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Due to recent advances in hyperspectral imaging sensors
many subtle unknown signal sources that cannot be resolved by
multispectral sensors can be now uncovered for target detection,
discrimination, and identification. Because the information
about such sources is generally not available, automatic target
recognition (ATR) presents a great challenge to hyperspectral
image analysts. Many approaches developed for ATR are
based on second-order statistics in the past years. This paper
investigates ATR techniques using high order statistics. For
ATR in hyperspectral imagery, most interesting targets usually
occur with low probabilities and small population and they
generally cannot be described by second-order statistics. Under
such circumstances, using high-order statistics to perform target
detection have been shown by experiments in this paper to be
more effective than using second order statistics. In order to
further address a challenging issue in determining the number
of signal sources needed to be detected, a recently developed
concept of virtual dimensionality (VD) is used to estimate this
number. The experiments demonstrate that using high-order
statistics-based techniques in conjunction with the VD to perform
ATR are indeed very effective.
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I. INTRODUCTION

Recently, a new generation of remote sensing
instruments with very high spectral resolution,
called imaging spectrometers or hyperspectral
imaging sensors have been developed to uncover
subtle material substances that generally cannot
be resolved by multispectral sensors. Therefore,
hyperspectral sensors provide a new dimension in
applications that cannot be addressed by classical
spatial domain-based techniques. One of such
applications is automatic target recognition (ATR) in
finding targets that are relatively small and generally
occur in low probabilities with no prior knowledge.
More importantly, when these targets appear, their
population is usually not too large. Of particular
interest is that the size of a target may be smaller than
the pixel size. In this case, the target is embedded in
a single pixel and cannot be identified by its spatial
presence. Unfortunately, many such targets exist,
such as special species in agriculture and ecology,
toxic/metal waste in environmental monitoring,
rare minerals in geology, drug trafficking in law
enforcement, and small combat vehicles in battlefield
to name just a few.
Two types of targets are generally of interest

for ATR and have been studied extensively in the
literature. One is anomaly with signature spectrally
distinct from its surroundings. Another is endmember
that is defined as an idealized and pure signature
for a class [1]. Depending upon which type of
targets is of interest, different approaches have
been investigated and developed. As for anomaly
detection, a popular and well-known algorithm,
generally referred to as RX algorithm was suggested
by Reed and Yu [2] who formulated a binary
composite hypothesis testing problem to derive a
constant false alarm probability (CFAR) detector
which turned out to be the Mahalanobis distance [3].
Others include Chang et al.’s RX algorithm-based
anomaly detection and classification in [4], Ashton’s
adaptive Bayesian classifier in [5], Schweizer and
Moura’s Gauss-Markov random field (GMRF) in
[6], independent component analysis (ICA)-based
linear spectral random mixture analysis [7] and
projection pursuit [8]. As for the endmember
extraction, two most popular and widely used
algorithms are pixel purity index (PPI) available
in the Research Systems ENVI software [9] and
N-finder (N-FINDR) developed by Winter et al.
[10]. Additionally, many other approaches have
been also developed, which include convex cone
analysis (CCA) [11], unsupervised fully constrained
least squares (UFCLS) [12], iterative error algorithm
(IEA) [13], automated morphological endmember
extraction (AMEE) [14], and projection pursuit [15].
A recently developed approach, called automatic
target detection and classification algorithm (ATDCA)
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[16—17], which made use of a sequence of orthogonal
subspace projections (OSPs) [18] has been shown to
be effective in automatic target extraction.
As mentioned above, since the targets of interest

generally occupy a few pixels, they may not be
able to constitute reliable second-order statistics. In
this case, their presence may be more effectively
captured through high-order statistics. In order to
take advantage of high-order statistics, projection
pursuit and ICA were introduced as alternatives
for anomaly detection [7—8, 17] and endmember
extraction [15, 19]. The idea was based on an
assumption that if the image background can be
characterized by second-order statistics, anomalies
can be then viewed as outliers as opposed to the
image background due to the fact that their sizes
are relatively small and spectral features are very
different compared with their surroundings. As a
result, anomaly detection can be performed more
effectively by searching for deviations from the
background distribution. Similarly, the occurrence
of pure signatures (endmembers) in a real image
scene is usually very low and rare. Therefore, their
existence can be more effectively characterized by
high-order statistics. In doing so, the simplest higher
order statistics are skewness and kurtosis which are
the normalized third and fourth central moments and
can be used to measure the asymmetry and flatness
of distribution respectively. If the image background
is assumed to be Gaussian distributed, the skewness
and kurtosis can be used to measure the difference of
a distribution from Gaussianity. Using this property
as a criterion, skewness and kurtosis seem to be
appropriate measures in detection of anomalies or
small targets. This paper investigates ATR using
high-order statistics and also explores approaches
to finding optimal projection directions so that the
projected data have the maximal high-order statistics.
Since high-order statistics-based methods generally
require calculation of a sequence of projections
which can be very computationally expensive and
cumbersome, this paper further develops efficient
algorithms for finding these projections with greatly
reduced computational complexity.
Another challenging issue for ATR is to determine

