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Linear unmixing is a widely used remote sensing image 

processing technique for subpixel classification and detection 

where a scene pixel is generally modeled by a linear mixture 

of spectral signatures of materials present within the pixel. An 

approach, called linear unmixirig Kalman filtering (LUKF), is 

presented which incorporates the concept of linear unmixing into 

Kalman filtering so as to achieve signature abundance estimation, 
subpixel detection and classification for remotely sensed images. 
In this case, the linear mixture model used in linear unmixing is 
implemented as the measurement equation in Kalman filtering. 
The state equation which is required for Kalman filtering but 

absent in linear unmixing is then used to model the signature 

abundance. By utilizing these two equations the proposed 

LUKF not only can detect abrupt change in various signature 

abundances within pixels, but allso can detect and classify desired 

target signatures. The performance of effectiveness and robustness 
of the LUKF is demonstrated tlhrough simulated data and real 

scene images, Satellite Pour L’Olbservation de la Terra (SPOT) and 
Hyperspectral Digital Imagery Collection (HYDICE) data. 
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Remotely sensed images have been used in a 
broad range of applications ranging from geology, 
agriculture, and global change detection to defense 
and law enforcement [ 11. They are generally acquired 
by multiple-band sensors operated from either a 
spaceborne or an airborne platform. Examples 
include satellite multispectral sensors such as Landsat 
7-band Thematic Mapper (TM), 4-band Multispectral 
Scanner (MSS), 3-band SPOT (Satellite Pour 
l’observation de la Terra) and airborne hyperspectral 
sensors such as the 224-band NASA Jet Propulsion 
Laboratory’s Airborne Visible/InfraRed Imaging 
Spectrometer (AVIRIS) and the 210-band Naval 
Research Laboratory’s Hyperspectral Digital Imagery 
Collection (HYDICE). Since the area covered by a 
multispectralhyperspectral image pixel is generally 
20-30 m by 20-30 m (except HYDICE data which 
has spatial resolution ranging from 1 m to 4 m), a 
scene pixel usually contains more than one material 
and results in a mixture of these materials. One of the 
major challenges in remote sensing data exploitation 
is to discriminate, quantify, and identify multiple 
material constituents in a mixed pixel. In particular, 
when the size of a target is smaller than the ground 
sampling distance, detecting such a target at subpixel 
scale presents great difficulty because the target is 
embedded in only one pixel and cannot be seen from 
the image. 

Linear unmixing has been a widely used technique 
to unmix multicomponent mixtures [2, 3, 41. It models 
a pixel as a linear mixture of spectral signatures of 
materials within that pixel, then inverts the signature 
matrix formed by the spectra of the materials to 
identify and classify these individual material 
components in the pixel. Unfortunately, it works 
only on a pixel-by-pixel basis and does not take into 
account the pixel spatial correlation. Therefore, it 
cannot detect the change in the abundance vector from 
one pixel to another. Kalman filtering is a well-known 
technique in control, communications, and signal 
processing and has been used in versatile applications 
because it can be implemented recursively in real-time 
data processing as well as for nonstationary data. By 
taking advantage of strengths of the Kalman filtering, 
an approach based on a concept of combining the 
Kalman filtering and linear unmixing, called linear 
unmixing Kalman filtering (LUKF) is introduced 
for subpixel detection and classification for remotely 
sensed images. The LUKF can be also be viewed as a 
hybrid of the linear unmixing and the Kalman filtering 
which implements the linear unmixing in a Kalman 
filtering fashion. More specifically, the measurement 
(also referred to as observation, output or process) 
equation required for the Kalman filter is governed by 
the linear mixture model while the state equation of 
the Kalman filter is used as an ancillary equation for 
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the linear unmixing to describe the state of signature 
abundance. These equations are corrupted by two 
zero mean and uncorrelated noise processes. Each 
covariance matrix is modeled by the identity matrix 
multiplied by a scalar. These two scalar variances 
are important parameters and affect the performance 
of the LUKF. Their effects on the performance is 
demonstrated, through computer simulations and 
real data. The measurement noise variance 0; is 
the noise component of the signal-to-noise ratio 
(SNR) of the input data and in general is not known 
a priori. The state noise 0,” controls the amount of 
change in the abundance from pixel to pixel. The 
LUKF is applied to simulated data over a range of 
values for these parameters to determine their effects. 
These values are then used in the LUKF for real 
scene data. Two types of real data are conducted for 
experiment, multispectral image data-SPOT images 
and hyperspectral image data-HYDICE images. The 
results show the robustness of the LUKF to changes 
in the two parameters of the model, CJ; and CJ,”. 

The remainder of the paper is organized as 
follows. Section I1 describes the linear mixture 
model used in the linear unmixing. Section 111 
briefly describes the Kalman filter in conjunction 
with the linear unmixing and its application to 
signature abundance estimation. Section IV presents 
the results of test run on simulated hyperspectral 
and multispectral data. Section V applies the LUKF 
to HYDICE and SPOT data to demonstrate the 
performance. Section VI draws a brief conclusion. 

