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A computational scheme for calculating the capacity of continuous-input
discrete-output memoryless channels is presented. By adopting relative entropy as
a performance measure between two channel transition probabilities the method
suggests an algorithm to discretize continuous channel inputs into a set of finite
desired channel inputs so that the discrete version of the well-known Atimoto—
Blahut algorithm is readily applied. Compared to recent algorithms developed by
Chang and Davisson, the algorithm has a simple structure for numerical implemen-
tations. To support this justification a numerical example is studied and the relative
performance is compared based on computing time. ' (990 Academic Press, Inc.

I. INTRODUCTION

The problem of computation of channel capacity for discrete memoryless
channels was solved by Arimoto (1972) and Blahut (1972). Although the
algorithm developed by them indeed offers a very efficient computational
method, a continuous version of this algorithm is not practical in the sense
that at each iteration cycle it needs to repeatedly compute integrals over
the entire channel input space which is generally uncountable. In order
to circumvent the difficulty of evaluation of integrals, Chang and
Davisson (1988) devised two algorithms (to be called Algorithm I and
Algorithm IT) for discretization of channel inputs so that the elegant
Arimoto-Blahut algorithm is readily applied. The idea is to use a succes-

1

0890-5401/90 $3.00

Copyright * 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.



2 CHANG, FAN, AND DAVISSON

sion of finite approximations to achieve the channel capacity within any
desired accuracy. The technique involved in their algorithms is to find a set
of local maxima for a nonlinear function which usually requires a large
amount of computing time.

In this paper, we further propose a simple algorithm which is also a dis-
cretization algorithm but has a much simpler structure than Chang and
Davisson’s algorithms. In particular, the suggested algorithm does not
necessarily search for local maxima; instead, it partitions the channel input
space into a finite class of subspaces according to the criterion of relative
entropy whose concept was widely used in source coding. Since the channel
capacity is calculated on the basis of mutual information, the relative
entropy is adopted for measuring how close the mutual information
conveyed by two channel transition probabilities are. If channel transition
probabilities yield nearly the same mutual information, we group them
into a class and select one of the members of this class to be a repre-
sentative for channel capacity computation. With these candidates chosen
from each of such classes, a continuous channel input space can be
discretized into a finite set of channel inputs each of which represents
one class whose members have very close mutual information and so, a
new discrete memoryless channel is introduced to be a test channel to
approximate the original channel. Obviously, the more refined the groups,
the more accurate the approximation.

The proposed algorithm (to be called Algorithm III) involves a two-
stage implementation which requires generating an adequate discrete test
channel by means of a sequence of discretization procedures; it then utilizes
the Arimoto-Blahut algorithm to find an approximation to the original
channel capacity. The dicretization process is devised based on a slight
modification of a lemma proven for noiseless universal source codes in
Davisson et al. (1981).

This approach is very similar to a quantization technique which was
developed by Finamore and Pearlman (1980) for discretization of a con-
tinuous memoryless source to calculate the rate-distortion function with
the Blahut rate-distortion function algorithm. The main difference is that
the distortion measure is not relative entropy which results in different
approaches.

The paper is organized as follows. In SectionIl the lemma (ie.,
Lemma 1) derived in Davisson et al. (1981) is modified and reproven for a
memoryless channel. In the following section, a simple procedure to
discretize continuous channel inputs is presented. By coupling the
Arimoto-Blahut algorithm, the capacity of a continuous-input discrete-
output memoryless channel can be calculated and approximated to any
desired accuracy. To compare the relative performance of Chang and
Davisson’s algorithms and Algorithm 11T a numerical example is studied. It
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is shown that in general, Algorithm III does not perform as well as Chang
and Davisson’s algorithms (Algorithms [ and II); however, the payoff is its
easy computer implementation. More importantly, numerical results also
show that when the number of channel outputs is large, Algorithms I, II,
and III achieve nearly the same performance. In this case, computing time
becomes a significant issue for numerical computations; thus it will be a
chief advantage of Algorithm III and can make Algorithm IIT more attrac-
tive than Algorithms I and I1.

II. PRELIMINARY

In this section we interpret Lemma 1 in Davisson er <l (1981) and prove
it for a memoryless channel.

