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Abstract—In this paper, spectral unmixing methods, which are
extensively used in hyperspectral imaging area, are proposed for
classification and abundance fraction (concentration) estimation
of chemical and biological agents that exist in the mixture form.
Several government-furnished datasets, which were collected
through the infrared spectrum method, were thoroughly analyzed.
Two similarity measures—the spectral angle mapper and spectral
information divergence—were investigated in order to provide a
quantitative comparison basis with respect to the performance of
the applied spectral unmixing methods in the existence of similar
and distinct agents. The use of the similarity measures provided
valuable information about the signature characteristics of the
agents, which led to a better understanding about the capabilities
of the investigated methods. The orthogonal subspace projection
(OSP) method was investigated as the first unmixing, classifi-
cation, and abundance estimation technique. It was observed
that the OSP method provided good results when the number of
agents in the database was small and was composed of distinct
agents. However, when the number of agents was incremented by
adding agents that share similar characteristics, the abundance
estimation accuracy gradually degraded in addition to generating
negative abundance fraction estimates. The second investigated
unmixing method was called nonnegatively constrained least
squares (NCLS). The results and analyses indicated that the
NCLS method outperformed the OSP approach by providing
considerably more accurate fraction estimates while at the same
time not generating any negative fraction estimates; thus, the use
of the NCLS method was found to be promising in detection and
abundance fraction estimation of chemical and biological agents
that exist in the form of mixtures. In addition, efficient implemen-
tation of NCLS has resulted in much lower computations than the
conventional OSP implementation.

Index Terms—Biological agent detection, chemical agent detec-
tion, nonnegatively constrained least squares (NCLS), orthogonal
subspace projection (OSP).

1. INTRODUCTION

HEMICAL and biological defense are important for
C both military and civilian applications. The capability to
quickly detect and classify different chemical and biological
agents (CBAs) will provide ample time for soldiers and law en-
forcement personnel to prepare and counteract these agents. This
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issue has become more and more important after September 11,
2001. Terrorist attacks by using chemical and biological agents
to cities in the U.S. are no longer remote possibilities now. Early
detection of CBAs may give an indication of terrorist activity
that may allow proper procedures to be followed to mitigate
dangers and protect civilians in public places and also military
personnel patrolling areas that are risky for terrorist attacks.

There are several chemical and biological agent detection tech-
niques which are in use or under study [1]. These techniques can
be considered as feature extraction methods that transform chem-
ical and biological quantities into characteristic signatures. The
use of surface acoustic wave sensors (SAWS) is one of these tech-
niques. Surface acoustic wave sensors are devices that measure
the mass of materials that stick to the surface of the sensor [2].
The selectivity of the sensor depends on the selectivity of the
coating, where organic polymers are generally used as coatings in
chemical agentdetection [2]. Jon mobility spectrometry is another
technique. This technique is based on the fact that ionization of
analytes in air produces electric current when they collide with
a detector plate [3]. Gas chromatography (GC) and mass spec-
trometry (MS) are two other well-known techniques in this field.
Microwave spectroscopy is another technique, which is noted to
have the quantitative power of GC/MS methods, with some ad-
ditional benefits such as significantly reducing the false positive
detection rate and improving the analysis time [4]. Finally, there
are the spectroscopic techniques such as the Fourier transform
infrared spectrum (FT-IR), which are noted to have higher infor-
mation content than other agent detection techniques [2]. How-
ever, a fast scanning instrument together with a fast computer is
required in order to do continuous monitoring and process all the
available information in a short period of time.

In a chemical and biological agent attack, it is possible that
the chemical and biological agents can be composed in the form
of mixtures in order to make the existing agent detection sys-
tems, which are specific to single agents, useless. The detection
of agents in the form of mixtures is a more challenging problem
than detecting the agents alone. The accurate and robust detec-
tionof suchchemical orbiological agent concentrations is amajor
key to success. One approach is to find unique spectral attributes
that are indicative of the chemical agents that form the mixture
[2]. When the agents are mixed, the resultant agent mixture sig-
nature differs from the agent signatures that are components of
the mixture, and depends on the abundance fractions of the com-
ponents. It becomes a difficult problem to come up with a pattern
recognition type of detection system since the number of cases

0196-2892/$20.00 © 2006 IEEE



410 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 2, FEBRUARY 2006

for forming agent mixtures is endless. Thus, generating a data-
base that consists of every possible agent mixture combination
is not practical. Instead of a pattern recognition type of detection
system, a spectral unmixing algorithm, which has the capability
of decomposing the agents in the mixture and estimating their
abundance fractions in the mixture, has to be carried out in an ef-
fective manner.

