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Abstract

Orthogonal subspace projection (OSP) approach has shown success in hyperspectral image classification. Recently, the feasibility of
applying OSP to multispectral image classification was also demonstrated via SPOT (Satellite Pour 1’Observation de la Terra) and Landsat
(Land Satellite) images. Since an MR (magnetic resonance) image sequence is also acquired by multiple spectral channels (bands), this paper
presents a new application of OSP in MR image classification. The idea is to model an MR image pixel in the sequence as a linear mixture of
substances (such as white matter, gray matter, cerebral spinal fluid) of interest from which each of these substances can be classified by a
specific subspace projection operator followed by a desired matched filter. The experimental results show that OSP provides a promising
alternative to existing MR image classification techniques. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) has become a useful
modality because it provides unparallel capability of reveal-
ing soft tissue characterization as well as 3-D visualization.
It produces a sequence of multiple spectral images of tissues
with a variety of contrasts using three magnetic resonance
parameters, spin-lattice (T1), spin-spin (T2) and dual echo-
echo proton density (PD). One potential application of MRI
in clinical practice is the brain parenchyma classification
and segmentation of normal and pathological tissue. It is
the first step to address a wide range of clinical problems.
Using the volume, shapes and region distribution of the
brain tissue, one can find the abnormalities that are
commonly related to conditions of heterotopia, lissence-
phaly, brain atrophy, and cerebral infarction. Over the past
years many computer-assisted methods have been reported
in the literature [1-11] such as neural networks [5-9],
hybrid methods [10], knowledge-based techniques [11],
etc. For example, neural networks have demonstrated their
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superior performance in segmentation of brain tissue to
classical maximum likelihood methods. Hybrid methods
have shown a promise by combining imaging processing
and model-based techniques in segmentation [10]. Knowl-
edge-based techniques allow one to make more intelligent
classification and segmentation decisions [11]. In addition, a
series of papers based on an eigenimage approach to MR
image classification were reported by a leading group in
Henry Ford Hospital, Michigan [12—16]. More recently, a
Euclidean distance-based discriminant analysis approach
was developed by Soltanian-Zadeh et al. [17] for MRI
feature extraction. In this paper, we present a new approach
to MRI classification that is based on spectral feature corre-
lation among an MR image sequence. It is derived from the
concept of Orthogonal Subspace Projection (OSP) which
was originally developed for hyperspectral image classifica-
tion [18]. Nonetheless, it owes its originality to the
idea developed in [19,20]. Most interestingly, it was
also shown in [21] that Soltanian-Zadeh et al.’s optimal
linear transformation [17] was equivalent to the OSP
approach provided the target vectors were constrained to
be orthogonal.

The OSP approach which can be also found in [22] has
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shown success in AVIRIS (Airborne Visible/InfraRed
Imaging Spectrometer) and HYDICE (HYperspectral Digi-
tal Imagery Collection Experiment) data exploitation
[23,24]. It assumes that a hyperspectral image contains a
complete knowledge of object signatures present in the
image scene and each pixel is then modeled as a linear
mixture of these signatures. By taking advantage of this
linear mixture model the assumed objects can be extracted
by a specific subspace projection operator followed by a
desired matched filter. Since an MR image sequence is
multispectral images, they can be also viewed as remotely
sensed images. With this interpretation, OSP provides a
feasible approach to classification of an MR image
sequence.

However, it has also shown in [25] that in order for the
OSP approach to be effective, the data dimensionality must
be sufficiently large to accommodate orthogonal subspace
projection. In particular, the number of signatures to be
classified cannot be greater than the number of spectral
channels (bands) to be used to acquire the data. More
precisely, if we want to classify objects effectively using
OSP, each object requires a separate dimension for ortho-
gonal projection. This can be explained by a well-known
Pigeon-hole principle [26]. That is, if there are m pigeons
flying into n < m holes, then there exists at least one hole
that accommodates two or more pigeons. In other words, if
there is a dimension used to accommodate two or more
objects, the Pigeon-hole principle simply says that it is
impossible to discriminate these objects using a single
dimension through orthogonal projection. This constraint,
referred to as Band Number Constraint (BNC) was
discussed in [27] and limits the OSP application only to
hyperspectral images where there are hundreds of spectral
channels (bands) used for data acquisition and the number
of object signatures are generally much less than the number
of spectral channels.