11.  LINEAR MIXTURE M O D E L  

A hyperspectral image cube is made up of 
many, usually hundreds, of images that are spatially 
co-registered. Each of these images represents the 
reflected energy of the materials within the pixel at 
different wavelengths and bandwidths. For example, 
the HYDICE sensor has 210 bands that collect 
reflected energy in the ranges of 0.4 to 2.5 pm. These 
spatially co-registered pixels can be combined into 
a vector representing the spectral signatures of the 
materials within the pixel. 

The area covered by an individual pixel usually 
contains several different materials that have different 
spectral signatures. When the area of the pixel 
contains more than one material, the pixel is a 
combination of the different spectral signatures of the 
materials. Such pixels are referred to as mixed pixels. 
Linear unmixing is one of many techniques used in 
hyperspectral/multispectral image classification and is 
used here to describe the image pixels. This method 
assumes that each image pixel is linearly mixed by 
the spectral signatures of the materials contained 
in the pixel. Let the vector r(x,y) denote the image 
pixel at the location (x,y). This pixel vector is of 
dimension N by 1 where N is the number of bands 

in the image. Next define an N by A4 signature matrix 
S as (s1,s2.. . s M ) .  The vector s, is an N by 1 column 
vector representing the spectral signature of the ith 
material. Finally define an M by 1 abundance vector 

where a,(x,y) represents the abundance of the ith 
material in the pixel at location (x,y). A linear mixture 
model is then given by (1) 

a(x,y> ~eno ted  by [a,(x,y),a,(x,y),. . .,aM(&Y)IT 

r(x,y) = Sa(x,y) + U(X,Y> (1) 

where the signature matrix S is assumed to be 
invariant to spatial location and the N by 1 vector 
u(x, y )  represents white additive noise with zero mean 
and covariance matrix given by .,”IN. The matrix 
IN is the N by N identity matrix. Subpixel image 
classification identifies materials present in a mixed 
pixel at the subpixel scale based on the value of a(x,y) 
given r(x,y) and the signature matrices. 

I l l .  KALMAN FILTERING 

This section presents a description of the Kalman 
filter and the steps taken to perform Kalman filtering. 
A complete derivation based on the innovations 
approach is presented in Haykin [9]. Kalman filtering 
is a minimum mean-squared estimator and has two 
distinct features. The first of these features is that 
Kalman filtering is based on state-space concept. 
This feature allows Kalman filtering to process the 
system as a whole unit as opposed to a group of 
individual components. The second of these features 
is that Kalman filtering is recursive. The update of 
the estimate of the state is computed from the current 
estimate and the current input data. This property 
makes Kalman filtering more efficient than computing 
the estimate from the entire past input data at each 
step of the filtering process. The Kalman filter does 
no more work processing the hundredth input sample 
as it did for the first input sample. This recursive 
feature also eliminates the need to store all previous 
input data and previous state estimates. 

filtering was first proposed in C. Brumbley and C.-I 
Chang [6] .  The idea of Kalman filter is relatively 
simple. First, assume that you have a system that is 
described by its state vector a(n). In our case, the 
state vector is the signature abundance vector. We 
cannot observe the state vector directly, but we do 
have observation data r(n) that is corrupted by noise 
u(n). This observation data is related to the state of 
the system by the measurement equation that is given 
by linear mixture model, (1) 

The application of the linear unmixing to Kalman 

r(n) = Sa(n) + u(n). (2) 

The index n is used instead of (x,y) to represent the 
pixel to be processed at the time n. The N by M 
measurement matrix S represents the relationship 
between the observed data and the state vector and 
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is the signature matrix in ((1). The measurement noise 
vector is assumed to be zero-mean, white process with 
correlation matrix given by (3) 

2) Update the abundance estimate at the current 

i(k 1 k )  = fi(k I k - 1) + K(k)[r(k) - Sfi(k I k - l)]. 

time k with r(k) 

( 3 )  (7) E[u(n)u'(k)] I= R6,k = aiI,6,,k. 

where I,,, is the N by N identity matrix and S,,, is 
Kronecker's notation given by S,, = 1 if n = k and 
6,, = 0 if n # k.  In order to perform Kalman filtering 
a state equation is required. This equation must relate 
the current state of the system a(n) to the previous 
state a(n - 1). This equation is called the abundance 
equation in this work and is assumed to be linear with 
an additive noise term. The abundance equation is 
given in (4) 

a(n + 1) = @(a + l,n)a(n) + v(n). (4) 