In the last decade, many useful methods such as orthogonal
subspace projection (OSP), nonnegatively constrained least
squares (NCLS), etc., have been developed in the area of multi-
spectral/hyperspectral image analysis [5]-[10]. Application of
these algorithms to two-dimensional images significantly im-
proved the target detection and identification performance. The
focus of this research was to apply some of the new techniques in
multispectral/hyperspectral area to detect, classify, and estimate
concentration of CBAs in mixtures of chemical and biological
agents. The datasets used in this work were provided by the Na-
tional Institute of Standards and Technology (NIST) and the U.S.
Army. These datasets contained the signatures of the chemical
and biological agents of interest. These signatures were obtained
experimentally by the infrared (IR) spectrum technique. In order
to investigate the detection and abundance fraction estimation
performance of the applied spectral unmixing methods, agent
mixtures were formed. In forming these mixtures a linear mixing
methodology was conducted. First, the selected agents that form
the mixture were multiplied with some fraction values which
have values greater than 0. Afterward, these were summed to
form the resultant agent mixture signature.

Two spectral metrics—the spectral angle mapper (SAM) and
spectral information divergence (SID)—were investigated in
order to assess the similarity of the agents. This assessment
was needed to explain why some agents are difficult to classify
and how the applied spectral unmixing methods perform in the
existence of similar and distinct agents. Two spectral unmixing
methods have been investigated: OSP and NCLS [5], [6]. It was
observed that OSP performs well when noise level was low
and the number of agents in the mixture was small. However,
the performance of OSP dropped significantly when the noise
level was high and the number of agents was large. Moreover,
in the concentration estimation part, negative concentration
estimates showed up, which was highly undesirable. OSP cannot
effectively deal with agents with similar spectral characteristics.
In contrast, NCLS achieved accurate results in noisy conditions,
in the presence of similar agents, and with a large number of
agents in a mixture (up to 20 agents in our studies). Efficient
implementation of NCLS achieved near real-time performance.
Thus, the NCLS method was found to be promising in detecting
chemical and biological agents, which are in the form of mix-
tures. In addition to correct detection of the agents, the abundance
fractions of the detected agents were estimated accurately with
the NCLS method.

This paper is organized as follows. Section II summarizes
the algorithms studied in this research. Details of the SAM
and SID similarity measures and the two investigated spectral
unmixing algorithms OSP and NCLS are described in this
section. Section III describes the conducted experiments and the
corresponding analyses for the experiments. Finally, conclusions
are drawn in Section IV.

II. ALGORITHMS

The key technical approach in the conducted analysis and
experiments is based on two spectral unmixing and abundance
fraction estimation techniques: the orthogonal subspace projec-
tion and the nonnegatively constrained least squares methods
[5]. Two similarity measures have been investigated as well in
applying these unmixing techniques to various government-fur-
nished datasets: the spectral angle mapper and the spectral infor-
mation divergence methods. First, the two similarity measures
SAM and SID are introduced. Following that the two unmixing
methods OSP and NCLS are described in this section.

A. Similarity Measures

1) SAM: Assume that's; = (s;1, Si2,. .., siL)T and s; =
(Sj1, 8525+, st)T are two spectral signatures. The SAM mea-
sures spectral similarity by finding the angle between the spec-

tral signatures s; and s;
<s’ivsj> )
T M
[Isillls;l
1/2
= Siysasi Isill = (Tizisy) " and
s 0\ 1/2
Isill = (Siy (s0)®)

SAM(s;,s;) = cos ! <

where (s;,s;)

2) SID: Let p = (p1.p2.---,pr)"  and
a = (q1.q2,-..,q1)" be the two probability mass
functions generated by s; = (31;1737;2,...75,;L)T
and s, = ($j1,852,---,8;0) . respectively, with

P = Si[/ Zlel s;1and qp = Sjl/Zlel Sjl- So, the self-infor-
mation provided by s; and s; for band [ is defined by

Ii(si) = —logpi 2

Ii(sj) = —log qi- 3)

By virtue of (2) and (3), the discrepancy of the self-informa-

tion of band image B, provided by s; relative to the self-infor-

mation of band image B; provided by s;, denoted by D;(s; ||
s;), can be defined as

Di(si ||'s;) = Ii(s;) — Li(si) = log <§j> @)
Averaging Di(s; || s;) in (4) over all the bands {Bl}lel re-
sults in