In order to apply OSP to multispectral images, the
BNC must be relaxed. A general approach is to reduce
the number of objects to be classified to accommodate
the insufficient data dimensionality. However, this may
not be appropriate for some multispectral images. For
example, it showed in [27] that SPOT (Satellite Pour
1’Observation de la Terra) images had difficulty with
using 3 bands to classify four objects via OSP. As an
alternative, an approach, referred to as Generalized
OSP (GOSP) was proposed in [28] where it expanded
original data dimensionality without compromising the
number of objects to be classified. Instead of reducing
the number of objects to be classified, GOSP increases
the number of images by creating new band images so
that the total number of band images to be used can be
greater than the number of objects. These extra images
are produced nonlinearly and can provide very useful
nonlinear information to improve classification perfor-
mance. By taking advantage of these newly generated
nonlinear-correlated images the BNC can be relaxed to

make OSP applicable to multispectral image classifica-
tion, thus can be also applicable to MR image classifica-
tion. A sequence of brain MR images is used for
experiments to demonstrate the performance of OSP
and GOSP in MR image classification. As expected,
GOSP performs well and can be used for classification
of cerebral tissues.

One of most advantages of OSP-based approaches over
the traditional classification techniques is that the former is
the mixed pixel classification while the latter is the pure-
pixel classification. More specifically, mixed pixel classifi-
cation used a linear spectral mixture model to describe a
mixture of substances present in a pixel. It then estimates
and uses the abundance fractions of these substances as a
base to classify each of these substances. As a result, the
images generated by the mixed pixel classification are
generally gray scale fractional images of these substances
with gray level values determined by the estimated
abundance fractions. Comparing to the mixed pixel
classification, the pure pixel classification performs a
class-membership assignment on a pure pixel basis. In this
case, a pixel is determined by a binary decision, either in one
class or not. As will be shown in the experiments, the mixed
pixel classification allows one to display classification
results in color for visualization from which a mixing
color indicates a mixture of different substances, a task
that cannot be achieved by the pure pixel classification.

The remainder of this paper is organized as follows.
Section 2 formulates classification of an MR image
sequence as a linear mixing problem. Section 3 describes
the OSP approach described in [18,23]. Section 4 describes
the GOSP approach developed in [28]. Section 5 conducts a
set of experiments to evaluate the performance of OSP and
GOSP in MR classification. Section 6 concludes some
comments.

2. Linear spectral mixture model

Linear spectral unmixing is a widely used method in
remote sensing community to classify and quantify multi-
component constituents [29-31]. It views a multi/hyper-
spectral image as an image cube where each pixel is
considered to be a column vector and is modeled as a linear
spectral mixture of substances resident in the pixel. More
precisely, assume that there are p spectrally distinct
substances {m;, m,, ...,mp} in the image and r is an
image pixel vector represented by an /X 1 column vector
where [ is the number of spectral bands. Let M be an I X p
signature matrix, denoted by [s; s, ... s,] where s;isan /X 1
column vector represented by the spectral signature of the j-
th substance m; in the pixel vector r. It further assumes that
a is a p X 1 abundance column vector associated with M
given by o = (o) «; ... ap)T where T is the transpose, «;
denotes the fraction of the j-th signature s; present in the
pixel vector r. Then a linear spectral mixture model used to
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describe r is given by
r=Ma+n. (1)

The n in Eq. (1) is an / X 1 column vector and can be inter-
preted as either additive noise or measurement error. The
linear spectral unmixing is to develop a method that finds or
unmixes the abundance vector a from the pixel vector r
through Eq. (1). By viewing an MR image sequence as a
multispectral image we can stack TI1-weighted, T2-
weighted and PD-weighted images one atop another as an
image cube where each pixel in the cube is actually a pixel
vector. The dimensionality of the pixel vector, [ is deter-
mined by the MR image sequence used to form the cube. In
this case, Eq. (1) models each pixel vector in the cube as a
linear mixture of tissue substances resident in the MR
images. Specifically, r is a pixel vector of the image cube
formed by an MR image sequence. M = [s; s, ...8,] is a
signature matrix made up of the spectral signatures
{s1, 82, ..., 8,} of tissue substances {m;, m,, ...,m,} in
the MR image cube such as white matter, gray matter, cere-
bral spinal fluid, etc. The associated abundance vector «
represents the abundance fractions of these p spectral signa-
tures {s;, S, ..., S,} present in the pixel vector r. In light of
this model formulation, MR image classification can be
solved by unmixing the abundance vector « in a mixed
pixel represented by Eq. (1).

