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A Fast Iterative Algorithm for Implementation
of Pixel Purity Index
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Abstract—The pixel purity index (PPI) has been widely used in
hyperspectral image analysis for endmember extraction due to its
publicity and availability in the Environment for Visualizing Im-
ages (ENVI) software. Unfortunately, its detailed implementation
has never been made available in the literature. This paper inves-
tigates the PPI based on limited published results and proposes a
fast iterative algorithm to implement the PPI, referred to as fast
iterative PPI (FIPPI). It improves the PPI in several aspects. In-
stead of using randomly generated vectors as initial endmembers,
the FIPPI produces an appropriate initial set of endmembers to
speed up its process. Additionally, it estimates the number of end-
members required to be generated by a recently developed concept,
virtual dimensionality (VD) which is one of the most crucial issues
in the implementation of PPI. Furthermore, it is an iterative algo-
rithm, where an iterative rule is developed to improve each of the
iterations until it reaches a final set of endmembers. Most impor-
tantly, it is an unsupervised algorithm as opposed to the PPI, which
requires human intervention to manually select a final set of end-
members. The experiments show that both the FIPPI and the PPI
produce very close results, but the FIPPI converges very rapidly
with significant savings in computation.

Index Terms—Automatic target generation process (ATGP),
endmember extraction algorithm (EEA), endmember pixel, fast
iterative pixel purity index (FIPPI), pixel purity index (PPI),
virtual dimensionality (VD).

I. INTRODUCTION

ACCORDING to the definition in [1], an endmember is an
idealized pure signature for a class. Finding pure signatures

in hyperspectral imagery is considered to be an important and
crucial task in hyperspectral data exploitation. Many endmember
extraction algorithms (EEAs) have been developed for this pur-
pose [2]. One of the most popular EEAs has been the pixel purity
index (PPI), developed by Boardman et al. in [3]. It searches for
a set of vertices of a convex hull in a given dataset, which are
supposed to be pure signatures present in the data. It has been
widely used because it is available in the Environment for Visu-
alizing Images (ENVI) software system originally developed by
Analytical ImagingandGeophysics (AIG)[4]andhasfoundmul-
tiple applications in different areas [5]. Due to its propriety and
limited published results, its detailed implementation has never
been made public. Therefore, most of the people who use the
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PPI for endmember extraction either appeal for ENVI software
or implement their versions of the PPI based on whatever avail-
able in the literature. This paper presents our experience with the
PPI and investigates several issues arising in the practical imple-
mentation of the PPI. One of major issues is the sensitivity to
input parameters, namely (number of so-called skewers) and
(cutoff threshold value) used in the PPI. Another important issue
is therandomprocedureemployedbythePPItogenerateskewers,
which are then used to compute endmember candidates. A third
issue is its computational complexity. A fourth issue is the re-
quirement of human intervention to manually select a final set of
endmembers by visual inspection. Most importantly, the PPI is
not an iterative process and does not guarantee its convergence
in finite runs, despite that it may converge asymptotically as it
is claimed.

In order to address these issues, this paper develops a fast it-
erative algorithm for implementing the PPI, referred to as fast
iterative pixel purity index (FIPPI). It has several significant ad-
vantages over the PPI. First of all, it makes use of a recently
developed concept, virtual dimensionality (VD), in [6] to esti-
mate the number of endmembers required to be generated. The
VD allows us to replace the two parameters and used in the
PPI so that the algorithm’s sensitivity to these parameters can
be resolved. Second, the FIPPI takes advantage of the automatic
target generation process (ATGP) in [6] and [7] to generate an
appropriate set of initial endmembers that can thus speed up
the algorithm considerably. Third, the FIPPI is an iterative al-
gorithm that converges very rapidly with tremendous savings in
computation time. Most importantly, the PPI requires a visual-
ization tool to manually select a final set of endmembers. Such a
problem is avoided by the FIPPI because the FIPPI is automatic
and the final set of FIPPI-generated endmembers is always the
same, regardless of who is a user of the FIPPI. This is considered
to be one of the most significant advantages of the FIPPI over the
PPI. In order to evaluate the performance and effectiveness of
the FIPPI, the PPI was implemented via the Research Systems
ENVI 3.6 software to make sure that the version of our imple-
mented PPI is exactly the same one developed in [3]. Further,
a well-known Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) dataset collected over the Cuprite mining district in
Nevada in 1997 is used for experiments. Since the image scene
is available online at website, people who are interested in the
proposed FIPPI can reproduce our results and conduct their ex-
periments to exploit various applications. The experimental re-
sults show that many of the final endmembers produced by both
the FIPPI and the PPI are identical. Those which are not iden-
tical are very close in the sense of spectral similarity. Addition-
ally, the FIPPI only requires a few iterations to generate its final
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set of endmembers as compared to the PPI which requires the
parameter to be a very high number, e.g., or greater. Most
significantly, the FIPPI substantially reduces the computational
complexity via an iterative process.