The known A4 by M state transition matrix @(n + 1,n) 
relates the state of the system at time n to time 
n + 1. A Gauss-Markov model is used to model this 
relationship. Here we assume that @(n + 1,n) = I is 
an identity matrix. This means the j th  abundance 
a,(n + 1) at time n + 1 is predicted solely on the 
abundance a,(n) of the immediate past pixel. This type 
of prediction is generally referred to as the zero-order 
holder interpolation used in predictive coding such 
as differential pulse code modulation (DPCM) in 
communications, signal, and image processing. 
The process noise vector v(n) is assumed to be a 
zero-mean, white process with correlation equation 
given by ( 5 )  

E[V(n)V'(k)] := Q6,k = O?IM6,k ( 5 )  

where I, is the M by M identity matrix and 6,, is 
Kronecker's notation. The matrix IM represents the 
M by M identity matrix. !since the state transition 
matrix is assumed to be the identity matrix, the value 
of O$ controls the amount of change allowed in the 
abundance vector from one pixel to the next pixel. 

The goal of Kalman filtering is to obtain the 
minimum mean-squared estimate of the abundance 
state a@), given that the data r(k) is observed. Using 
the predicted knowledge from a@) we can detect and 
classify the pixel r(k). Let i ( k  I k - 1) represent the 
minimum mean-squared predictor of a(k) given the 
past observations r(j) for all j from one to k - 1. 
i ( k  I k ) ,  &(k I k - l), P (k  I k )  and P(k  + 1 I k )  are also 
defined similarly. The LUKF is performed recursively 
as follows. For detailed implementation of Kalman 
filtering, we refer to [9]. 
Initial Conditions: 

1) Q and R. 
2) &(O 1 -1) = mean[a(O)] = E[a(O)]. 
3) P ( 0  I -1) = cov[a(O)]. 

1) Compute Kalman gain at the current time k 

K(k)  = [P(k I k - l)ST][SP(k I k - l ) S T  + R(k)]- ' .  

Measurement Update: 

(6 )  

3) Update the error covariance matrix at current 
time k 

P(k I k )  = [I - K(k)S]P(k I k - 1). (8) 

Abundance Update: 
1) Predict the abundance at next time k + 1 

i ( k  + 1 I k )  = @ ( k  + l,k)i(k 1 k ) .  (9) 

2) Predict the error covariance matrix at next time 
k + l  

P(k + 1 1 k )  = @(k + l ,k )P(k  1 k)@'(k + 1,k) + Q. 

(10) 

IV. COMPUTER SIMULATIONS 

Two assumptions were made in modeling the 
LUKF for subpixel classification. The first of these 
assumptions was that the mixed pixels can be modeled 
using a linear mixture model. This is a widely used 
model in multispectral image classification. The 
second of these assumptions was that the relationship 
of the abundance vector between adjacent pixels 
can be modeled as a Gauss-Markov process. In an 
agricultural scene, where there are large fields of a 
single crop, this assumption seems reasonable. This 
assumption must be tested under conditions where 
large changes in the abundance vector can occur 
between adjacent pixels to show that the assumption 
is valid. The algorithm was run against computer 
simulated data to test this assumption. 

of the unknown parameters 0: and 0,". From (2), 
the parameter 02 represents the energy of the 
measurement noise. The measurement noise represents 
the noise in the image data and can be determined if 
the SNR of the image is known. This SNR is typically 
difficult to measure accurately, but good estimates can 
be obtained easily. These tests show the effects of 
an inaccurate estimate of measurement noise energy 
on the performance of the LUKE If SNR of the 
simulated data is known, the effects of incorrectly 
estimating the noise energy of performance can be 
reduced by adjusting the value of the parameter 0;. 

The second unknown parameter is the process noise 
energy 0,". From (4), this parameter represents the 
energy in the unpredictable part of the change in the 
state from time n to n + 1. The relationship of the 
abundance from one pixel to the next is modeled as a 
Gauss-Markov process with the state transition matrix 
being the identity matrix. Thus, this unpredictable 
component is the only change in the abundance vector 
between successive states. If the parameter 01 is set 

These tests are also used to determine the effects 
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too low the estimate of the abundance vector will 
not track small changes in the abundance vector. If 
it is set too high the estimate will quickly react to 
sudden changes in the abundance vector but may 
be driven too much by the measurement noise. 
This would make the estimate of the abundance 
vector very noisy and unreliable. The value of n,” is 
varied to show the effects of this parameter on the 
performance of the LUKF. The LUKF is applied to 
both hyperspectral and multispectral data at a known 
SNR. The parameters CT; and 0,” are set to various 
values and the results used to determine effects of 
the parameters on the performance of the LUKF. 
These results are used to determine the range of 
the two parameters that are acceptable to 
performance of the LUKE The Kalman filter was 
initialized by setting the initial estimate of the 
abundance vector to zero and the correlation matrix 
is set to the identity matrix for all the experiments in 
this work. 