3. Orthogonal subspace projection-based approaches

Many unmixing methods have been proposed to solve Eq.
(1) in the past [31]. Of particular interest is the OSP
approach that has been successfully applied to hyperspectral
images [18,22-24].

3.1. Orthogonal subspace projection (OSP)

The idea of OSP is to divide the p substances into two
classes, desired substance class and undesired substance
class. Without loss of generality we assume that the desired
substance class contains only one single substance and
undesired substance class consists of the remaining p — 1
substances, denoted by U. Then we can rewrite Eq. (1) as

r=da, + Uy+n 2

where d = s, is the desired substance, U = [s; s, ...5, ] is
the matrix consisting of undesired substances, «, is the
abundance fraction of the desired spectral signature d and

Y= () & ...ozp_])T is the abundance vector representing

fractions of the wundesired spectral signatures
{s1, $2, -y Sy 1}

Since the desired signature d is separated from the
undesired signatures {s;, s, ..., $,—1} in Eq. (2), we can

design a subspace projection operator to eliminate
{s1, 82, ..., 8,1} before extracting d. One such a projector

is the least squares operator Pg; given by
P =1-UU (3)

where U* = (UTU) U7 is the pseudo-inverse of U and the
notation § in Py indicates that the projector maps the
observed pixel r into the space (U)*, the orthogonal
complement of U. Premultiplying Eq. (2) by Pg yields

Pgr = Pyda, + PiUy + Pyn = da, + Pin %)

where the undesired substances {s;, s,, ..., s, 1} have
been eliminated by P{ and the original noise is also
suppressed to Pgn by Pg. As a result, Eq. (4) represents a
standard signal detection model. If the optimal criterion for
the signal detection specified by (4) is chosen to maximize
the Signal-to-Noise Ratio (SNR) defined by

VR — x"P{d) a,(d Pix)
(xTP{) Elnn”[(P§x)

over x. 5

The maximum SNR of Eq. (5) can be achieved by a matched
filter, denoted by MF4 with d chosen to be the desired
matched signal. Namely, MFy is an operator given by

MF4(x) = d”x for any pixel vector x 6)

Based on Egs. (4) and (5), a mixed pixel classification can
be carried out by a two-stage process, i.e. an undesired
signature annihilator, Pg followed by a matched filter,
MFy. In other words, if we want to classify a desired signa-
ture d in a mixed pixel described by Eq. (1), we first apply
Py to Eq. (2) to eliminate U, then use the matched filter MF,
to extract d from Eq. (4). The operator P{j coupling with
MFq4 is called an orthogonal subspace classifier, Pogp
derived in [18] and given by

Posp = MF4Py = d' Py @)

3.2. A posteriori OSP

When OSP used Eq. (1) to derive Eq. (7), it assumed a
complete knowledge of the linear mixture model except the
noise n. However, this is not true in many practical applica-
tions, specifically, the signature abundance vector a which
is generally not known in practice. In [23] the OSP was
extended to a posteriori OSP to improve the OSP by includ-
ing a posteriori information in the OSP-generated classifier,
Posp specified by Eq. (7). Three a posteriori OSP-based
classifiers were derived in [23], referred to as Signature
Subspace Classifier (SSC), Target Subspace Classifier
(TSC) and Oblique Subspace Classifier (OBC). Since SSC
and OBC are of practical interest and are applicable to MR
image classification, they will be discussed below.