Suppose that a continuous-input discrete-output memoryless channel
is specified by input space X, output space Y, ={y,, ..y}, and
channel transition probabilities {P(v,|x}.cx v,  Let p(¥), g(») be two
probability vectors defined on the channel output space, Y,,. The relative
entropy between p(y) and ¢(y) is defined by

H(p(y), q(y)) = Z p(s) logp(}k)
k=1 q(vy)

Then Lemma 1 in Davisson et al. (1981) can be modified and proven for a
memoryless channel described above as follows.

THEOREM 1. Given a memoryless channel with input space X, output
space Y,;, channel transition probabilities {P(yi1X)}.cy ey, and an
arbitrarily small number & >0, there exist a finite positive integer J, a finite
set of probability vectors on Y, F={ql(y)}’ ;~1» and a corresponding finite
partition of the input space X, {S;}7_, suck that

N R i:—‘l
log J< —M[log d]. where 0:%/[——2?, (1)

S,={xe X|H(P(y|x),ql(v))<e},

and

Note that the probability vectors q_‘:_/, do not have to be the channel transition
probabilities.
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Proof. Let Q(Y,,) be the set of all probability vectors defined on Y,,
and | .. be the uniform norm defined by

| pli, =max | p(y)l.
re Yy

Let m be a positive number which will be specified later on, and

l

Let Q; be the set of all probability vectors g(y) defined on Y,, such that
for any y in Y,,, g(y)=ié for some integer i>0. Then according to the
definition of Q;, the set Q, is finite. If we let J be the cardinality of Q;, it
is easy to show that log J < —M[log é] and for each p(y) in Q(Y,,) there
is at least one g(y) in Q4 so that | p—qll..<(M—1)4.

For any channel transition probability P(y|x) given with x € X, we want
to construct a probability vector () defined on Y,, such that

H(P(y|x), g{y)) <e.

Assuming that P(y,|x)=P(y,|x)= - = P(yy|x), it is clear that
P(y |x)=1/M. Now for each 2<k<M we introduce a new set of
probability vectors as follows:

gy )=L1+6""P(y,|x)]8,

where | a | is the largest integer <a.
As a consequence, we obtain the inequalities

S
N

Mk

Py x) < Z ) SM=1)+ Y P(yelx).

k=2 = k=2

If we define

]

gl(y)=1- Z

then
0<P(y;|x)—ql(y)<M-1)é. (3)

Furthermore, by the definition of ¢, ¢(y)e Qs and

P(y,.|x)
g1 (ye)

P{y,1x)
gty 1x)

M
H(P(y|x), ql(»)y= 3 P(yilx)log
k=1

P(y,]x)log
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The above inequality holds because for any 2<k< M, P(y 1 x)<qt (v
and thus log(P(y,|x)/ql{y)) <O.
However, from Eq. (3) we have

q.(») > _(M—l)é>
P(y,1x) P(y]x)

1-M(M-1o6.

Plugging the & defined by (2) it yields that

i), M-HM_ L m
PO Ix)°  MAm+1)7 m+l m+1

This implies that

m+1 m+1
H(P(y|x). 4'(3) < P(y|x) log ——<log :

m

Therefore, if we choose m such that (m+ 1)/m=e¢° and substitute the
chosen m=1/(e® — 1) into (2), we obtain the desired 4 which is given by
(e* —1)/M?*". This shows that for every input xe X and its associated
channel transition probability P(y|x) we can find a probability vector g
corresponding to it such that H(P(y|x), ql(y)) <&, where g7 e Q;. Since
Q; is finite with cardinality J and every member ¢{y) of Q; is of the
form ié for some integer /, we can arrange Q; in a lexicographic order and
let {gl}/_, be such an ordering of Q,;. As a result, the matrix
{q_’;/( vi)}/ N -1 induced by Q; is a discretized channel transition matrix
of the original channel transition probabilities {P(y,|x)} which satisfies
the desired properties and thus the proof follows.

