest
eigenvalues of the data sample covariance matrix.

Nevertheless, according to our experiments,
the results derived from these three different initial
projection vectors were very similar even though
their produced component images might appear in
different orders. Therefore, only the SAM values
between the ground truth endmembers and signatures
extracted by algorithms using eigenvectors as initial
projection vectors are tabulated in Tables I1la—ITId
where the ICs in the last columns indicate the orders
of the ICs generated by algorithms. Figs. 2(a)—(d)
also show the gray scale component images produced
by the three algorithms and FastICA corresponding
to the components identified in the last columns of
Tables IIa—II1d.

Four criteria of high-order statistics were used
to produce image components for ATR, which

REN ET AL.: AUTOMATIC TARGET RECOGNITION FOR HYPERSPECTRAL IMAGERY

are to maximize skewness, kurtosis, Sth moment,
and statistical independency. The results are
summarized in Table IV with the five minerals

A, B, C, K, M listed in the 1st row. Since the ICs
were generated sequentially, the orders of the ICs
generated in different scenarios are usually different.
In Table IV the numbers under each of the minerals
indicate that the orders of the components that
specified the particular minerals were generated.

In addition, the computing time in seconds for

each criterion is provided in the last column in
Table IV.

According to Table IV, all the minerals were
extracted within 30 components except two cases
that were the skewness using the unity vector as
the initial projection vector and the FastICA using
a random vector as initial projection vector, each of
which missed one type of mineral. As for CPU time,
the FastICA required the least time. However, this
may not be conclusive since our algorithms to run
high-order statistics were not optimized in terms of
source codes. Comparing the results in Tables III-IV
produced by the high-order ATR to the results in
Table II produced by the N-FINDR, it is very clear
that the high-order statistics-based methods usually
performed better than the N-FINDR in endmember
extraction where the former extracted the pixels
corresponding to all the five mineral endmembers
compared with only four endmembers extracted by
the N-FINDR.

B. Target Detection

The second mage data set is a HYDICE
image scene shown in Fig. 3(a) that was used for
experiments of target detection. It has a size of
64 x 64 pixel vectors with 15 panels in the scene and
the ground truth map in Fig. 3(b) [17].
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C’ (11™) K’ (2™)

(@)

Gage i el
K’ (7lh) M, (2lst)

B’ (11M) C’ (18™)
(b)

M’ (14™)

C’ (1 9th)
()

B’ (2lst)

C’ (2 1 St) Ks (6th
(d)

Fig. 2. (a) Image components produced by skewness. (b) Image components produced by kurtosis. (c) Image components produced by
5th moment. (d) Image components produced by FastICA.

A’ (17th) Bs (13‘[}1) M’ (lgth)

It was acquired by 210 spectral bands with a j=1,2,3. For each row i = 1,2,...,5, there are three
spectral coverage from 0.4 ym to 2.5 pm. Low panels p;;, p»», Pz, painted by the same material but
signal/high noise bands (bands 1-3 and bands with three different sizes. For each column j = 1,2,3,
202-210) and water vapor absorption bands (bands the 5 panels py;, p,;, P3;» Paj> Ps; have the same size
101-112 and bands 137-153) were removed. So, a but with five different materials. So, panels in five
total of 169 bands were used. The spatial resolution different rows were painted by five different materials.
is 1.56 m and spectral resolution is 10 nm. Within The sizes of the panels in the first, second, and third
the scene in Fig. 3(a) there is a large grass field columns are 3mx3m,2mx2mand l mx1m
background, and a forest on the left edge. Each respectively. Since the size of the panels in the third
element in this matrix is a square panel and denoted column is 1 m x 1 m, they cannot be seen visually

by p;; with rows indexed by / and columns indexed by  from Fig. 3(a) due to the fact that its size is less
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Fig. 3.

P11 P12, P13
P21 P22, P23
P31, P32, P33

P41, Pa2, Pa3
P51 Ps2, P53

(b)
15-panel HYDICE image. (a) 15-panel image scene. (b) Ground truth map of 15 panels.