3.2.1. Signature Subspace Classifier (SSC)

In order to take advantage of a posteriori information,
the least squares error approach was used in [23] to
derive the estimate of the unknown abundance vector,
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@& 5(r) given by

aLsr) = M'M)"'M'r )

where the pixel vector r is included in &;q(r) to reflect
the dependency of the estimate on the a posteriori infor-
mation obtained from r. From Eq. (8) we can define a
signature subspace projector Py; by

Py =MM'M)”'M” )

which yields PyyM = M. Using Eq. (9), the a posteriori
OSP-based SSC, Pggc can be obtained by

Pssc = d" PPy = PospPu (10)

It should be noted that the difference between Pngp and
Pgsc is the inclusion of Py in Eq. (10) which projects
the pixel vector r into the signature subspace (M) as well
as suppresses noise by operating Py on r

Pyr = PyMr = Mé; (1) (11)

3.2.2. Oblique Subspace Classifier (OBC)

Unlike SSC, OBC is not an orthogonal projector. It
utilizes an oblique operator which projects the desired
signature d into its range space while mapping all the
undesired signatures in U into its null space. In particular,
let Exy be a projector with its range and null spaces
specified by X and Y respectively. The OBC can be
obtained by an operator, Pogc Which implements an oblique
projector Eqy defined by Eq. (13) followed by the matched
filter MFq4 given by Eq. (6). More precisely, Popc is given
by

d"Egy
P — 12
OBC a’d (12)
where
Equ = d@d" Pid) ~'d" P (13)

and EdUd = d, EdUU =0.
It was further shown in [23] that Popc differs from Pogp
by only a constant (dTPIlJ d ' ie
d’Equ d'Pg Pogsp

Pope = = = 14
OBC™ "dTq d’Pid)  (d'Pid) (14

More importantly, it also showed in [23,32,33] that if the
additive noise in Eq. (1) is Gaussian, Pgpc is actually the
maximum likelihood classifier (MLC). Because of that OBC
can be viewed as a generalized version of MLC.

4. Generalized orthogonal subspace projection (GOSP)

The success of OSP-based classifiers in hyperspectral
image classification lies in the fact that the projector Py
described by Eq. (3) rejects undesired signatures in U
prior to the matched filter MFy given by Eq. (6). In order
that P; can effectively eliminate the undesired signatures,

the data dimensionality, / must be greater than p — 1, the
dimensionality of (U). Otherwise, some undesired signa-
tures will be mixed into the space (U)". Such constraint
imposed by the Pigeon-hole principle is referred to as
band number constraint (BNC). So, when the BNC violates,
this unwanted mixing distorts d and further results in poor
classification. To alleviate this problem, either the dimen-
sionality of (U) must be reduced to satisfy the BNC or the
data dimensionality must be increased to meet the BNC.
The former case can be done by eliminating unwanted
signatures so that the data dimensionality can be reduced
before the classification takes place. One such an approach
was reported in [27] where some undesired signatures were
considered to be interferers and were eliminated from the
undesired signatures space (U) to reduce the dimensionality
of (U). However, under this circumstance, we need to
know which signatures in U are interferers with respect
to the desired signature d to achieve an optimal selection.

(€)

Fig. 1. Five Band MR brain images.
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Fig. 2. Spectra of WM, GM and CSF.

In order to do so, we ought to exhaust all possible com-
binations where each combination must be examined to
determine which is the best case for the optimal perfor-
mance. For instance, if [ = p — 1, there are

p—1

-1
combinations to remove p — [ undesired signatures from U.
It is obviously not practical if p — 1 is much greater than /.
As an alternative to reduction of dimensionality of (U), we
choose to increase the data dimensionality rather than to
reduce the number of signatures from p to / so that there

is no need to determine which signatures in U must be
eliminated.

4.1. Dimensionality Expansion (DE)

To expand data dimensionality a Generalized OSP
(GOSP) approach was previously developed in [28].
The idea proposed in GOSP arises in the fact that a
second-order random process is generally specified by
its first-order and second-order statistics. If we view the
original band images as the first-order images. We can
generate a set of second-order statistics band images by
capturing correlations between band images. These
correlated images provide useful second-order statistics
information about band images which is missing in the
set of the original band images. The desired second-order
statistics including auto-correlation, cross-correlation and
nonlinear correlations now can be used to create

Fig. 3. Classification results of OSP.

Fig. 4. Classification results of SSC.
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(o)

Fig. 5. Classification results of OBC.

nonlinearly correlated images between band images. The
concept of producing second-order correlated band
images coincides that used to generate covariance
function for a random process.