A. Computer Simulations Using 3 Spectral 
Reflectances from an AVlRlS Scene 

In this section, the results of applying the LUKF to 
AVIRIS spectral reflectances are presented. The same 
spectral reflectances that were used in [SI are used in 
this experiment. This data set consists of the spectral 
reflectances of creosote leaves, sage brush, and black 
brush. The three signatures are shown in Fig. 1 and 
are used because of their similarity. The measure used 
to determine the similarity of the spectra is called the 
spectral divergence [lo]. 

The idea of the spectral divergence is to normalize 
the two spectra si and sj  so that they sum to unity. 

This allows each spectrum to be viewed as a 
histogram of a probability mass function (PMF) 
defined on the spectral range. Let p = { p i } z l  and q = 
{ q i } z l  be the resulting PMFs of these two histograms. 
From information theory, a criterion called divergence 
can be used to measure the discrepancy between any 
two probability distributions. The spectral divergene, 
SD(p,q), can be defined as the divergence of the two 
PMFs formed from the two spectral signatures. This 
definition is given in (1 1) 

W p , q )  = L(p;q) +L(q;p). (1 1) 

The quantity L ( p ;  q) is the expected value of the 
log-likelihood ratio with respect to p and is defined 
in (12) 

This function is known as the Kullback-Leibler’s 
discriminant or relative entropy function and is a 
nonsymmetric function. That is, L(p;q) does not 
usually equal L(q; p). Nonetheless, the divergence is 
a symmetric form of the discrimination. The spectral 
divergence can be interpreted as a similarity measure 
between two spectra. The closer this measure is to 
zero, the more similar the two signatures are to each 
other. The values of the spectral divergence of the 
three signatures used in this experiment are given in 
Table I. The spectral divergence shows that the three 
signatures are similar to each other and thus should be 
difficult to distinguish from one another. 

The three signatures were combined to form 550 
mixed pixels. The abundance of the creosote leaves 
signature was set equal to 0% and the abundance 
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Fig. 2. Results of using simulated data based on Fig. 1. 

TABLE I 
Values of Spectral Divergence of 3 Signatures, Creosote Leaves, 

Sage Brush, Black Brush in Fig. 1 

Creosote Sage Black 
Leaves Brush Brush 

Creosote Leaves 0.0000 0.0554 0.0385 
Sage Brush 0.05.54 0.0000 0.0079 
Black Brush 0.0385 0.0079 0.0000 

TABLE I1 
Values of Spectral Divergence of 4 Signatures, Treaded Vehicle, 

Wheeled Vehicle, Object 1, Object 2 in Fig. 3 

Treaded Wheeled 
Vehicle Vehicle Object 1 

Treaded Vehicle 0.0000 0.0363 0.0430 
Wheeled Vehicle 0.0363 0.0000 0.0092 

Object 1 0.0430 0.0092 0.0000 

of the other two signatures was set equal to 50%. 
Every 50th pixel of this sequence was replaced with 
a pixel that contains a noli-zero abundance of the 
creosote leaves signature and the remaining abundance 
split evenly between the other two signatures. The 
abundance of the creosote leaves signature started at 
10% for the 50th pixel, 20% for the 100th pixel and 
so on until the creosote leaves signature abundance in 
the 500th pixel reached 100%. White Gauss noise was 
added to each pixel to generate an SNR of 20 dB. The 
SNR was measured as defined in [5] as 50% of the 
reflectance divided by the standard deviation of the 
noise. This definition of SNR is used throughout this 
section. 

The LUKF algorithm was run against the 
simulated data with u; and 0,” set at certain values. 
The value of 0,” was set to 1,000, 10,000, 100,000, 
1,000,000, and 10,000,000. The value of 0,” was set 
such that the estimated SNR was 0, 10, 20, 30, and 
40 dB. These represent the estimated SNR 20 dB 
below the actual SNR, the actual SNR, 10 dB above 
the actual SNR, and 20 dB above the actual SNR. The 
values of u: and 0,” were chosen to give a wide range 
of values of the parameters. 

The results of these tests are shown in Fig. 2. 
This figure is set up such that each row is the results 
at a constant value of u,” and each column is a 
constant value of 02. Each row is labeled with its 
corresponding value of 0,”. Each column is labeled 
with the SNR estimated by its corresponding value 
of 02. These plots show the effects of the values of 
0,” and cr,” on the performance of the LUKF. The last 
two rows of Fig. 2 represent u,” equal to 1,000,000 
and 10,000,000, respectively, and show that the 
performance of the LUKF is affected little by the 
estimate of the SNR being off by either 20 dB above 
or below the actual SNR of the image. At these levels 
of u,” the estimate of the SNR of the image can be 
as much as 20 dB deviation from the actual SNR 
of the image and the performance of the LUKF is 
not affected. Operation of the LUKF over this large 
range of SNR does not require the estimate to be 
exact. Fig. 2 does show that if 0,“ is set too low, e.g. 
u,“ equal to 1,000, 10,000, the performance of the 
LUKF is affected by the value of 0:. At these low 
values of a:, the LUKF is sluggish and slow to react 
to the sudden change in the abundance vector. The 
first two columns of Fig. 2 represent u,’ where the 
estimated SNR is 40 and 30 dB, respectively, and 
show that the values of u,” have little affect on the 
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B. Computer Simulations Using Radiances Directly 
Extracted from a HYDICE Scene 