TABLE IV
Order of Components that Specified Minerals were Generated

High-Order Statistics Initial Projection Vectors A B C K M CPU Time (seconds)
random vectors 13 19 12 3 18 1548
skewness unity vector 17 Not found 11 3 21 1686
eigenvectors 15 13 11 2 17 1516
random vectors 19 15 20 4 17 4373
Kurtosis unity vector 20 4 7 3 13 5736
eigenvectors 10 11 18 7 21 3928
random vectors 14 20 15 3 13 1853
5th moment unity vector 15 17 21 3 14 1677
eigenvectors 15 21 19 7 14 1981
random vectors 14 13 12 7 Not found 293
FastICA unity vector 21 14 20 4 13 340
eigenvectors 17 13 21 6 18 306
TABLE V components generated by high-order statistics.
VD Estimated by HFC Method with Various False Alarm Additionally, the same three ways used to initial
Probabilities

— —1 — -2 _ -3 _ —4 _ -5
P=10"" P.=102 P.=1073 P =10"* P =10

VD 14 11 9 9 7

than the 1.56 m pixel resolution. Fig. 3(b) shows the
precise spatial locations of these 15 panels where red
pixels (R pixels) are the panel center pixels and the
pixels in yellow (Y pixels) are panel pixels mixed
with the background. The 1.56 m spatial resolution

of the image scene suggests that most of the 15 panels
are one pixel in size except p,;, P31, Pay» Ps; Which
are two-pixel panels. This image scene provides an
excellent example for ATR since it contains real
subpixel targets and mixed pixels that cannot be
simulated by synthetic images. This is because it is
difficult to simulate a synthetic image with appropriate
sample spectral correlation to reflect real data.

The VD estimated for this HYDICE image scene
with different values of false alarm probability F; is
given in Table V.

The VD was chosen to be 9 with the false alarm
probability set to B = 10~* and p was set to 18 to
ensure that all the 15 panels of interest included

REN ET AL.: AUTOMATIC TARGET RECOGNITION FOR HYPERSPECTRAL IMAGERY

projection vectors for Table II were also used to
initialize algorithms of four high-order statistics,
skewness, kurtosis, S5th moment, and statistical
independency.

The results are summarized in Table VI with
panels in five rows listed in the 1st row where the
numbers in Table VI indicate that the orders of the
components that specified the panels of particular
rows were generated. In analogy with Table IV, the
least CPU time also came from the FastICA.

In addition to Table VI the ICs produced by
the skewness, kurtosis, 5Sth moment, and statistical
independency using eigenvectors as initial projection
vectors are also provided in Figs. 4(a)—(d) to
demonstrate the effectiveness of high-order statistics
for ATR in target detection and classification where
the number in parenthesis under each IC was the
order in which that particular image component
was generated. It should be noted that only the ICs
corresponding to the five panels are listed.

These figures demonstrate that the ICs produced
by high-order statitsics could be used for target
detection and classification for ATR. On the other
hand, since our proposed high-order statistics-based
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1% panels (2") " panels (4™) 3" panels(6™) 4™ panels (3") 5™ panels (1%

(@)

4™ panels (2 5™ panels (1%

" panels(16™)
(b)

st panels (3") " panels (15™)

3" panels(7") 4" panels (2" ™ panels (1%)

)]

* panels (3") 2" panels (8"™)

4" panels (2™ " panels (6")

3" panels(9"™)
(d)

1* panels (4™) 2" panels (5™)

Fig. 4. (a) Image components produced by skewness that extracted panels in five rows for target detection. (b) Image components
produced by kurtosis that extracted panels in five rows for target detection. (c) Image components produced by 5th moment that
extracted panels in five rows for target detection. (d) Image components produced by FastICA that extracted panels in five rows for
target detection.

methods are completely unsupervised and no 9 target pixels {tATPCA}Y_ | were shown in Fig. 5(b)
prior knowldege is required, the second-order with numbers indicating the orders of target pixels
statistics-based RX algorithm for anomlay detection being generated by the ATDCA. According to

and the OSP-based ATDCA seem to serve as perfect Fig. 5(b), only three ATDCA-generated target pixels,
candidates for comparison due to the fact that they tyTOCA | ¢ATDCA | (ATDCA were identified to represent

both are completely unsupervised target detectors three R pixels in row 5, 3, and 1, respectively.
and require no prior knolwedge. Fig. 5(a)—(b) shows The ATDCA then used these three panel pixels to
the results produced by the RX algorithm and the perform panel classification. The results are shown

ATDCA, respectively, where the ATDCA-generated in Fig. 6.
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(@)
Fig. 5.