II. PIXEL PURITY INDEX

Since the details of the specific steps to implement ENVIs PPI
are not available in the literature, the PPI algorithm described
below is only based on the limited published results and our
own interpretation. Nevertheless, except a step, step 5), which
is subject to human manipulations, both our algorithm and the
PPI in ENVI 3.6 produce the same results.

1) Initialization: Apply a maximum noise fraction (MNF)
transform [8] to reduce the dimensionality of the dataset, and
generate a set of unit vectors called “skewers,”
randomly, where is a sufficiently large positive integer.

2) PPI Calculation: For each , all the data sample
vectors are projected onto to find sample vectors at
its extreme positions and form an extrema set for this particular

, denoted by . Despite the fact
that a different generates a different extrema set

, it is very likely that some sample vectors
may appear in more than one extrema set. Define an indicator
function of a set by

and

(1)

where is defined as the PPI score of sample vector .
3) Candidate Selection: Find the PPI scores for all

the sample vectors defined by (1).
4) Endmember Extraction: Let be a threshold value set for

the PPI score. Extract all the sample vectors with .
The pixels resulting from the algorithm above are usually

input to ENVI’s “ -dimensional visualization tool” which is a
supplementary tool of the PPI algorithm that allows manual se-
lection of a final set of endmembers [4].

As we can see from the above PPI algorithm, it is not an iter-
ative process. Its process is determined by the parameter and
carried out in step 2). It is performed for a given set of skewers
which are randomly generated initially. Once the data samples
are projected on the set of skewers, the process is terminated.
Several drawbacks resulting from the above PPI algorithm are
observed as follows.

1) Since the PPI algorithm is not an iterative process, it does
not guarantee that all the PPI-generated endmembers
are actually true endmembers due to the fact that the

skewers are randomly generated. A different set of
skewers may produce a different set of endmembers.

2) When the MNF transform is implemented for dimension-
ality reduction, there is no provided guideline to help users
select how many dimensions need to be retained.

3) The PPI algorithm is very sensitive to noise. So, the noise
estimation used in the MNF transform is crucial.

4) No criteria are provided for how to select the parameter
and the threshold , which determines the number of final
endmembers.

5) It requires human intervention to manually select a final
set of endmembers.

III. FAST ITERATIVE PIXEL PURITY INDEX

One of major drawbacks from which the PPI suffers is its
computational complexity. For instance, the algorithm took
more than 50 min to project every data sample vector of a
350 350-pixel subset of the 224-band Cuprite AVIRIS image
scene into skewers in a PC with AMD Athlon 2.6-GHz
processor and 512 MB of RAM. In order to reduce compu-
tational complexity, most ENVI users preprocess the data by
MNF transformation so that the original data dimensionality
can be reduced to ease computation. Additionally, the PPI is
not iterative and can only guarantee to produce optimal results
asymptotically. So, it is recommended that the algorithm be
implemented using as many skewers as possible in order to
obtain optimal results. Also, according to our experiments the
PPI is also very sensitive to the initial values of parameters
and particularly, . Furthermore, the ENVI’s PPI makes use of a
built-in algorithm to randomly generate a large set of so-called
skewers and the users of the ENVI’s PPI do not have choice to
select their own initial sets of skewers. Finally, the PPI needs a
supervised procedure to manually select a final set of endmem-
bers which largely depends upon human interpretation. This
section addresses these issues by developing a fast iterative
algorithm for PPI, referred to as fast iterative PPI (FIPPI) which
is described in detail as follows.