Fig. 3. Single band HYDICE scene. 

performance of the LUKE These results show that the 
LUKF can be used to estimate the abundance vector 
and perform subpixel classification, provided that g,” 
and a: are property chosen. These tests also show 
that the LUKF is stable for a large range of CT: and 
CT,”. This is an important observation because it shows 
that the parameters can be set to these values and not 
have to be adjusted for each individual image. If a,’ 
is kept above 100,000, the performance of the LUKF 
is affected very little by changes in the actual SNR of 
120  dB. This allows stable performance of the LUKF 
on hyperspectral data. 
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In Section IVA, computer simulations were 
conducted based on the three AVIRIS laboratory 
reflectance signatures used in [5] to demonstrate the 
capability of the LUKF in detecting abrupt abundance 
change in signatures. In this section, we run similar 
computer simulations based on radiances directly 
extracted from a real scene. The goal of this section 
is two-fold. One is to validate the results of Section 
IVA for real data. Another is to estimate the two noise 
variances, CT,” and a:, for real scenes which are used 
in Section V. Despite the experiments of this section 
based on a HYDICE scene shown in Fig. 3 ,  the results 
can be also applied to the AVIRIS scene used in [l 11. 
There are seven man-made targets shown in the scene, 
five vehicles, and two objects. The five vehicles are 
aligned vertically of which the first four on the top 
are treaded vehicles and the last one is a wheeled 
vehicle. Object 1 is at the top edge of the scene and 
Object 2 is located in the middle of the scene. All of 
these seven radiances were directly extracted from 
the HYDICE scene. However, for simplicity, only 
four signatures, the first treaded vehicle, the wheeled 
vehicle, object 1 and object 2 as shown in Fig. 4 are 
used for computer simulations. 

Only three signatures, the first treaded vehicle, 
the wheeled vehicle and object 2 were combined to 
form 550 mixed pixels analogous to Section IVA. 
The abundance of the treaded vehicle signature was 
set equal to 0% and the abundance of the other two 
signatures was set equal to 50%. Every 50th pixel of 
this sequence was replaced with a pixel that contain a 
non-zero abundance of the treaded vehicle signature 
and the remaining abundance split evenly between the 
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Fig. 4. Radiances of signatures, treaded vehicle, wheeled vehicle, Object 1, and Object 2 shown in Fig. 3.  
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Fig. 5. Results using simulated data based on Fig. 4 

other two signatures. The abundance of the treaded 
vehicle signature started a1 10% for the 50th pixel, 
20% for the 100th pixel, and so on until the treaded 
vehicle signature abundance in the 500th pixel was 
100%. Like Section IVA, white Gaussian noise was 
added to each pixel to generate SNR of 20 dB. 

The LUKF algorithm was run against the 
simulated data with 0; and 0,” set at certain values. 
The same values of 01 and 0: were used as in the 
previous section. The results of these tests are shown 
in Fig. 5 and are very similar to Fig. 2. It is set 
up as was Fig. 2 with each row representing the 
results at a constant value of u,” and each column 
representing a constant SNR value and thus a constant 
value of 02. Each row and column are labeled 
with its corresponding value of u,” and SNR level, 
respectively. These graphs also show that the values of 
the parameters u,” and 0: can have little affect on the 
performance of the LUKF if g: and 0,’ are properly 
chosen. The last two rows of Fig. 5, have 0,” equal to 
1,000,000 and 10,000,000, respectfully, and show that 
the performance of the LIJKF is affected little by the 
estimate of the SNR being off by either 20 dB above 
or below the actual SNR of the image. In analogy 
with Fig. 2, the first two columns of Fig. 5 represent 
~2 with the estimated SNlR being 10 and 20 dB 
above the actual SNR and show that the values of 0,” 
have little affect on the performance of the LUKE 
But, when 0,” is set too low, e.g. 1,000, 10,000, the 
performance of the LUKF is affected by the values of 
0: in which case, the LUKF is sluggish and slow to 
react to the sudden change in the abundance vector. 
These tests also show that the LUKF is stable for 
a large range of 01 and 0; for real data and these 
parameters do not need adjustment for each individual 

image. As long as u,’ remains above 10,000, the 
performance of the LUKF is not affected by changes 
in the actual SNR of h20  dB. This supports that 
the LUKF can be used for the following real data 
experiments and the performance will not be affected 
by noise fluctuations. 