Dis; |1's;) ZDzszusm Zpllog() )

where D(s; || s;) is the average discrepancy in the self-infor-
mation of s; relative to the self-information of s;. In the con-
text of information theory, D(s; || s;) in (5) is called the rel-
ative entropy of s; with respect to s; which is also known as
the Kullback—Leibler information measure, directed divergence
or cross entropy [11]. Similarly, the average discrepancy in the
self-information of s; relative to the self-information of s; can
be defined by

SJ Il 'si) ZDl Sj I si)ar = Z(Il 108( ) (6)

Summing (5) and (6) yields SID deﬁned by
SID(si,s;) = D(si || sj) + D(s; || si) 0]
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which can be used to measure the discrepancy between two
pixel vectors s; and s; in terms of their corresponding proba-
bility mass functions, p and q. It should be noted that while
SID(s;,s;) is symmetric, D(s; || s;) is not. This is because
SID(SZ‘,SJ> = SID(SJ7Si> and l)(SZ || Sj) 75 D(Sj || Si)-

B. Spectral Unmixing, Classification, and Concentration
Estimation Algorithms

1) Orthogonal Subspace Projection: OSP is a well-known
technique in multispectral/hyperspectral community. It has also
been integrated into some commercial products. In this section,
the theory is briefly introduced. In the experimental results sec-
tion, the OSP technique is used as the baseline for comparative
studies.

Suppose that there are p targets, ti,ts,...,t,. Let
m;,moy,...,m, be their corresponding spectral signa-
tures. Suppose L is the number of spectral bands in mj,
where 1 < 5 < p. Let r denote a linear mixture of
m;,msy, ..., m, with appropriate abundance fractions speci-
fied by a1, va, . . ., vy, which can be denoted by a L x 1 column
vector. Let M denote the L x p target spectral signature matrix,
depicted by [m;, ms,...,my). Let @ = [a1,a2,..., ap]T be
a p x 1 abundance column vector associated with r, where
a; denotes the abundance fraction of m; that is present in
the mixture r. The spectral signature of the mixture, r, can be
modeled in a linear regression form as

r=Ma+n ®)

where n is the noise or can be interpreted as a measurement
error or a model error. Further, it can be written as

r=da,+Uy+n O]

where d = m,, is denoted as the desired spectral signature my,,
and U = [m; my ... m,_4] is the undesired target spectral
signature matrix.
An OSP detector denoted by dosp(r) is given by
dosp(r) = dT Pgr (10)
where Pt = I, — UU# =1, — U(UTU)"'UT.
Based on OSP, a least squares estimator, denoted by éps(r)
which is referred to as a posteriori OSP is given by
. -1
Ozp = 6Ls(l‘) = (dTPlJ]'d) 60513([‘). (11)
Using (11), the abundance fraction «, of the desired target sig-
nature m,, in the mixed signature r is estimated.
2) Nonnegatively Constrained Least Squares Method: The
NCLS approach is related to the following optimization
problem:

Minimize LSE = (Ma —r)” (Ma — r) subject to a; >0

(12)
where LSE is the least squares error used as a criterion for
optimality, and «v; > 0 represents the nonnegativity constraint
for 1 < 5 < p. In order to use the Lagrange multiplier
method, a p-dimensional unknown positive constraint vector

c = [cl,c2,...,cp]T with ¢; > 0 is introduced, where
1 < j < p. A Lagrangian, J(a), by means of c is formed as

J(a) = (%) (Ma—1)" (Ma—1)+AT(a—c) (13)

subject to the constraint @ = c. Differentiating J(a) with re-
spect to « yields

oJ(a)

=0=M"Maxcrs — MTr+ A.
Jda

ancLs

(14)

Equation (14) results in the following two iterative equations
ancrs = (1VIT1\/I)_1 M’r - (MTM)_1 A
ars — (MTM) ' A,

15)

where arg depicts the least squares estimate of @ and is ex-
pressed as
s = (M™™M) ' M7r. (16)

Equations (15) and (16) can be used iteratively to solve the
optimal solution @&xcrgs utilizing the Lagrange multiplier vector
A= [)‘17A27' . '7AP]T

In the NCLS algorithm, the components of the estimate &g
is decomposed into two index sets, which are called active set,
R, and passive set, P, respectively. The active set, R, consists
of all indexes corresponding to negative (or zero) components.
The passive set, P, contains indexes corresponding to positive
components in the estimate @ps. The algorithm starts with an
empty set of P, P = (J, assuming that the active set contains
all components of arg, R = {1,2,...,p}. The sets P and R
are then adjusted via iterations using (15) and (16). The final
generated passive set depicts the components that are legitimate
to be used in the abundance estimation, é&p,s. The NCLS algo-
rithm can be implemented as follows [5]:

1. Initialization: Set the passive set P =
{1,2,...,p}, and active set R® =g, set k=0.

2. Compute ars using (16). Let dl(\?%LS =ars.

3. At the k-th iteration,

in é‘l(\;cc)Ls are positive, the algorithm is termi-

if all components
nated; otherwise, continue.