1) Initialization: Find the VD using the Harsanyi–Far-
rand–Chang (HFC) method in [6], and let it be , the number
of endmembers required to generate.

2) Dimensionality Reduction: Apply the MNF transform
for dimensionality reduction and retain the first components.
Let be an initial set of skewers generated by
selecting those pixels that correspond to target pixels generated
by ATGP in [7].

3) Iterative Rule: At iteration , for each all

the sample vectors are projected onto this particular
to find those which are at its extreme positions to form an ex-
trema set, denoted by . Find the sample

vectors that produce the largest defined by (1), and

let them be denoted by .

4) Stopping Rule: Form the joint set,

. If

, then no new endmembers are added to the
skewer set. In this case, the algorithm is terminated. Otherwise,
let and go to step 3).

It should be noted that when the algorithm is terminated
in step 4), the vectors corresponding to the pixels with

are the desired endmembers, denoted by

. Additionally, in step 1) of initialization, the ATGP
in [7] was used to generate the initial set of initial skewers,

. The ATGP can be replaced by any method,
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Fig. 1. Spectral band at 827 nm of the Cuprite AVIRIS scene, with (left) spatial
positions of various pure pixels labeled by A, B, C, K, M. (Right) The 22 target
pixels extracted by ATGP.

including the one used in the PPI that randomly generates
so-called “skewers,” as long as the initialization
method provides a good estimate of initial skewers. But, as
will be shown in experiments, such randomly generated initial
skewers can only slow down the algorithm.

Several major advantages can be obtained from the proposed
FIPPI. First, it improves computational efficiency significantly
compared to the original PPI since the FIPPI is an iterative algo-
rithm and the PPI is not iterative. Second, the parameters and
are not required.So, there is no need for users to input these values
to avoid human subjectivity. Third, the number of endmembers
required to generate, , can be estimated by VD as opposed to the
PPI which must be carried out on a trial-and-error basis. Fourth,
the FIPPI implements a replacement rule to iteratively refine each
iteration and is terminated when a set of final endmembers
is identified via an implemented stopping rule. Fifth and most
importantly, the FIPPI is fully automated, and does not require
any human supervision as does the PPI.

IV. EXPERIMENTS

The image data to be used for experiments is the Cuprite
AVIRIS image scene shown in Fig. 1 (left), which was col-
lected over the Cuprite mining district, Nevada, in 1997. The
data are available in reflectance units.1 This 224-band scene is
well understood mineralogically, where the ground truth pro-
vides the precise spatial locations of pure pixels that correspond
to the five minerals, alunite, buddingtonite, calcite, kaolinite,
and muscovite labeled by A, B, C, K, and M in Fig. 1 (left).
It should be noted that bands 1–3, 105–115, and 150–170 have
been removed prior to the analysis due to water absorption and
low SNR in those bands. According to our experiments, the pa-
rameter was empirically set to for the PPI. This is
because we have found that the PPI algorithm produced essen-
tially the same set of endmembers for ( and

were also tested), while a smaller generally
resulted in the loss of important endmembers. The value of
was set to the mean of the values of the throughout
the dataset (these parameter values are in agreement with those
used before in the literature [9]). Finally, the value of was de-
termined by the HFC method for estimation of virtual dimen-
sionality (VD) where Table I tabulates the various values of the

1http://aviris.jpl.nasa.gov/html/aviris.freedata.html

TABLE I
VD ESTIMATES WITH VARIOUS FALSE ALARM PROBABILITIES

Fig. 2. Endmember pixels extracted by (left) PPI and (right) FIPPI using
random initial skewers.

VD produced by different false alarm probabilities
for .