As shown in Theorem |1, if we use the relative entropy as a criterion for
discretization, a continuous-input discrete-output memoryless channel can
be actually discretized into a discrete memoryless channel where the size of
inputs, J, is the cardinality of the set O, bounded by e *!°%° The
parameter o is determined by the assigned error tolerance ¢ and the size of
the channel outputs, M, as well. Moreover, for any member x in class S,
the relative entropy between P(y|x) and q;(y) 1s always less than . This
implies that as far as mutual information is concerned, the element x; is
sufficient enough to represent all members in class S,. It also notes that in
the proof of the theorem, the compactness of the channel input space X is
not required. However, in practice, we assume that X is a compact (ie.,
bounded and closed) set in the real line.

In the following section, a constructive procedure to generate the desired
sets F={x;}/_, and {S;};/_, will be presented. As we will see from an
example considered in Section 1V, the number of desired channel inputs, J.
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which we actually need is generally much less than the upper bound given
by (1). The scheme is simple and is based on the assumption that X is com-
pact. Nevertheless, this assumption is not essential because we can always
make it compact by including its limit points if X is not closed.

III. A SIMPLE PROCEDURE FOR THEOREM |

The main purpose of this section is to describe a simple implementable
computer algorithm for Theorem 1.

Let X be a closed interval [a, 1. It has been shown in Nelson (1966)
that the set {H(-, ¢(»))|q(y)e Q(Y,,)} is equicontinuous on Q(Y,,), i€,
given any £>0 and a probability vector on Y,,, p(y), there exists an n
such that if for any p(y)eQ(Y ). || p—Pl..<#u, then it implies that
|H(p(y), q(»))— H(p(»), g(»))] <e& for all g(y)e Q(Y ). Furthermore, it
was also shown in Davisson e al. (1980) that the relative entropy H(p(y),
g(y)) is convex in p(y). Based on these properties we propose a simple
algorithm analogous to a procedure in Davisson et al. (1981) as follows.
Since the relative entropy H(P(y|x), P(y|z)) between two transition
probabilities P(y|x). P(y|z) is specified by the inputs x and z, we will use
the notation H(x, z) to denote H(P(y|x), P(y|z)) for simplicity.

Algorithm CD (Channel Discretization)

1. Initialization:

Set &, =an assigned error tolerance and r =0,
. Set xo=a, £, =627, and J=0.

3. SetJ=J+1.
Find z,> x,_, such that H(x,_,,z,)=¢,.

4. Ifz,=b, go to step (7).
Otherwise, find x,> z, such that H(x,, z,)=¢,.

S. If x,,,<b, go to step 3.
Otherwise, continue.

6. If J= M, let x,=b, output the sets {x;}/_, and {z;}/_,, and stop.
Otherwise, let r =+ 1 and go to step (2).

7. IfJ>M,let z,=b, output the sets {x,}7_, and {z;}/_,, and stop.
Otherwise, let r=r+ 1 and go to step (2).

Algorithm I11

1. Initialization:
Let £¢=an assigned error tolerance for the Arimoto—Blahut algo-
rithm.
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2. Apply Algorithm CD to produce the desired sets {x;} and {z,}.

3. Apply the Arimoto-Blahut algorithm to the discretized channel
determined by the input set F= {z;}/_, generated by Algorithm
CD, the output set Y,,, and the channel transition matrix
{P(yklzj)}:jel'l_vke Yu

4. Stop and output the channel capacity found in step (3) which is
supposed to be an approximate of the original channel capacity.

It is worth noting that in step (6) of Algorithm CD, the condition that
J = M is examined because we must produce a sufficient number of inputs
z; before applying the Arimoto-Blahut algorithm. This fact is justified by
Gallager (1968, Corollary 3, p. 96). If J< M, it means that the prescribed
error tolerance is not small enough, ie., the relative entropy between two
channel transition probabilities is still too large. Therefore, the whole
procedure must repeat again with a smaller error threshold until condition
(6) is met. Moreover, the set {x;} partitions [a, b] into a finite number
of classes {S,}, where §;=[x; ,, x,].

IV. A NuMERICAL EXAMPLE

As discussed previously, the problem of calculating the capacity of con-
tinuous-input discrete-output channeis can be solved by three numerical
methods which are Chang and Davisson’s algorithms (Algorithms I and 1)
developed in Chang and Davisson (1988) and Algorithm III proposed
in this paper. To compare their relative performance, we consider the
following example which was studied by Chang and Davisson (1988, 1990).