4. Let k— k+1.

5. Move all indexes in P%*™Y that correspond
to negative components of éf](\f(ﬁ]q) to R*=D | Let
the resulting index sets be denoted by P%) and
R™), respectively. Create a new index set Sk
and set it to R .

6. Let &g denote the vector consisting of
all components ars in R

7. Form a steering matrix @&k) by deleting all
rows and columns in the matrix apu) specified

by P,
(@(A‘))il &
o R(l‘) .

8. Calculate A%, If all the
components in /\ffa),x— are negative, go to step 13;

otherwise, continue.



412

9. calculate A,
in R to PW,

10. Form another matrix ‘Ilg\k) by deleting every
column of (MTM)f specified by P% .

11. Set agu) = ars — \I/g\k)k(k) .

12.
tive, then move it from P to R™ and go to
step 6.

13. Form another matrix ‘Ilg\k) by deleting every
column of (MTM)7
14. Set dl(\{%LS = dLs — \I/g\k)/\(k) .

k . .
max )\(]-) and move its index

If any component of g 1in S*) is nega-

specified by P,
Go to step 3.

It may seem that the NCLS method is much more complicated
than OSP. However, efficient implementation of NCLS exists,
and our simulations indicated that NCLS is actually much faster
than the straightforward implementation of OSP. The NCLS
method guarantees that the estimated abundance fractions are
nonnegative, because there is a constraint about having nonneg-
ative fraction values within the method. On the other hand, since
it does not involve a sum-to-one constraint, the sum of the esti-
mated fractions is not equal to 1.

III. EXPERIMENTAL RESULTS
A. SAM and SID As Measures of Spectral Similarity

Three separate datasets were provided by B. Ashman (Army
Aberdeen Proving Ground). In this section, the results of ap-
plying SAM and SID measures to separate the different agents
with respect to the dataset 1 are illustrated. For the other two
datasets, details are summarized in [9].

Dataset 1 contains nine agent signatures, eight of which are
composed of 880 bands, and one of them consists of 825 bands.
Fig. 1 depicts the signature waveforms of the nine agents in
dataset 1. With dataset 1, the performance of SAM and SID was
investigated with respect to their ability in capturing spectral
characteristics.

The similarity values computed by SID regarding the eight
signatures (S2-S9) are given in Table 1. Table II presents the
similarity measures computed by SAM.

In order to determine which of the similarity measures is more
effective than the other, the measure of “relative spectral dis-
criminatory power (RSDPW)” [5] was applied to the similarity
measure values computed by the SAM and SID methods. Sup-
pose m(S;,S;) is the computed similarity measure value be-
tween S; and S;, where S; and S; are the spectral signatures
of the two agents. Let d be the reference agent spectral signa-
ture. The RSDPW of m(.S;, S;) with respect to d is denoted by
RSDPW,,,(S;, S;j; d) and is mathematically expressed as

= max{m } (17)
m

The RSDPW,,, (S;, S;; d) value provides a quantitative index
of spectral discrimination capability of the similarity measure of
interest between two agent signatures, S; and S;, relative to d.
The higher the RSDPW,,,(S;, S;;d) is, the better discrimina-
tory power the m(.S;, S;) is. The RSDPW,,,(S;, S;;d) is equal

RSDPWm(Si, Sj; d)
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Fig. 1.

S2-S9 band range: 450-3966 (880 bands).

Agent signatures in dataset 1. S1 band range: 550-3846 (825 bands).

TABLE 1
SIMILARITY VALUES PRODUCED BY SID WITH RESPECT TO EIGHT SIGNATURES

S2 S3 S4 S5 S6 S7 S8 S9
S2 | 0 3.648 | 3.514 | 2.202 | 4.480 | 1.069 | 3.645 | 6.100
S3 0 3.155 | 3.949 | 3.204 | 2.484 | 1.676 | 4.724
S4 0 2943 | 3.934 | 2.185 | 3.383 | 4.523
S5 0 5.301 | 1.314 | 4.118 | 3.123
S6 0 2.396 | 2.495 | 7.019
S7 0 2.506 | 3.824
S8 0 5.350
S9 0

to or larger than 1, RSDPW,,,(S;, S;;d) > 1.1Itis equal to 1 if

and only if S; = 5j.