the number of targets needed to be generated without
prior knowledge. This is equivalent to determining
how many projections are required to be generated for
projection pursuit-based approaches [7—8], how many
endmembers assumed to be present in the data for
endmember extraction [9—15], or how many targets
are extracted for target detection and classification
[16—17]. A general approach is either to use trial
and error or to compute the accumulated eigenvalues
to account for a certain percentage of total energy.
Unfortunately, neither method is effective as shown
in [17] and [20]. In order to address this issue, a

recently developed concept of virtual dimensionality
(VD) is used to determine the number of projections
required for ATR. The idea of the VD has its root in
Neyman-Pearson detection theory [21] which uses
the false alarm probability as a criterion to estimate
the number of spectrally distinct signal sources
present in the data. Using the VD as an estimate, the
number of projections can be reasonably determined.
Experiments conducted in the work presented here
also support the use of the VD in determination of
number of projections for ATR.
In order to demonstrate advantages of our

proposed high-order statistics-based methods over
second-order statistics-based methods, the RX
algorithm [2] and the ATDCA [16—17] are selected for
comparative analysis in two applications, endmember
extraction and target detection and classification where
two real hyperspectral image data sets are used for
experiments. The reason for such selection is because
these two techniques are second-order statistics-based
methods and each of them uses a different type of
criterion. For example, the RX algorithm is derived
from a Gaussian kernel or Mahalanobis distance [2]
and the ATDCA is developed on the signal-to-noise
ratio (SNR)-based OSP [16—17].
The paper is organized as follows. Section II

presents iterative methods to find skewness and
kurtosis-based projections for ATR with extension
to any high-order statistics. Section III conducts real
hyperspectral image experiments to demonstrate
the performance of the higher-order statistics-based
ATR algorithms. Finally, Section IV draws some
conclusions.

II. ATR USING HIGH-ORDER STATISTICS

Assume that there are N data points fxigNi=1, each
of which has dimensionality L and X= [x1x2 ¢ ¢ ¢xN]
is an L£N data matrix formed by fxigNi=1. Let w
be an L-dimensional column vector and assumed
to be a desired projection vector. Then z=wTX=
(z1,z2, : : : ,zN)

T is a 1£N row vector which represents
the projection of data fxigNi=1 mapped along the
direction of w, where T denotes the transpose of a
vector or matrix. Now, assume that F(¢) is a function
to be explored and defined on the projection space
z=wTX. The selection of the function F depends
upon various applications. For example, in order to
detect small targets in a large unknown background,
skewness and kurtosis are generally used as criteria
to measure asymmetry and flatness of a distribution,
respectively. In this case, F(:) can be defined by
skewness (·3) with

F(zi) = ·3(zi) =
E[(zi¡¹)3]

¾3
=
E[(wTxi¡¹)3]

¾3

for each i= 1,2, : : : ,N (1)
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which is the normalized third central moment, kurtosis
(·4) with

F(zi) = ·4(zi) =
E[(zi¡¹)4]

¾4
=
E[(wTxi¡¹)4]

¾4

for each i= 1,2, : : : ,N (2)

which is the normalized fourth central moment and
any kth order statistic ·5 with

F(zi) = ·k(zi) =
E[(zi¡¹)k]

¾k
=
E[(wTxi¡¹)k]

¾k

for each i= 1,2, : : : ,N: (3)

The ¹ and ¾ in (1)—(3) are the mean and standard
deviation of random variable zi, respectively. Since
small targets can be characterized by those pixels that
cause maximum magnitude of asymmetry and ripples
of a distribution, finding a projection vector w that
maximizes (1)—(3) is equivalent to finding a direction
which these pixels are most likely aligned with. By
projection of all data samples fxigNi=1 on the projection
vector w, the desired small targets can be detected by
those pixels that yield the largest projection along the
direction of w.
If we assume that most of image background

can be described by second-order statistics and the
statistical behaviors of targets of interest go beyond
second-order statistics, a logical preprocessing
for detecting such targets will remove the image
background prior to target detection. In doing so, we
first remove the sample mean and de-correlate the data
matrix X by the sphering method described as follows.