According to our extensive experiments, seems a rea-
sonable estimate for the Cuprite image scene. Therefore, only
experiments based on will be presented in this paper for
illustration and demonstration. Nevertheless, all the arguments
made for the case of can be also applied to other values
of . In order to provide a fair comparison, we avoided gener-
ating the final PPI-found endmembers as mean spectra of clus-
ters of extreme pixels in the -dimensional space. Instead, we
selected individual image pixels falling in the corners of the data
cloud, and used those pixel signatures as the final endmember
set. In this case, an endmember is actually a pixel which repre-
sents a pure pixel, referred to as an endmember pixel.

Three experiments were conducted to evaluate the perfor-
mance of the PPI and FIPPI. Experiment 1 was designed to see
how much improvement could be gained for the FIPPI upon
the PPI with random initial endmembers. Experiment 2 was de-
signed to see how much improvement would be gained for the
PPI if the set of initial endmembers were generated by the ATGP.
Experiment 3 compares the results in Experiments 1 and 2.

In order to distinguish the final set of endmember
pixels extracted by the PPI and FIPPI, the notations of

and will be used to
indicate the final set of endmember pixels extracted by the
PPI and the FIPPI, where “bar” and “tilde” will be designated
for endmember pixels extracted by the PPI and the FIPPI, re-
spectively, and superscripts “(random)” and “(ATGP)” indicate
that the final endmember pixels are generated by using a set
of random endmember pixels and the ATGP-generated target
pixels as the initial set of endmember pixels.

A. Experiment 1: Randomly Generated Initial Skewers

In this experiment, the FIPPI and the PPI were implemented
to find endmembers for the image scene in Fig. 1 (left) using
the same set of randomly generated initial skewers with .
Fig. 2 shows the endmember pixels extracted by the PPI and the
FIPPI, respectively. Using the Spectral Angle Mapper (SAM)
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Fig. 3. Endmember pixels extracted by (left) PPI and (right) FIPPI using initial
skewers generated by ATGP.

[6] as a spectral measure, we found that among the 22 extracted
endmember pixels by PPI, there were many endmember pixels
overlapped with the set of 20 endmember pixels produced by
FIPPI. Specifically, only five pixels extracted by the FIPPI, i.e.,

and , were
not included in the set of pixels extracted by PPI. This implied
that 15 out of 20 FIPPI-generated pixels were overlapped with
the final set of pixels produced by PPI (75% overlap). It should
be noted that, when random skewers are used to initialize both
the PPI and the FIPPI, there is no guarantee that the results are
repeatable between different runs. In this case, we observed that
most of the pixels that were not overlapped between the two sets
were indeed extracted by the two algorithms in some of the runs.

B. Experiment 2: Initial Skewers Generated by ATGP

In this experiment, a comparative study is conducted to see
how much improvement can be gained for both the PPI and the
FIPPI if their initial sets of endmembers are appropriately se-
lected by the ATGP. Fig. 1 (right) shows the 22 target pixels,

generated by the ATGP which are used as the
initial set of endmember pixels for both the PPI and FIPPI. Fig.
3 shows the final 22 endmember pixels extracted by the PPI
and the 17 endmember pixels extracted by the FIPPI where “ ”
rather than “ ” was used to indicate that the ATGP-generated
pixels were target pixels, not necessarily endmember pixels.
Once again, the SAM was used to measure similarity between
two sets of extracted pixels. It was found that only three out of
22 pixels in the final endmember set were not
in the initial set of ATGP-generated pixels, with 86.4% overlap.
Similarly, only two out of 20 pixels in the final endmember set

were not in the initial set of ATGP-generated
pixels, with 90% overlap.

C. Experiment 3: Comparative Study Between Experiments
One and Two

Now we make further comparisons between the final sets of
endmember pixels generated by the PPI and the FIPPI using the
initial random sets of endmember pixels in Experiment 1 and
the initial set of ATGP-generated target pixels in Experiment 2.
Since only the spatial locations of these pixels are of major in-
terest, Fig. 4 only shows the graphical positions of the three sets

labeled by “ ,” labeled by “o”

Fig. 4. Graphical spatial locations of ATGP-generated pixels and endmember
pixels extracted by (left) PPI and (right) FIPPI.