KWAN et al.: SPECTRAL UNMIXING, CLASSIFICATION, AND CONCENTRATION ESTIMATION 413

TABLE 1II
SIMILARITY VALUES PRODUCED BY SAM WITH
RESPECT TO EIGHT SIGNATURES

S2 S3 S4 S5 S6 S7 S8 S9
S2 | 0 | 1.358 | 1.330 | 1.266 | 1.439 [ 0.810 [ 1.387 | 1.433
S3 0 1.287 | 1376 | 1.223 | 1.215 | 1.033 | 1.288
S4 0 1.267 | 1.280 | 1.127 | 1.328 | 1.163
S5 0 1.486 | 0.724 [ 1.425 | 1.097
S6 0 1.275 | 1.097 | 1514
S7 0 1.266 | 1.124
S8 0 1.389
S9 0
TABLE III
RSDPW FOR SID WITH REFERENCE SIGNATURE S9
S3 S4 S5 S6 S7 S8
S3 1.291 1.349 1.953 1.151 1.595 1.140
S4 1.044 1.512 1.486 1.235 1.133
S5 1.448 1.552 1.183 1.183
S6 2.247 1.224 1.713
S7 1.835 1.312
S8 1.399
TABLE IV
RSDPW FOR SAM WITH REFERENCE SIGNATURE S9
S3 S4 S5 S6 S7 S8
S3 1.112 1.231 1.306 1.056 1.274 1.031
S4 1.107 1.174 1.175 1.146 1.078
S5 1.060 1.301 1.035 1.194
S6 1.380 1.025 1.266
S7 1.346 1.089
S8 1.235

Tables III and IV illustrate the RSDPW,,,(S;, S;; d) values,
with the assumption that the agent signature, S9, is determined
as the reference signature, d. From the results in Tables III
and IV, it was observed that in 19 cases out of 21, the
RSDPW,,, (S;, S;; d) values are higher with SID when compared
to SAM. Although it is not illustrated with numerical results,
the same trend was observed when another agent (other than S9)
was selected as the reference signature. Experiment analyses
with the RSDPW measure have demonstrated quantitatively
that SID captures spectral characteristics more effectively than
SAM. This is because SID is a statistical measure as opposed
to SAM, which is considered to be a deterministic measure.
Thus, SID measure was used in identifying distinct, slightly
distinct, and similar agents that is required to evaluate the
performance of the OSP and NCLS methods.

B. OSP and NCLS for Spectral Unmixing, Agent Classification,
and Abundance (Concentration) Estimation

1) NIST Datasets Used in the Experiments: Two datasets
from the NIST were obtained in this work. In the dataset called
“NIST Absorbance May 24, 2004,” the total number of agents is
268. The agent signature in this dataset consists of &k frequency
band points, k = 88. In “NIST Transmittance January 19, 2004”
dataset, the total number of agents is 225. In this dataset, it was
observed that the frequency scaling of some of the agent signa-
tures vary in size and frequency resolution. In order to overcome
and include the same frequency band regions in the agent sig-
natures, the start and end points of the frequency bands were
selected as 1000 and 3000, respectively. The frequency band
resolution was set to 5. Thus, a total number of 401 frequency

TABLE V
AGENTS USED IN EXPERIMENT 1
Agent Agent Agent Agent
no name no name
1 2-chloroethylmethylsulfide 11 Acetylacetone
2 Diethyl ethylphosphonate 12 3-amino-1-propanol
3 Ethanol 13 Aniline
4 Freon 114 14 Benzoic acid
5 n-butyl bromide 15 Benzyl acetate
Bis-2-ethyl-1-hexyl 16 Bis-hydrogen
6 phosphonate phosphite
7 Benzyl benzoate 17 2-Bromoethanol
18 1-Butoxyethoxy-2-
8 Dibenzyl Ether propanol
9 Piperidine 19 1-Butoxy-2-propanol
10 3-Hydroxy-2-butanone 20 n-Butyl benzoate
. — Ethanol —— 3Hydroxy-2-butancne
am 8000
7000 5000
o 2 4000
i o i
LI faxo
%00 200
2000
1000 1000
% B0 00 T80 200 B0 30 0 A0 %m0 00 B0 20 200 WM B0 400
Frequency band number Frequency band number
(a) IR spectrum of Ethanol (b) IR spectrum of 3-Hydroxy-2-
butanone
- [=1-Butaxysthory-2propanal | n
6000
- )
s 4000
3 3
& 4000] = 300
< H
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2000
2000
1000) 1000
% Ho 0 B0 20 B0 W0 B0 40 R TR T