V. HYPERSPECTRAL A N D  MULTISPECTRAL IMAGES 

In this section we apply the LUKF to real 
hyperspectral and multispectral data. The results 
obtained in Section IV are used to set the parameters 
of the LUKF, 02 and ct, to appropriate values. The 
values of 0,‘ was set to 1,000,000 and ui was set in 
such a manner that the estimated SNR was 20 dB. 
The LUKF, with these parameters, was applied to the 
HYDICE and SPOT data. The results of the LUKF 
are shown in Figs. 7-10. 

A. HYDICE Data 

In this section the results of the LUKF when 
applied to HYDICE data is shown. The data used 
in this study were collected in Maryland in August 
1995 with 210 bands with resolution 10 nm with 
spectral coverage from 0.4 to 2.5 pm and a spatial 
resolution of approximately 0.78 m. A 160 by 160 
pixel subimage was cropped from this data and the 
180th band of this data is shown in Fig. 3. This figure 
shows a scene with trees along the left one-third, 
and a grass field in the right two thirds. The grass 
field also contains a road running along the right 
edge of the image. There are five vehicles located 
along the tree line and two objects. The five vehicles 
consist of four treaded vehicles in the upper half of 
the scene, and one wheeled vehicle in the lower half 
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TABLE I11 
Values of Spectral Divergence of 7 Signatures, Five Vehicles, Two Objects in Fig. 6 

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Object 1 Object 2 

Vehicle 1 0.0000 0.0067 0.0076 0.041 1 0.0363 0.0430 0.0766 
Vehicle 2 0.0067 0.0000 0.0025 0.0522 0.0464 0.0532 0.0891 
Vehicle 3 0.0076 0.0025 0.0000 0.0619 0.0592 0.0684 0.1086 
Vehicle 4 0.041 0.0522 0.0619 0.0000 0.0066 0.0197 0.0679 
Vehicle 5 0.0363 0.0464 0.0592 0.0066 0.0000 0.0092 0.0393 
Object I 0.0430 0.0532 0.0684 0.0197 0.0092 0.0000 0.0289 
Object 2 0.0766 0.0891 0.1086 0.0679 0.0393 0.0289 0.0000 

0 0 

0.5 1 1.5 2 0.5 1 1.5 2 

0.5 1 1.5 2 0.5 1 1.5 2 
Zeros 0.4 Trees 

"'I=] 0.2 

0 0 
0.5 1 1.5 2 0.5 1 1.5 2 

Fig. 6. Spectra of 8 signatures directly extracted from Fig. 3. 

of the image. The size of the four treaded vehicles is 
approximately 4 m by 8 m and the size of the wheeled 
vehicle is 3 m by 6 m. The first object, Object 1, is at 
the top edge of the scene and the second, Object 2, is 
in the middle of the scene. 

Eleven signatures that were generated were 
obtained by extracting pixels from the scene 
corresponding to different materials. The first eight 
consist of man-made objects. These include one 
signature for each of the five vehicles, one signature 
of each of the two types of objects, and a signature 
for the road. The next two signatures were natural 
background consisting of a signature for the grass 
field and a signature for the trees. The final signature 
consists of pixels that were zero vectors before the 
data was adjusted using the offset and gains for each 
band. This is because the first six pixels of each row 
(some rows may have the first seven pixels) of this 
HYDICE data were zero vectors and this signature 
was added to reduce the effects of these pixels. These 
zero pixels were a result of the data acquisition 
process and were not an actual part of the scene. The 
signatures for grass, trees, and road were also added 
to reduce the interfering effects of these materials. The 

distance measure described in Section IVA, spectral 
divergence, was used to determine the similarity 
of these signatures. These distances are given in 
Table 111. Since the signature for vehicle 1 has the 
smallest maximum distance from the other three 
treaded vehicles, it was used as the signature for the 
treaded vehicles. The eight signatures used for this test 
are made up of the signatures for vehicle 1, vehicle 5,  
object 1, object 2, the road, the grass field, the trees, 
and the zero vector. These signatures were used to 
form the signature matrix S in (2) and are shown in 
Fig. 6. 

Fig. 7 contains four images, each corresponding 
to the estimate of the signature abundance. These four 
images are labeled Treaded vehicles, Wheeled vehicle, 
Object 1, and Object 2. These four images show 
that the targets in each of the images were detected 
with little interference from the other signatures 
in the image. The image labeled Treaded vehicles 
clearly shows that the LUKF detected the first three 
treaded vehicles with little interference from the 
shadow area along the tree line. This interference 
is most likely caused by portions of the shadows of 
the treaded vehicles being included in the treaded 
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Treaded Vehicles Wheeled Vehicles BAND 1 

Object 1 Object 2 

Fig. 7. Results of applying LSJKF to HYDICE image scene. 

vehicles signature. The fourth treaded vehicle was not 
detected by the LUKF, but this vehicle was detected 
as a wheeled vehicle. From Table 111, the signature 
of the fourth treaded vehicle was much closer to 
the wheeled vehicle than any of the other treaded 
vehicles. The image corresponding to the wheeled 
vehicle shows that the wheeled vehicle was detected, 
again with the interference from the shadows of the 
trees. This image also shows that the fourth treaded 
vehicle was detected as a wheeled vehicle due to 
its similar signature. The image labeled by Object 
1 shows that this object was detected with some 
interference from the road. Object 2 is detected with 
no interference. These four images all contain objects 
that are man-made and thus easy to distinguish from 
the natural background. The LUKF did accurately 
detect the four types of objects in the scene, with the 
exception of the fourth treaded vehicle. These four 
images show that the LUKF can be used to perform 
target detection and classification hyperspectral data. 