A. Sphering

The idea of sphering is to centralize the mean
of the data samples fxigNi=1 at the origin while
normalizing the data variances to one. In this case,
two sets of data samples can be categorized. One set
is made up of all data samples lying on the surface of
a sphere centered at the origin with unit radius. The
set of these data samples represents uninteresting data
samples which may include most image background
pixels. The second set of data samples contains all
data samples which are not on the sphere, i.e., either
inside or outside the sphere. Only these data samples
are of major interest and can be further explored by
orders of statistics higher than variance. So, working
only on this set of data samples may exclude most of
image background samples.
In order to perform sphering, we first remove

the sample mean of data set by X̂=X¡¹ ¢ 1T =
[x1¡¹,x2¡¹, : : : ,xN ¡¹], where ¹= (1=N)

PN
i=1 xi is

the sample mean vector and 1= [11 ¢ ¢ ¢1| {z }
N

]T is column

vector with all ones in the components. Next step we
de-correlate the zero-mean data sample matrix X̂.

Assume that f¸lgLl=1 are the eigenvalues of the
sample covariance matrix § = (1=N)X̂X̂T formed by
X̂ and fvlgLl=1 are their corresponding eigenvectors.
The covariance matrix can be decomposed into

VT§V=¤ (4)

where V= [v1v2 ¢ ¢ ¢vL] is a matrix made up of the
eigenvectors fvlgLl=1 and ¤= diagf¸lgLl=1 is a diagonal
matrix with L eigenvalues f¸lgLl=1 as the diagonal
elements. Let ¤¡1=2 = diag

©
1=
p
¸l
ªL
l=1. Multiplying

both sides of (4) by ¤¡1=2 results in

¤¡1=2VT§V¤¡1=2 = I: (5)

From (5), we obtain the desired sphering matrix A,
given by

A=V¤¡1=2 (6)

so that AT§A= I. The data set resulting from
applying the sphering matrix A to the original data
set, fx̂igNi=1 is denoted by fyigNi=1 and the process of
using (4)—(6) is called sphering which is also known
as a whitening process of X. In this case, the data
matrix Y has zero mean and an identity matrix as its
covariance matrix.
If we replace the original data samples fxigNi=1

with sphered data samples fyigNi=1 in (3) then z=
wTY=wT[y1y2 ¢ ¢ ¢yN] = (wTy1,wTy2, : : : ,wTyN)T =
(z1,z2, : : : ,zN)

T. Equation (3) can be reduced to

·k(zi) = E[(w
Tyi)

k] for each i= 1,2, : : : ,N

(7)

with subscript k indicating k-order statistic for k ¸ 3.

B. Algorithm for Finding Projection Images for ATR

After the data are sphered, the next task is to
search a projection vector that is optimal in some
sense. If the skewness is used as a criterion, the
projection vector should be the one that points
to the direction where the projected data has the
most asymmetric histogram. If the kurtosis is used
as a criterion, the projected data will yield the
most heavy-tailed histogram. In this section, an
iterative method is proposed to search for the optimal
projection vector based on these criteria.
To find the projector which yields the maximum

skewness, we impose a constrained problem as
follows

max
w

(
1
N

NX
i=1

z3i

)
=max

w

(
1
N

NX
i=1

wTyiy
T
i ww

Tyi

)
subject to wTw= 1 (8)

where zi is the projection resulting from the sphered
data sample yi via the projection vector w. The
constraint wTw= 1 is used for normalization such
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that the skewness of the resulting data after projection
will not be affected by the magnitude of w. Using the
Lagrange multiplier method, an objective function is
obtained by

J(w) = E[wTyiy
T
i ww

Tyi]¡¸(wTw¡ 1): (9)

Differentiating (9) with respective w results in

@J(w)
@w

= 3E[yiy
T
i wy

T
i ]w¡ 2¸w= 0: (10)

Setting ¸0 = (2=3)¸ yields

(E[yiy
T
i wy

T
i ]¡¸0I)w= 0: (11)