(c) IR spectrum of /-Butoxyethoxy-2-
propanol

Frequency band number

(d) The mixed signature with and
without noise

Fig. 2. IR spectrums of the mixture components and the mixed signature with
and without noise.

band points were obtained from the corresponding agent sig-
natures in the “NIST Transmittance January 19, 2004” dataset,
k = 401.

2) Performance of OSP:

Experiment 1: Concentration estimation of an artificially de-
graded mixed signature with 20 agents in the database selected
from the NIST Absorbance May 24, 2004 dataset (agent signa-
tures have 88 frequency band points)

In Experiment 1, a mixed-agent signature ¢ was generated
among a total of 20 agents in the signature database, A. Thus,
A consists of 20 agents, A = {sy, ..., s90}. The 20 agents were
selected from the NIST Absorbance May 24, 2004 dataset. The
agents in A are depicted in Table V.

The number of frequency band points in each of the agent
signature is 88. Three agents s3, s19, and s1g were included in
the mixture, ¢, with different abundance fractions. The agent s
stands for Ethanol; s1o stands for 3-Hydroxy-2-butanone; and
s1g stands for /-Butoxyethoxy-2-propanol. The abundance frac-
tions for s3, s1g, and s1g were selected as 0.50, 0.20, and 0.30,
respectively. In addition, white Gaussian noise was added to ¢
such that the signal-to-noise ratio (SNR) became 10, 50, and
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Fig. 3. Estimated abundance fraction coefficients of the mixture.

100, respectively. The IR spectra of the components of the mix-
ture and the mixed signature without noise and with a SNR value
of 10 are depicted in Fig. 2. The SNR is defined as the ratio of
50% reflectance to noise standard deviation. Since SNR is de-
fined in terms of a ratio, no unit is included after the statement
of SNR values in the content of this paper.

The OSP method was applied to the generated target mixed
signature, ¢. Three different SNR values (10, 50, and 100) were
investigated. Fig. 3 depicts the estimated abundance fractions
with noise-free and three SNR values. It was observed that
the OSP approach can estimate the abundance fractions of the
agents in the generated target mixed signature with different
SNR values. On the other hand, the accuracy of the estimated
fractions dropped in accordance with the amount of noise
embedded in the mixture signature. It was seen that there are
inaccurate abundance fraction estimates for agents, which are
not included in ¢, as the amount of noise is increased.

Experiment 2: Concentration estimation of an artificially de-
graded mixed signature with distinct database (93 agents in
the database) selected from the NIST Transmittance January
19, 2004 dataset, (agent signatures have 401 frequency band
points) using OSP method

In Experiment 2, the NIST Transmittance January 19, 2004
dataset was used. A preprocessing, which included interpola-
tion, start and end frequency band points determination, was
applied to this dataset in order to fix the number of frequency
band points and frequency resolution. In order to demonstrate
to the readers how the agent signatures look like, the signature
waveform of Freon is depicted in Fig. 4.

In this experiment, the performance of the OSP method was
evaluated with a database that consisted of 93 distinct agents.
This database is called distinct database. The determination of
the distinctness between the agents was found by using the SID
similarity measure. In the distinct database, the minimum value
for the SID measure between any two agents was found to be
0.0514. Please note that the lower the SID measures, the more
similar the two agents are. The mixed-agent signature was com-
posed of five agents in the distinct database. These agents were
{s2 (Freon 113), s6 (Benzoic acid), s46 (2-Chlorophenol), s69
(Formic acid), s85 (Thymine)}. The abundance fractions of
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Fig. 4. Signature waveform for Freon.

these five agents that formed the mixture were selected as 1.0,
1.5, 2.0, 2.5, and 0.5, respectively. An SNR value of 20 was ap-
plied to the generated mixture. Fig. 5(a) depicts the actual and
the estimated abundance fractions in the mixed-agent signature
by the OSP method. Fig. 5(b) introduces the same information
in another presentation form. In this form, the points will be lo-
cated on a diagonal line if the abundance fractions are correctly
estimated. The performance of OSP was not satisfactory be-
cause there were inaccurate fraction estimations as well as some
large negative estimates for those agents with zero fractions.