(b)

Detection results by (a) RX algorithm, and (b) ATDCA.

panels in row 1(t?TDCA )

panels in row 3 (t;

ATDCA ATDCA )

panels in row 5(t;

)

Fig. 6. Classification results by ATDCA using these panel pixels.

TABLE VI
Order of Components that Specified Minerals were Generated

High-Order Initial Projection Panels in Panels in Panels in Panels in Panels in CPU Time
Statistics Vectors Row 1 Row 2 Row 3 Row 4 Row 5 (seconds)
random vectors 1 10 2 7 3 67.59
skewness unity vector 3 13 1 7 4 76.59
eigenvectors 2 4 6 3 1 55.89
random vectors 3 7 2 8 4 110.03
Kurtosis unity vector 5 8 4 6 2 135.47
eigenvectors 3 15 16 2 1 155.73
random vectors 8 2 5 4 3 103.53
5th moment unity vector 9 not found 3 4 2 103.35
eigenvector 3 8 7 2 1 95.17
random vectors 1 6 9 3 2 6.96
FastICA unity 9 7 5 4 1 9.07
eigenvectors 4 5 9 2 6 6.22

Since the panels in rows 2 and 3 were made by
the same materials with different paints, the ATDCA
which used the t{TPCA for classification also classified
panels in row 2 as shown in Fig. 6. Similarly, it was
true for panels in rows 4 and 5. If we compare Fig. 6
with Fig. 5(a), the ATDCA performed significantly
better than the RX algorithm. However, if we further
compare Fig. 6 with Fig. 4(a)—(d), it is obvious that
the ATDCA could not compete against the high-order
statistics-based methods because the latter could detect

REN ET AL.: AUTOMATIC TARGET RECOGNITION FOR HYPERSPECTRAL IMAGERY

panels in the five rows correctly in five individual and
separate components.

In order to make further comparison, the receiver
operating characteristics (ROCs) analysis [21] was
used to evaluate the detection performance of the
four high-order statistics based methods, skewness,
kurtosis, FastICA against the RX algorithm and
ATDCA based on the results in Figs. 4(a)-(d), 5(a),
and 6. Fig. 7(a)—(d) plot the ROC curves of each
of high-order statistics based methods relative that
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Fig. 7. ROC curves of high-order ATR, ICA and RX, ATDCA.

produced by the RX algorithm and ATDCA where
all the four high-order statistics-based methods
performed significantly better than the RX algorithm
and ATDCA.

Four comments on Fig. 7 are noteworthy.

1) Since the detection images produced in
Figs. 4(a)—(d), 5(a), and 6 were gray scale, a threshold
must be applied to segment panels from the image
background for panel detection. In this case, the ROC
curves in Fig. 7 were produced by varying a threshold
from the lowest gray scale to highest gray scale for
panel detection.

2) Second, the same threshold was used and
applied to the image in Fig. 5(a) and Fig. 6 and all
the ICs in Fig. 4(a)—(d).

3) Third, due to close performance among all the
four high-order statistics-based methods, it is very
difficult to discriminate their ROC curves one from
another. So, the ROC curves were plotted by each of
the four high-order statistics based method against the
RX algorithm and ATDCA for clarity.

1382

4) Finally, it should be noted that high-order
statistics-based methods take advantage of their
generated components to perform target detection
and classification, while the RX algorithm cannot
discriminate the targets it detects. As a result, the RX
algorithm can be only used for target detection. On
the other hand, the ATDCA can be used for target
classification as it did in Fig. 6. But its second-order
statistics has limited its ability in detecting only three
panel pixels, not five panel pixels for classification.

IV. CONCLUSION

This paper investigates high-order statistics-based
methods for ATR in hyperspectral imagery where
third-order normalized central moment (skewness),
fourth-order normalized central moment (kurtosis),
fifth normalized central moment, and infinite
normalized central moment (statistical independency)
are studied for comparative analysis. Algorithms
for implementing criteria of high-order statistics are
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also developed and considered to be new except
the FastICA developed in [22] which is used to
implement the criterion of statistical independency.
In order to demonstrate the utility of our proposed
high-order statistics-based methods using skewness,
kurtosis, Sth moment, and statistical independency
as criteria, two applications in endmember extraction
and target detection and classification are explored
by experiments. The experimental results show

that high-order statistics-based methods have clear
advantages over the second-order statistics-based
methods such as PCA.
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