TABLE II
COMPARATIVE ANALYSIS BETWEEN PPI AND FIPPI WITH DIFFERENT INITIAL

ENDMEMBER SETS ON THE AVIRIS CUPRITE SCENE

and labeled by “+” for PPI (left), and the graph-

ical spatial positions of the three sets labeled by

“ ,” labeled by “o” and labeled
by “+” for FIPPI (right), respectively.

Using the SAM to measure similarity among all the
pixels, it was found that more than 50% of endmember
pixels were overlapped among the three sets of pixels,

and . It was
particularly true when the ATGP-generated target pixels were
used as initial endmember pixels to produce the final set of
endmember pixels, 19 out of the 22 pixels were overlapped
for the PPI and 18 out of the 20 pixels were overlapped for
the FIPPI. According to ground truth in Fig. 1 (left), five
signatures associated to {alunite (A), buddingtonite (B), calcite
(C), kaolinite (K), muscovite (M)} minerals were identified by
triangles in Fig. 4.

It is also interesting to note that when were
used as initial endmember pixels, the discrepancy among the set
of the ATGP-generated target pixels and two sets of endmember
pixels, and only occurred at the
very end of the process of endmember extraction by the FIPPI.
A similar observation can be made for the PPI. Most impor-
tantly, the computational complexity was significantly reduced
if ATGP-generated pixels were used to initialize both the PPI
and the FIPPI. This was because less endmember pixel replace-
ments were required. For example, the proposed FIPPI took less
than 4 min to converge in the same computing environment de-
scribed above, and required approximately four additional min-
utes for the calculation of . As a result, we can
conclude that ATGP-generated pixels not only can speed up the
convergence of the PPI, but most of them can be also potential
endmember pixels as well. Table II tabulates the number of runs
or iterations, and computing time for both PPI and FIPPI using
random sets of initial endmember pixels and the ATGP-gener-
ated target pixels as initial endmember pixels, where the num-
bers in the parentheses under the columns of FIPPI are the total
number of skewers generated before the implemented stopping
rule was met.
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As we can see from Table II, the number of skewers used
by the FIPPI was very small in comparison with the number of
skewers required by the PPI, in particular, when ATGP-gener-
ated pixels were used for initialization. This implied that most of
the ATGP-generated target pixels might have already been pure
pixels before the execution of the PPI and the FIPPI. Also, from
evidence provided by Table II, we can see that using the ATGP-
generated target pixels as initial endmember pixels considerably
improves the iterative process for the FIPPI, and also reduces the
computing time tremendously. In addition, the FIPPI also per-
formed significantly better than the PPI regardless of what ini-
tial set of skewers was used. While our main goal in this paper
has been to compare the FIPPI with the original PPI algorithm,
a comparison of the algorithm to other approaches such as the
N-FINDR algorithm is presented in [10].

V. CONCLUSION

Pixel purity index is a popular method for endmember ex-
traction. This paper presents a new fast iterative algorithm to
implement the PPI, called fast iterative pixel purity index which
differs from the PPI originally developed in [3] in the following
aspects. First of all, FIPPI replaces the two parameters, and

in the PPI with the virtual dimensionality (VD) developed in
[6] to eliminate the sensitivity issue caused by parameters
and . Most distinctly, the FIPPI is an iterative algorithm which
implements an iterative rule to improve each of iterations,
and a stopping rule to terminate the algorithm. In addition,
the FIPPI takes advantage of an automatic target generation
process to produce an appropriate set of initial skewers to
reduce a significant number of iterations. These ATGP-gener-
ated initial skewers can further reduce a substantial number of
replacements executed by the FIPPI. As a result, a tremendous
saving in computing time can be accomplished. Despite the
fact that the ATGP was used in the FIPPI to produce a set of
initial endmembers, the FIPPI does not exclude any algorithm
to replace the ATGP as long as it can produce an appropriate set

of initial endmembers. Finally, the FIPPI can be implemented
automatically with no human intervention as opposed to the
PPI, which requires users to perform visual inspection. Such
a significant advantage makes the FIPPI more practical than
the PPI because different PPI users who manually extract final
set of endmember pixels may produce inconsistent results with
different sets of endmembers in the end.
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