Two additional experiments were conducted with the OSP
method using two other agent databases. One of the two
databases consisted of 156 agents. In this database, there were
a number of agents that were slightly distinct. This database is
called slightly distinct database. The minimum value for the
SID measure between any two agents in the slightly distinct
database was found to be 0.0201. The other database consisted
of 197 agents, and in this database, there were a number of
agents, which had similar signature waveforms. This database
is named similar database. The minimum value for the SID
measure between any two agents in the similar database was
found to be 0.0051. From Experiment 2 and the two addi-
tional experiments, it was seen that as the number of agents
is increased and there are similar agents in the database, the
performance of the OSP method drops significantly. Please
refer to [9] for the results of these additional experiments.

The simulation results in the experiments with the OSP
method indicated that the OSP method can accurately estimate
the abundance fractions of the agents that form the mixed-agent
signature, if the agent signatures in the database are distinct.
The signatures in the database should not be same or very close
to each other; otherwise, matrix singularity causes inaccurate
concentration estimates. The amount of noise embedded in the
mixed signature also affects the performance of the OSP, which
has been demonstrated in the experiments.

3) Performance of NCLS:

Experiment 3: Concentration estimation of an artificially de-
graded mixed signature with distinct database (93 agents in
the database) selected from the NIST Transmittance January
19, 2004 dataset, (agent signatures have 401 frequency band
points) using NCLS method
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In Experiment 3, the performance of a relatively new tech-
nique, NCLS [5], wasinvestigated. The performance of the NCLS
method was evaluated using 93 agents in the distinct database.
The mixed-agent signature was composed of five agents in the
distinctdatabase, which were {s2 (Freon 113),s6 (Benzoicacid),
s46 (2-Chlorophenol), s69 (Formic acid), s85 (Thymine) }. The
corresponding abundance fractions of the agents in the mixed
signature were selected as 1.0, 1.5,2.0, 2.5, and 0.5, respectively.
The applied SNR value to the mixed-agent signature was 20.
Fig. 6 depicts the actual and estimated abundance fractions in
the mixed-agent signature using the two presentation forms.
Compared to Fig. 5, which used OSP for estimation, the NCLS
results in Fig. 6 were much more accurate and also there were no
negative concentration estimates.

Experiment 4: Concentration estimation of an artificially
degraded mixed signature with slightly distinct database (156
agents in the database) selected from the NIST Transmittance
January 19, 2004 dataset, (agent signatures have 401 frequency
band points) using NCLS method

In Experiment 4, the performance of the NCLS method was
evaluated with the slightly distinct database that had 156 agents.
The same agent mixture, which has been used in Experiments 3
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Fig. 6. Actual and estimated abundance fractions by NCLS with the distinct
database.

and 4 with SNR value of 20, was formed, {s2 (Freon 113), s6
(Benzoic acid), s46 (2-Chlorophenol), s69 (Formic acid), s85
(Thymine)} with abundance fractions 1.0, 1.5, 2.0, 2.5, and 0.5.
Fig. 7 depicts the actual and estimated abundance fractions in
the mixture. The results are still very accurate.

Experiment 5: Concentration estimation of an artificially de-
graded mixed signature with similar database (197 agents in
the database) selected from the NIST Transmittance January
19, 2004 dataset, (agent signatures have 401 frequency band
points) using NCLS method

In Experiment 5, the performance of the NCLS method was
evaluated with the similar database that had 197 agents. The
same mixture, which has been used in Experiment 2—4, was
formed with SNR value of 20. Fig. 8 depicts the actual and es-
timated abundance fractions in the mixture. The results are rea-
sonably good.

4) Comparison of the OSP and NCLS Methods:

Accuracy of the Concentration Estimates: In the light of
these experimental results, it was observed that the performance
of the OSP method degrades as the number of agents in the data-
base is increased by the addition of new agents that have sim-
ilar signature waveforms. On the other hand, the NCLS method
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Fig. 7. Actual and estimated abundance fractions by NCLS with the slightly

distinct database.