Let {Bi}ﬁzl be the set of an MR image sequence. The first
set of second order-statistics band images generated are
based on auto-correlation. They are constructed by multi-
plying each individual band image itself, i.e. {B7}'_;. A
second set of second order-statistics band images are
made up of all cross-correlated band images which are

(d)

(c) OBC

Fig. 6. RGB-colored classification results for OSP, SSC and OBC.

produced by correlating any arbitrary two different band
images, i.e. {B,»Bj}f,jzl’#j. Adding these two sets of second
order-statistics band images to {B,-}le produces a total of

l 2 4
(1)
2 2

band images. In case that more images are needed, nonlinear
functions may be used to generate so called nonlinear corre-
lated band images. For example, we may use the square-root
or logarithm, i.e. {+/B; }le or {logBi}f:l to stretch out lower
gray level values. In the following, we describe several

Fig. 7. New images generated by auto-correlation.



C.-M. Wang et al. / Computerized Medical Imaging and Graphics 25 (2001) 465-476 471

Fig. 8. New images generated by cross-correlation.

ways to generate second-order correlated and other
nonlinear correlated band images.

1. First-order band image: {Bi}ﬁzl = set of original band
images.
2. Second-order correlated band images:
2.1. {B,-Z}le = set of auto-correlated band images;
2.2. {BiB/}ii:l,i#j =set of cross-correlated band
images.
3. Nonlinear correlated band images:
3.1. {JE},LI =set of band images stretched out by
the square-root;
3.2. {logB,-}le = set of band images stretched out by
the logarithmic function.

It should be noted that all the images generated as
above are produced nonlinearly. These images are
expected to offer useful information for classification

because the classifier to be used for object detection
and classification is linear and linearly generated band
images will not provide extra new information to help
the classifier improve performance.

4.2. GOSP algorithm

Since an MR image sequence contains only few
images, the data dimensionality is usually not sufficient
for orthogonal projection with respect to signatures of
interest in the image sequence. As a result, a data dimen-
sionality expansion is necessary for OSP to be effective.
In what follows, we describe the detailed implementation
of GOSP.

1. Apply DE to expand original image data:
1.1. generate {B?}le =set of auto-correlated band
images;
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(n) (0)

Fig. 9. New images generated by square root.

1.2. generate {B[Bj}f’j:h#j =set of cross-correlated PPy for SSC given by Eq. (10) or

band images; @'d) "Eqy for OBC with Egy given by Eq.
1.3. generate {./B;}'_; = set of band images stretched (12)

out by the square-root; 2.2. make use of the matched filter MFy given by Eq.
1.4. form a new set of images which combines the (6) to extract the desired signature d.

original MR image sequence {B;}'_, with images
generated by (1),(2) and (3).
2. Apply OSP or SSC or OBC to the newly generated set 5. Experimental results
obtained in (1.4) in step (1) to classify desired objects:
2.1. design a projector to eliminate undesired signa- A set of a brain MR image sequence was used to
tures; evaluate the performance of OSP and GOSP. It consists
Py for OSP given by Eq. (3) or of MR images acquired from a patient with normal
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Fig. 10. Expanded spectra of WM, GM and CSF.

Fig. 11. Classification results of GOSP.

physiology shown in Fig. 1 using five spectral bands with
8-bit gray levels and size of 256 by 256 pixels. T1-
weighted image is band 5 image which was acquired
by the pulse sequence TR/TE = 2500/20 ms. T2-weighted
images are bands 2, 3, 4 which were acquired by the
pulse sequences TR/TE = 1500/55, TR/TE = 2500/75
and TR/TE = 2500/100 ms respectively. PD-weighted
image is band 1 which was acquired by the pulse
sequence TR/TE = 500/20 ms.

The spectral signatures of three cerebral tissues, gray
matter (GM), white matter (WM) and cerebral spinal
fluid (CSF) used for OSP and GOSP were extracted
directly from the MR images and verified by experienced
radiologists. They are shown in Fig. 2. Figs. 3—5 show
the classification results of OSP, SSC and OBC based on

Fig. 12. Classification results of GSSC.