Solving (11) is equivalent to finding the eigenvalue
¸0 of the matrix E[yiy

T
i wy

T
i ] and its corresponding

eigenvector w¤.
When using kurtosis as the searching criterion, the

constrained problem becomes

max
w

(
1
N

NX
i=1

z4i

)
=max

w

(
1
N

NX
i=1

wTyiy
T
i ww

Tyiy
T
i w

)
subject to wTw= 1: (12)

In analogy with (11) we can also obtain

(E[yiy
T
i ww

Tyiy
T
i ]¡¸0I)w= 0 (13)

which once again is to solve the eigenvalue ¸0

and its associated eigenvector w¤ of the matrix
E[yiy

T
i ww

Tyiy
T
i ]. The obtained w

¤ is a desired the
projector that yields the maximum kurtosis.
In order to extend the above treatment to any

kth order central moment we solve the following
eigen-problem

(E[yi(y
T
i w)

k¡2yTi ]¡¸0I)w= 0 (14)

which is the eigenvector of E[yi(y
T
i w)

k¡2yTi ]. Using
the property of eigen-decomposition, (14) can be
reduced to

wT(E[yi(y
T
i w)

k¡2yTi ])w= ¸
0 (15)

because of wTw= 1. Equation (15) can be further
simplified to

E[wTyi(y
T
i w)

k¡2yTi w] = E[(y
T
i w)

k] = E[zki ] = ¸
0

(16)

which turns out to be the kth central moment of
z= (w¤)TY.
Since a single projection vector w¤ that solves

(14) can only detect one type of anomaly. In order
to detect more types of anomalies present in an image
scene a sequence of projections must be performed.
In doing so, when a projector vector w¤ is found, the
de-correlated data Y is then mapped into the linear
subspace hw¤i? orthogonal to hw¤i that is the space
linear spanned by w¤. The next projection vector w¤

is then found by solving (14) in the space hw¤i?.

The same procedure is continued on until a stop
criterion is satisfied such as the predetermined number
of projections required to be generated. A detailed
implementation of finding a sequence of projection
vectors can be described as follows.

Projection Vector Generation Algorithm
1) Sphere the original data set X. The resulting

data set is denoted by Y.
2) Find the first projection vector w¤1 by solving

(13) to find the optimal projection vector based on
maximizing the kth normalized central moment.
3) Using the found w¤1, generate the first

projection image Z1 = (w¤1)
TY= fz1i j z1i = (w¤1)Tyig

which can be used to detect the first type of anomaly.
4) Apply the OSP specified by P?w1 = I¡

w1(w
T
1w1)

¡1wT1 to the data set Y to produce the first
OSP-projected data set denoted by Y1, Y1 = P?w1Y.
5) Use the data set Y1 and find the second

projection vector w¤2 by solving (14).
6) Apply P?w2 = I¡w2(wT2w2)¡1wT2 to the

data set Y1 to produce the second OSP-projected
data set denoted by Y2, Y2 = P?w2Y

1 which can
be used to produce the third projection vector w¤3
by solving (14). Or equivalently, define a matrix
projection matrix W2 = [w1w2] and apply P

?
W2 =

I¡W2((W2)TW2)¡1(W2)T to the original sphered data
set Y to obtain Y2 = P?W2Y.
7) Repeat the procedure of steps 5 and 6 to

produce w¤3, : : : ,w
¤
k until a predetermined number of

projection vectors is reached.
It should be noted that the implementation of

step 2 in the above algorithm is not trivial. In order
to solve (14) for the optimal projection vector w¤1 the
following iterative procedure is proposed to execute
the step 2.
a) Initialize a random projector w(0)1 and set n= 0
b) Calculate the matrix E[yi(y

T
i w

(n)
1 )

k¡2yTi ]
and find an eigenvector v(n)1 corresponding to the
largest magnitude of eigenvalues of the matrix
E[yi(y

T
i w

(n)
1 )

k¡2yTi ].
c) If the Euclidean distance kw(n)1 ¡w(n+1)1 k> "

or kw(n)1 +w(n+1)1 k> ", then let w(n+1)1 = v(n)1 and nÃ
n+1, go to step (b). Otherwise, w(n)1 is the desired
projector w¤1. Let w

¤
1 =w

(n)
1 and return to step 3 in the

projection vector generation algorithm.