(Figs. 6-8) outperforms the performance of the OSP method. It
is worth mentioning that no negative abundance fractions were
observed with the NCLS method. Fig. 9 depicts the sum of abso-
lute fraction errors with respect to the three agent databases (dis-
tinct, slightly distinct, and similar). The sum of absolute fraction
errors is mathematically expressed in (17). It is seen from Fig. 9
that the error values in NCLS is much smaller than OSP for all
the three databases

N
Sum of absolute fraction error =Z |yfSt — gt

i=1
N : Number of agents in the mixture

y2°" : Fraction estimate of the ith agent in the mixture

Yt : Actual fraction of the ith agent in the mixture. (18)

Performance Under Different Noise Levels Using the NIST
Transmittance January 19, 2004 Dataset: The performance of
the NCLS method under different noise levels was evaluated
using the distinct database of 93 agents. In this experiment,
20 mixtures were generated randomly, in which each mixture
was composed of five agents. The abundance fractions of the
agents in the mixtures were randomly generated between 0 and
1. A number of SNR values have been experimented (SNR =
20, 30,40, 50, 100, and no noise). Fig. 10 depicts the average
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Fig.8. Actual and estimated abundance fractions by the NCLS with the similar
database.
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Fig. 9. Sum of absolute fraction errors versus used databases for the OSP and
NCLS methods.

of the sum of absolute fraction errors for the randomly gener-
ated mixtures under different SNR. From Fig. 10, it is seen that
NCLS shows significantly smaller error, as compared to OSP.
5) Performance of the NCLS Method With Ten Agents in a
Single Mixture Under Different Noise Levels (NIST Transmit-
tance January 19, 2004): In this analysis, the number of agents
that form the mixed-agent signature was increased from 5 to
10. The performance of the NCLS method was evaluated using
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Fig. 11. Actual and estimated abundance fractions under different noise levels
with a mixture of ten agents. Signature database has 197 agents.

the similar agent database that had 197 agents. The abundance
fractions of the agents in the mixtures were randomly gener-
ated between 0 and 1. A number of SNR values have been ex-
perimented (SNR = 20, 30, 40, 50, 100, and no noise). Fig. 11
depicts the actual and estimated abundance fraction estimates
with respect to six SNR levels. Regarding the plots in Fig. 11, it
can be seen that as the noise amount drops, the diagonal shape
becomes more distinct indicating that the estimation accuracy
improves.

It was clearly demonstrated from the experiments and the
performance analyses that the NCLS method performs effi-

ciently and yields accurate abundance fraction estimates when
the number of agents that form the agent mixture signature
is increased in the presence of noise. In further experiments,
the number of agents in the formed mixture was increased up
to 20, and still considerably acceptable abundance fraction
estimates were obtained. For results and details regarding these
experiments, please refer to [9].

The experiments and the corresponding analyses indicated
that the NCLS method is a promising method in chemical and
biological agent detection and concentration estimation. The
NCLS method does not generate negative fractions. Yet, in the
case of adding similar agents to the database and increasing the
number of agents in the agent mixture signature, the accuracy
of the NCLS method in agent detection and abundance frac-
tion estimation does not degrade significantly and still provides
reasonable results. Thus, for detecting chemical and biological
agents, which are in the form of mixtures, and estimating their
abundance fractions, NCLS was found to provide significant op-
portunities in letting to respond with fast reaction times and in
decreasing the potential damage to minimal levels. The future
works of this research include using real mixed data and taking
into account different noise levels. We are in contact with the
U.S. Army and NIST to obtain real mixture datasets, which are
collected from controlled experiments and from the field. Once
having these real datasets, the second part of our research will
be to apply the developed algorithms on these datasets.

IV. CONCLUSION

In a chemical and biological agent attack, it is possible that
the chemical and biological agents can be composed in the form
of mixture clouds in order to make the existing agent detection
systems, which are specific to single agents, useless. The de-
tection of agents in the form of mixtures is a more challenging
problem than detecting the agents alone. In this research, the
use of spectral unmixing techniques (OSP and NCLS), which
are extensively used in hyperspectral imaging, were investigated
for chemical biological agent detection and concentration esti-
mation. Experimental datasets have been provided by the U.S.
Army and NIST. These datasets included chemical and biolog-
ical agent signatures, which were collected by the infrared spec-
trum technique. The experimental results and the corresponding
analyses indicated that NCLS is a very promising method in de-
tecting chemical and biological agents, which are composed in
the form of mixture clouds. In addition to correctly identifying
the agents that form the mixture, the NCLS method also pro-
vided accurate abundance fraction estimates even if the agent
signatures in the related database had similar waveforms. Since
NCLS is an optimization technique based on a nonnegative con-
straint, none of the estimated abundance fraction estimates are
negative, which is thus more consistent with a real-life scenario.
The experimental and analysis works in this paper have been
done by using a graphical user interface, which was specifically
developed for this research.
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