B. SPOT Data 

The multispectral data used to test the LUKF was 
collected by the SPOT system. The data consist of 
three bands. The first two bands are in the visible 
region of the electromagnetic spectrum and are 
referre4 to as band 1 (0.5--0.59 pm) and band 2 
(0.61-0.68 pm). The third band is in the near infrared 
region of the electromagnetic spectrum and is referred 
to as band 3 (0.79-0.89 pm). The ground sampling 
distance of the SPOT syst'em is 20 m. The data 
used are shown in Fig. 8 and represent a region of 
northern Virginia. These three bands are registered 
and combined to form an image cube. Each pixel 
in this image cube is a 3 by 1 vector with each 
component of the vector corresponding to one band 

BAND 2 

BAND 3 

Fig. 8. 3 SPOT band images. 

of the SPOT data. The experiment given below is a 
four-signature classification using a 3 band image. 

The scene in Fig. 8 contains several buildings, 
bodies of water, highways, and secondary roads. 
These features were used as desired signatures for 
the signature matrix S in the LUKF. The signatures 
used in this experiment were directly extracted 
from the image and correspond to building, roads, 
water, and vegetation. The building signature was 
generated by averaging 9 pixels extracted from the 
scene that correspond to Falls Church High School. 
The road signature was generated by averaging 
9 pixels extracted from the scene that correspond 
to Little River Turnpike. The water signature was 
generated by averaging 9 pixels extracted from the 
scene that correspond to the lake in the upper right of 
the image. Finally, the vegetation pixel was generated 
by averaging 9 pixels extracted from the scene that 
correspond to the Mill Creek Park. All four of these 
signatures were normalized and are shown in Fig. 9. 
The spectral divergence was used to determine the 
similarity of these signatures. These divergence values 
for the four signatures are given in Table IV. It shows 
that the road signature is very close to the water and 
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Fig. 9. Spectra of 4 signatures, roads, buildings, water, and vegetation directly extracted from SPOT images. 

Values of Spe 
TABLE IV BUILDING 

:ctral Divergence of 4 Signatures, Roads, Buildings, 
Water, Vegetation in Fig. 9 

Building 
Roads 
Water 

Vegetation 

Building Roads Water Vegetation 

0.0000 0.0228 0.1223 0.4993 
0.0228 0.0000 0.0498 0.5020 
0.1223 0.0498 0.0000 0.7922 
0.4993 0.5020 0.7922 0.0000 

building signatures, and both the building and road 
signatures are similar. 

Fig. 10 shows the results of the estimated 
abundance using the LUKE The four images in 
Fig. 10 were compared with a map of the region, 
shown in Fig. 11, which shows the buildings, roads, 
and bodies of water in the scene. The image labeled 
as Buildings shows where there are high levels of 
abundance of the building signature. This image 
clearly shows the buildings in the scene were detected. 
The image labeled as Roads shows where there are 
high levels of abundance of the road signature. The 
estimate of the abundance generated by the LUKF 
not only revealed the major highway, but also the 
secondary and residential streets in the region. Even 
the turn and culdesacs of the residential streets 
can be seen in this image. The large areas of high 
abundance of roads that occur around buildings, 
represent parking lots. The image labeled as Water 
shows where there are high levels of abundance of the 
water signature. This image clearly indicates the lake 
located in the area at the top of the image. In addition, 
a small pond is also picked up in the lower left of the 
image. The final image, labeled as Vegetation, shows 
where there are high levels of the vegetation signature. 
This image shows the large areas of high levels of 

WATER 

ROADS 

VEGETATION 

Fig. 10. Results of applying LUKF to SPOT images. 

vegetation in almost all areas of the region. The map 
reveals many parks in the region. The comparison of 
this image to the map confirms that the large areas 
of high levels of vegetation correspond to the parks 
and residential areas in the region. The dark areas 
in the images represent low levels of vegetation that 
correspond to areas where building, roads, parking 
lots or bodies of water are located in the previous 
images. These four images show that the LUKF 
can also be used to perform image classification on 
multispectral data. 