III. EXPERIMENTS

Two sets of real hyperspctral image data,
airborne visible infrared imaging spectrometer
(AVIRIS) Cuprite data and hyperspectral digital
image collection experiment (HYDICE) data were
used for experiments. The Cuprite data was used to
demonstrate advantage of high-order statistics-based
methods over second-order statistics-based methods
in endmember extraction, while the HYDICE
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Fig. 1. (a) Spectral band number 50 (827 nm) of Cuprite AVIRIS image scene. (b) Spatial positions of five pure pixels corresponding
to minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K), muscovite (M).

data was used to show superior performance of
high-order statistics-based methods to second-order
statistics-based methods in target detection and
classification.

A. Endmember Extraction

Endmember extraction is one of fundamental
tasks in hyperspectral image analysis. It finds and
identifies the purest signatures in image data for
various applications such as image endmembers used
for linear spectral unmixing, training samples for
unsupervised image classification, etc. The proposed
high-order statistics-based endmember extraction was
evaluated for performance analysis where the widely
used endmember extraction algorithm N-FINDR was
used as benchmark comparison. The reason to choose
N-FINDR over the PPI was due to the fact that the
N-FINDR is available in the literature compared with
the PPI which is only available in the ENVI software.
The first image data was collected over the

Cuprite mining site, Nevada, in 1997, and is shown
in Fig. 1(a). It is a 224 band AVIRIS image scene
with a size of 350£ 350 pixels, is well understood
mineralogically, and has reliable ground truth available
at website [23] where the five pure pixels representing
the five minerals, alunite (A), buddingtonite (B),
calcite (C), kaolinite (K), and muscovite (M), referred
to as endmembers are white-circled and labeled by A,
B, C, K, and M in Fig. 1(b). This fact has made this
scene a standard test site for endmember extraction.
It should be noted that in the Cuprite image data,

bands 1—3, 105—115, and 150—170 have been removed
prior to the analysis due to water absorption and low
SNR in those bands. As a result, a total of 189 bands
were used for experiments.
The VD estimated for this image scene with

different values of false alarm probability PF is given

TABLE I
VD Estimated by HFC Method with Various False Alarm

Probabilities

PF = 10
¡1 PF = 10

¡2 PF = 10
¡3 PF = 10

¡4 PF = 10
¡5

VD 34 30 24 22 20

TABLE II
Four Endmembers Extracted by N-FINDR with MNF-DR

A B C K M

A0 0.0235 0.1665 0.2143 0.1012 0.1542
C0 0.2235 0.1002 0.0511 0.2276 0.1222
K0 0.0812 0.1434 0.1771 0.0418 0.1010
M0 0.1675 0.0933 0.0971 0.1483 0.0381

in Table I where the Harsanyi-Farrand-Chang (HFC)
method in [17, 20] was used for estimation.
In order to ensure that all mineral signatures

of interest were included in high-order
statistics-generated components, the false alram
rate PF chosen for the VD was set to 10

¡4 which
resulted in VD = 22. However, it should be noted
that this was an emiprical choice. Since each
component image represents a specific class of
targets it can be used to serve as abundance map
for this particular class. Endmember signature is
identified as the purest signature in the scene, in this
sense, the brightest pixel in the image component
(IC) can be extracted as an endmember. Using the
spectral angle mapper (SAM) in [1] as a spectral
similarity measure, the pixels whose signatures were
identified to be closet to the ground truth mineral
endmembers were extracted as candidate endmembers.
Table II tabulated their SAM values between the four
N-FINDR-extracted signatures, denoted by A0, C0,
K0, M0 and the five ground truth endmembers, A, B,
C, K, M, with no signature found to correspond to
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TABLE IIIa
Five Signatures Extracted by Skewness

A B C K M Order of IC

A0 0.0172 0.1645 0.2115 0.0961 0.1476 15
B0 0.1591 0.0745 0.0793 0.1767 0.0969 13
C0 0.2192 0.1069 0.0362 0.2196 0.1174 11
K0 0.1029 0.1619 0.2025 0.0300 0.1183 2
M0 0.1650 0.0844 0.1162 0.1508 0.0808 17

TABLE IIIb
Five Signatures Extracted by Kurtosis

A B C K M Order of IC

A0 0.0172 0.1645 0.2115 0.0962 0.1476 10
B0 0.1591 0.0749 0.0793 0.1768 0.0969 11
C0 0.2192 0.1069 0.0362 0.2196 0.1174 18
K0 0.0888 0.1834 0.2283 0.0341 0.1453 7
M0 0.1458 0.0781 0.1141 0.1347 0.0706 21

the mineral endmember C. It should be noted that
when the N-FINDR was implemented, it required
dimensionality reduction which was performed by the
maximum noise fraction (MNF) [24] and the number
of dimensions to be retained was set to p, in this case,
p= 22.
In order to implement the proposed high-order

statistics-based ATR for endmember extraction, the
three criteria of skewness, kurtosis, 5th moment as
well as the FastICA were evaluated for performance
analysis.
There are three different ways to generate initial

projection vectors to be used for the high-order
statistics-based algorithms and FastICA:

1) random-generated initial projection vector: a
unit vector with components randomly generated,
2) unity-based initial projection vector: a unit

vector with all ones in its components,
3) eigenvector-based initial projection vectors:

the eigenvectors corresponding to the p largest
eigenvalues of the data sample covariance matrix.

Nevertheless, according to our experiments,
the results derived from these three different initial
projection vectors were very similar even though
their produced component images might appear in
different orders. Therefore, only the SAM values
between the ground truth endmembers and signatures
extracted by algorithms using eigenvectors as initial
projection vectors are tabulated in Tables IIIa—IIId
where the ICs in the last columns indicate the orders
of the ICs generated by algorithms. Figs. 2(a)—(d)
also show the gray scale component images produced
by the three algorithms and FastICA corresponding
to the components identified in the last columns of
Tables IIIa—IIId.
Four criteria of high-order statistics were used

to produce image components for ATR, which

TABLE IIIc
Five Signatures Extracted by 5th Moment

A B C K M Order of IC

A0 0 0.1576 0.2038 0.0961 0.1421 15
B0 0.1412 0.0589 0.0847 0.1521 0.0777 21
C0 0.2192 0.1069 0.0362 0.2196 0.1174 19
K0 0.0888 0.1835 0.2284 0.0341 0.1453 7
M0 0.1067 0.1293 0.1558 0.0688 0.0711 14

TABLE IIId
Five Signatures Extracted by FastICA

A B C K M Order of IC

A0 0 0.1576 0.2038 0.0961 0.1421 17
B0 0.1385 0.0623 0.079 0.1584 0.0826 13
C0 0.2192 0.1069 0.0362 0.2196 0.1174 21
K0 0.1029 0.1619 0.2026 0.03 0.1183 6
M0 0.1650 0.0844 0.1162 0.1508 0.0809 18

are to maximize skewness, kurtosis, 5th moment,
and statistical independency. The results are
summarized in Table IV with the five minerals
A, B, C, K, M listed in the 1st row. Since the ICs
were generated sequentially, the orders of the ICs
generated in different scenarios are usually different.
In Table IV the numbers under each of the minerals
indicate that the orders of the components that
specified the particular minerals were generated.
In addition, the computing time in seconds for
each criterion is provided in the last column in
Table IV.
According to Table IV, all the minerals were

extracted within 30 components except two cases
that were the skewness using the unity vector as
the initial projection vector and the FastICA using
a random vector as initial projection vector, each of
which missed one type of mineral. As for CPU time,
the FastICA required the least time. However, this
may not be conclusive since our algorithms to run
high-order statistics were not optimized in terms of
source codes. Comparing the results in Tables III—IV
produced by the high-order ATR to the results in
Table II produced by the N-FINDR, it is very clear
that the high-order statistics-based methods usually
performed better than the N-FINDR in endmember
extraction where the former extracted the pixels
corresponding to all the five mineral endmembers
compared with only four endmembers extracted by
the N-FINDR.

B. Target Detection

The second mage data set is a HYDICE
image scene shown in Fig. 3(a) that was used for
experiments of target detection. It has a size of
64£ 64 pixel vectors with 15 panels in the scene and
the ground truth map in Fig. 3(b) [17].
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Fig. 2. (a) Image components produced by skewness. (b) Image components produced by kurtosis. (c) Image components produced by
5th moment. (d) Image components produced by FastICA.