(@ (®)
©

Fig. 13. Classification results of GOBC.

the five images in Fig. 1 where the images labeled by
(a), (b) and (c) were generated respectively by using
GM, WM and CSF as desired signatures d in the classi-
fiers while the other two signatures were made up to
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(a) GOSP (b) GSSC

(c) GOBC

Fig. 14. RGB-colored classification results for GOSP, GSSC and GOBC.

form the undesired signature matrix U. As we can see,
OSP-based classifiers performed well in classifying GM,
WM and CSF and their results are very close. Never-
theless, it should be noted that according to computer
simulations conducted in [23,32,33] SSC and OBC
produced more accurate abundance fractions than did
OSP. The reason that there is no appreciable difference
among the images in Figs. 3—-5 is because all the three
OSP-based classifiers generate the same classification
vector d’ P{; with different scaling constants. In particu-
lar, it has shown in [23,33] that OBC is equivalent to the
maximum likelihood classifier provided the additive
noise in the linear spectral mixture model described by
Eq. (1) is Gaussian. When the images generated by OSP,
SSC and OBC are all scaled to 256 gray levels for 8-bit
computer display, these scaling constants are absorbed in
the scaling process for computer display. So, from a
display point of view, they all produce nearly the same
results as shown in Figs. 3—5. Furthermore, by means of
Figs. 3-5, we obtained RGB-colored classification
results for OSP, SSC and OBC shown in Fig. 6 by
assigning red color to GM-classified images [Figs. 3(a),
4(a) and 5(a)], green color to WM-classified images
[Figs. 3(b), 4(b) and 5(b)] and CSF-classified images
[Figs. 3(c), 4(c) and 5(c)]. The advantage of using
color images for classification is that different degrees
of target classification can be shown by different mixing
colors. For example, 50% of red mixed with 50% of
green results in yellow color. So, mixing colors may
indicate that there are gray regions where the three

tissues can be differentiated well from each other. This
is an advantage of mixed pixel classification over the
pure pixel classification where the former uses the abun-
dance fractions to classify specific substances opposed to
the latter which uses a binary decision for class-member-
ship assignment. In addition, a mixing color can be also
used for edge detection. We can see from these color
images that OBC, i.e. maximum likelihood classifier
produced a rather low contrast color image than did
OSP and SSC.

In order to apply GOSP-based classifiers, a set of new
30 images was generated by DE. The images in Figs. 7-9
were generated by auto-correlation, cross-correlation and
square-root respectively. Fig. 10 shows the expanded
spectral signatures of WM, GM and CSF by combining
five images in Fig. 1 with 30 images in Figs. 7-9. Using
a total of 35 images in Fig. 1 plus Figs. 7-9, the classi-
fication results of GOSP, GSSC and GOBC are shown in
Figs. 11-13. Like Figs. 3-5, the images labeled by (a),
(b) and (c) are generated respectively by using GM, WM
and CSF as desired signatures d in the classifiers while
the other two signatures were made up to form the unde-
sired signature matrix U. Compared Figs. 11-13 against
those in Figs. 3-5, the GOSP-based classifiers improved
OSP-based classifiers, specifically, noise and other
unknown interferers have been significantly suppressed
(e.g. WM classification) and the edges between GM,
WM and CSF have been enhanced. A similar comment
to the classification performance made for OSP, SSC and
OBC also holds for GOSP, GSSC and GOBC. Using the
same RGB assignment to that used for Fig. 6, the RGB-
colored classification results for GOSP, GSSC and GOBC
are shown in Fig. 14. Once again, the color image
produced by GOBC has low contrast than did GOSP
and GSSC.

6. Conclusion

Orthogonal subspace projection (OSP)-based approaches
have been successfully applied to remotely sensed images in
target detection and classification. This paper presents a new
application of OSP in MR image classification. It views an
MR image sequence as a multispectral image cube and
models each pixel vector as a linear mixture of tissue
substances resident in the MR pixel vector. Based on this
linear mixture model several OSP-based classifiers can be
derived for MR image classification. Unlike traditional
image classification techniques which are carried out on a
pure pixel basis, OSP-based classifiers are mixed pixel clas-
sification techniques. They use the linear mixture model to
generate a fractional image for each object required for
classification. The advantages of mixed pixel classification
have been demonstrated in the experiments. Interestingly,
OSP was shown to be equivalent to Soltanian-Zadeh et al.’s
Euclidean distance-based discriminant analysis approach
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with the constraint that the target vectors of interest are
orthogonal [17]. OBC was also shown to be equivalent to
the maximum likelihood classifier if the additive noise is
Gaussian [33,34]. In order to further improve the OSP
performance, a data dimensionality expansion procedure is
introduced to extend the capability of OSP classifiers which
results in a generalized OSP (GOSP). Experimental results
show that OSP-based approaches have potential usefulness
in MR image classification.
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