VI. CONCLUSION 

This paper presents a new approach, called LUKF 
which incorporates the linear mixture model into the 
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Fig. 11. Map o f  SPOT data used in experiment 

Kalman filtering. It implements the widely used linear 
unmixing method in a Kalman filtering fashion so 
that it can be used for abundance change detection, 
signature estimation, and subpixel classification. The 
performance of the LUKlF is demonstrated through 
simulated and real data. As shown in the experiments, 
the LUKF can effectively perform subpixel analysis 
and detect abundance change. 

ACKNOWLEDGMENTS 

The authors would like to thank the Spectral 
Information Technology Applications Center 
for providing the hyperspectral data set used for 
experiments in this paper. They also thank Dr. Shin-Yi 

Hsu 
Inc. 

REFE 

P I  

P I  

[41 

r51 

[71 

with Susquehanna Resources and Environment, 
for providing SPOT data. 

:RENCES 

Vane, G., and Geotz, A. F. H. (1994) 
Terrestrial imaging spectroscopy. 
Remote Sensing of Environment, 24 (1994), 1-29. 

Quantitative determination of imaging spectrometer 
specifications based on spectral mixing models. 
In Proceedings of IEEE Geoscience and Remote Sensing, 

Goetz, A. F. H., and Boardman, J. W. (1989) 

1989, 1036-1039. 
Adams, J. B., and Smith, M. 0. (1986) 

Spectral mixture modeling: A new analysis of rock and 
soil types at the Vikign lander 1 suite. 
Journal of Geophysical Research, 91 (1986), 8098-81 12. 

Shimabukuro, Y. E., and Smith, J. A. (1991) 
The least-squares mixing models to generate fraction 
images derived from remote sensing multispectral data. 
IEEE Transactions on Geoscience and Remote Sensing, 29 
(1991), 16-20. 

Harsanyi, J., and Chang, C.-I (1994) 
Hyperspectral image classification and dimensionality 
reduction: An orthogonal subspace projection approach. 
IEEE Transactions on Geoscience a d  Remote Sensing, 32 
(1994), 779-785. 

Brumbley, C., and Chang, C.-I (1997) 
A Kalman filtering approach to hyperspectral image 
classification. 
In Proceedings of the Conference on Information Sciences 
and Systems, The Johns Hopkins University, Baltimore, 
MD, Mar. 19-21, 1997, 179-184. 

Subspace projection to multispectral/hyperspectral image 
classification using linear spectral mixture modeling. 
M.S. thesis, Department of Electrical Engineering, 
University of Maryland Baltimore County, MD, 1993. 

A new approach to linear filtering and prediction 
problems. 
ASME Journul of Basic Engineering, (1960), 95-108. 

Abptive Filtering Theory (3rd ed.). 
Englewood Cliffs, NJ: Prentice-Hall, 1996. 

An application of oblique subspace projection approach 
to hyperspectral image classification. 
To be submitted. 

Brumbley, C. (1998) 
An unsupervised linear unmixing Kalman filtering 
approach to abundance detection, signature estimation 
and classification. 
Ph.D. dissertation, Department of Computer Science and 
Electrical Engineering, University of Maryland Baltimroe 
County, Baltimore, MD, May 1998. 

Zhao, X. (1993) 

Kalman, R. E. (1960) 

Haykin, S. (1996) 

Chang, C.-I 

CHANG & BRUMBLEY KALMAN FILTERING APPROACH 329 



Chein-I Chang (M’87-SM’92) received his B.S., M.S. and M.A. degrees 
from Soochow University, Taipei, Taiwan, 1973, the Institute of Mathematics at 
National Tsing Hua University, Hsinchu, Taiwan, 1975 and the State University 
of New York at Stony Brook, 1977, respectively, all in mathematics, and M.S. 
and M.S.E.E. degrees from the University of Illinois at Urbana-Champaign in 
1982, respectively, and Ph.D. in electrical engineering from the University of 
Maryland, College Park in 1987. 

He was a visiting Assistant Professor from January 1987 to August 1987, 
Assistant Professor from 1987 to 1993, and is currently an Associate Professor in 
the Department of Computer Science and Electrical Engineering at the University 
of Maryland Baltimore County. He was a visiting specialist in the Institute of 
Information Engineering at the National Cheng Kung University, Tainan, Taiwan 
from 1994-1 995. His research interests include information theory and coding, 
signal detection and estimation, muItispectraVhyperspectra1 image processing, 
neural networks, pattern recognition. 

Dr. Chang is a member of SPIE, INNS, Phi Kappa Phi, and Eta Kappa Nu. 

Clark M. Brumbley received his B.S.E.E. degree from Old Dominion University, 
Norfolk, VA, 1985 and M.S.E.E. and Ph.D. from the University of Maryland 
Baltimore County in 1993 and 1998, all in electrical engineering. 

He is currently a Senior Electronic Engineer for the Department of Defense at 
Ft. Meade, MD. His research interests include signal detection and estimation and 
multispectraYhyperspectra1 image processing. 

Dr. Brumbley is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. 

330 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 35, NO. 1 JANUARY 1999 