It was acquired by 210 spectral bands with a
spectral coverage from 0.4 ¹m to 2.5 ¹m. Low
signal/high noise bands (bands 1—3 and bands
202—210) and water vapor absorption bands (bands
101—112 and bands 137—153) were removed. So, a
total of 169 bands were used. The spatial resolution
is 1.56 m and spectral resolution is 10 nm. Within
the scene in Fig. 3(a) there is a large grass field
background, and a forest on the left edge. Each
element in this matrix is a square panel and denoted
by pij with rows indexed by i and columns indexed by

j = 1,2,3. For each row i= 1,2, : : : ,5, there are three
panels pi1, pi2, pi3, painted by the same material but
with three different sizes. For each column j = 1,2,3,
the 5 panels p1j , p2j , p3j , p4j , p5j have the same size
but with five different materials. So, panels in five
different rows were painted by five different materials.
The sizes of the panels in the first, second, and third
columns are 3 m£ 3 m, 2 m£ 2 m and 1 m£ 1 m
respectively. Since the size of the panels in the third
column is 1 m£ 1 m, they cannot be seen visually
from Fig. 3(a) due to the fact that its size is less
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Fig. 3. 15-panel HYDICE image. (a) 15-panel image scene. (b) Ground truth map of 15 panels.

TABLE IV
Order of Components that Specified Minerals were Generated

High-Order Statistics Initial Projection Vectors A B C K M CPU Time (seconds)

random vectors 13 19 12 3 18 1548
skewness unity vector 17 Not found 11 3 21 1686

eigenvectors 15 13 11 2 17 1516

random vectors 19 15 20 4 17 4373
Kurtosis unity vector 20 4 7 3 13 5736

eigenvectors 10 11 18 7 21 3928

random vectors 14 20 15 3 13 1853
5th moment unity vector 15 17 21 3 14 1677

eigenvectors 15 21 19 7 14 1981

random vectors 14 13 12 7 Not found 293
FastICA unity vector 21 14 20 4 13 340

eigenvectors 17 13 21 6 18 306

TABLE V
VD Estimated by HFC Method with Various False Alarm

Probabilities

PF = 10
¡1 PF = 10

¡2 PF = 10
¡3 PF = 10

¡4 PF = 10
¡5

VD 14 11 9 9 7

than the 1.56 m pixel resolution. Fig. 3(b) shows the
precise spatial locations of these 15 panels where red
pixels (R pixels) are the panel center pixels and the
pixels in yellow (Y pixels) are panel pixels mixed
with the background. The 1.56 m spatial resolution
of the image scene suggests that most of the 15 panels
are one pixel in size except p21, p31, p41, p51 which
are two-pixel panels. This image scene provides an
excellent example for ATR since it contains real
subpixel targets and mixed pixels that cannot be
simulated by synthetic images. This is because it is
difficult to simulate a synthetic image with appropriate
sample spectral correlation to reflect real data.
The VD estimated for this HYDICE image scene

with different values of false alarm probability PF is
given in Table V.
The VD was chosen to be 9 with the false alarm

probability set to PF = 10
¡4 and p was set to 18 to

ensure that all the 15 panels of interest included

components generated by high-order statistics.
Additionally, the same three ways used to initial
projection vectors for Table II were also used to
initialize algorithms of four high-order statistics,
skewness, kurtosis, 5th moment, and statistical
independency.
The results are summarized in Table VI with

panels in five rows listed in the 1st row where the
numbers in Table VI indicate that the orders of the
components that specified the panels of particular
rows were generated. In analogy with Table IV, the
least CPU time also came from the FastICA.
In addition to Table VI the ICs produced by

the skewness, kurtosis, 5th moment, and statistical
independency using eigenvectors as initial projection
vectors are also provided in Figs. 4(a)—(d) to
demonstrate the effectiveness of high-order statistics
for ATR in target detection and classification where
the number in parenthesis under each IC was the
order in which that particular image component
was generated. It should be noted that only the ICs
corresponding to the five panels are listed.
These figures demonstrate that the ICs produced

by high-order statitsics could be used for target
detection and classification for ATR. On the other
hand, since our proposed high-order statistics-based
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Fig. 4. (a) Image components produced by skewness that extracted panels in five rows for target detection. (b) Image components
produced by kurtosis that extracted panels in five rows for target detection. (c) Image components produced by 5th moment that

extracted panels in five rows for target detection. (d) Image components produced by FastICA that extracted panels in five rows for
target detection.

methods are completely unsupervised and no
prior knowldege is required, the second-order
statistics-based RX algorithm for anomlay detection
and the OSP-based ATDCA seem to serve as perfect
candidates for comparison due to the fact that they
both are completely unsupervised target detectors
and require no prior knolwedge. Fig. 5(a)—(b) shows
the results produced by the RX algorithm and the
ATDCA, respectively, where the ATDCA-generated

9 target pixels ftATDCAi g9i=1 were shown in Fig. 5(b)
with numbers indicating the orders of target pixels
being generated by the ATDCA. According to
Fig. 5(b), only three ATDCA-generated target pixels,
tATDCA3 , tATDCA5 , tATDCA6 were identified to represent
three R pixels in row 5, 3, and 1, respectively.
The ATDCA then used these three panel pixels to
perform panel classification. The results are shown
in Fig. 6.
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Fig. 5. Detection results by (a) RX algorithm, and (b) ATDCA.

Fig. 6. Classification results by ATDCA using these panel pixels.

TABLE VI
Order of Components that Specified Minerals were Generated

High-Order Initial Projection Panels in Panels in Panels in Panels in Panels in CPU Time
Statistics Vectors Row 1 Row 2 Row 3 Row 4 Row 5 (seconds)

random vectors 1 10 2 7 3 67.59
skewness unity vector 3 13 1 7 4 76.59

eigenvectors 2 4 6 3 1 55.89

random vectors 3 7 2 8 4 110.03
Kurtosis unity vector 5 8 4 6 2 135.47

eigenvectors 3 15 16 2 1 155.73

random vectors 8 2 5 4 3 103.53
5th moment unity vector 9 not found 3 4 2 103.35

eigenvector 3 8 7 2 1 95.17

random vectors 1 6 9 3 2 6.96
FastICA unity 9 7 5 4 1 9.07

eigenvectors 4 5 9 2 6 6.22

Since the panels in rows 2 and 3 were made by
the same materials with different paints, the ATDCA
which used the tATDCA5 for classification also classified
panels in row 2 as shown in Fig. 6. Similarly, it was
true for panels in rows 4 and 5. If we compare Fig. 6
with Fig. 5(a), the ATDCA performed significantly
better than the RX algorithm. However, if we further
compare Fig. 6 with Fig. 4(a)—(d), it is obvious that
the ATDCA could not compete against the high-order
statistics-based methods because the latter could detect

panels in the five rows correctly in five individual and
separate components.
In order to make further comparison, the receiver

operating characteristics (ROCs) analysis [21] was
used to evaluate the detection performance of the
four high-order statistics based methods, skewness,
kurtosis, FastICA against the RX algorithm and
ATDCA based on the results in Figs. 4(a)—(d), 5(a),
and 6. Fig. 7(a)—(d) plot the ROC curves of each
of high-order statistics based methods relative that
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Fig. 7. ROC curves of high-order ATR, ICA and RX, ATDCA.

produced by the RX algorithm and ATDCA where
all the four high-order statistics-based methods
performed significantly better than the RX algorithm
and ATDCA.
Four comments on Fig. 7 are noteworthy.
1) Since the detection images produced in

Figs. 4(a)—(d), 5(a), and 6 were gray scale, a threshold
must be applied to segment panels from the image
background for panel detection. In this case, the ROC
curves in Fig. 7 were produced by varying a threshold
from the lowest gray scale to highest gray scale for
panel detection.
2) Second, the same threshold was used and

applied to the image in Fig. 5(a) and Fig. 6 and all
the ICs in Fig. 4(a)—(d).
3) Third, due to close performance among all the

four high-order statistics-based methods, it is very
difficult to discriminate their ROC curves one from
another. So, the ROC curves were plotted by each of
the four high-order statistics based method against the
RX algorithm and ATDCA for clarity.

4) Finally, it should be noted that high-order
statistics-based methods take advantage of their
generated components to perform target detection
and classification, while the RX algorithm cannot
discriminate the targets it detects. As a result, the RX
algorithm can be only used for target detection. On
the other hand, the ATDCA can be used for target
classification as it did in Fig. 6. But its second-order
statistics has limited its ability in detecting only three
panel pixels, not five panel pixels for classification.

IV. CONCLUSION

This paper investigates high-order statistics-based
methods for ATR in hyperspectral imagery where
third-order normalized central moment (skewness),
fourth-order normalized central moment (kurtosis),
fifth normalized central moment, and infinite
normalized central moment (statistical independency)
are studied for comparative analysis. Algorithms
for implementing criteria of high-order statistics are
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also developed and considered to be new except
the FastICA developed in [22] which is used to
implement the criterion of statistical independency.
In order to demonstrate the utility of our proposed
high-order statistics-based methods using skewness,
kurtosis, 5th moment, and statistical independency
as criteria, two applications in endmember extraction
and target detection and classification are explored
by experiments. The experimental results show
that high-order statistics-based methods have clear
advantages over the second-order statistics-based
methods such as PCA.
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