Let a generalized binary-like memoryless channel be specified by the
input space X=[0,1], the output space Y, ={0,1,.. M}, and the
channel transition probabilities {P(k|x)} given by

P(k|x)= <M> xK(1— x)M—k,

k

Then the channel capacity is defined by

CM = mpax [kgo J;: p(f) P(k | _X) lOg Pq(f(L’;) dX:|g

where g,(k) = [ p(x) P(k|x) dx.
Notice that in this example, the numver of channel outputs is M + 1.
Moreover, the property that the channel transition probabilities are sym-
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metric with respect to 4 further eases the computation of Algorithm III,
where steps (4)-(7) in Algorithm CD can be simplified as follows.

1. Ifz,>4 set L=2J—1 and go to step (7).
Otherwise, find x, >z, such that H(x,, z,}) = ¢, and continue.

2. If x,< 3 go to step (3).
Otherwise, let L = 2J and continue.

3.f LM, let x,=3 z,,, ;=z for 1<j<J, x,_;=x, for
0<j<J—1, and output {x;}7_, and {z;}/_,. Then stop.
Otherwise, let r=r+ 1 and go to step (2).

4. f L2M, let z;=%:z,,, =z for 1<j<J—1, x,_;=x; for
0</j<J—1, and output {x;}/_, and {z;};_,. Then stop.
Otherwise, let r=r+ | and go to step (2).

The numerical results in TableI are obtained by Algorithm I, Algo-
rithm I, and the above modified version of Algorithm ITl. Although
Algorithms I and II were given in Chang and Davisson (1988), in order to
compare Algorithm III, here we discuss briefly their ideas, in particular, a
slightly diffeent approach (approach B) which was not in their paper will
be described below.

In general, Algorithms1 and II are designed based on a sequence of
iterations by trial and error proceses. In other words, both algorithms are
executed by first guessing a finite set of channel inputs to form a discrete
test channel, then computing its capacity, say C'. In order to see whether
or not C' is desirable, the algorithms further find the maximum of mutual
information yielded by every single channel input averaged over the chan-
nel outputs and compare it to C'. If the difference meets a prescribed error
tolerance, the guessed test channel is good, which means that the C7 is the
desired channel capacity and the algorithms terminate. Otherwise, a new
test channel must be regenerated by either dumping those channel inputs
which are not important in channel capacity computation or replacing
them with some other promising channel inputs. Algorithm II is basically
devised to take care of the former situation; in the meantime, add certain
prospective channel inputs. On the other hand, Algorithm I is developed to
handle the latter case. The process of how to replace points for Algo-
rithms I is made according to either a single-point replacement or a multi-
ple-point replacement in two different approaches, which are (A} those
channel inputs of the test channel with small probabilities will be replaced
and (B) those channel inputs whose mutual information averaged over the
channel outputs are small will be replaced. (Notice that all the channel out-
puts remain unchanged through executions of Algorithms I, II, and IIL.) To
distinguish Algorithm I implemented in four different methods we denote
Algorithm I using approach A with a single-point replacement by Algo-
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rithm IAS, Algorithm I using approach A with a multiple-point replace-
ment by Algorithm IAM, Algorithm I with approach B and a single
replacement by Algorithm IBS, and Algorithm I with approach B and a
multiple-point replacement by Algorithm IBM. As noticed in Chang and
Davisson (1988, 1990), Algorithm I was implemented only based on
approached A (i.e., Algorithm IAS and Algorithm IAM), where those chan-
nel inputs with zero probability or small probabilities are replaced.
However, the criterion of using mutual information of channel inputs for
replacement was not considered in Chang and Davisson (1988, 1990) and
so, the results produced by approach B are new. A more detailed study on
this example can be found in Fan (1989).

Figures 1 and 2 are plotted on the basis of CPU time of the three algo-
rithms (Algorithm I, Algorithm II, and Algorithm III) run on a VAX 8600
computer with four different types of Algorithm I. Table I is also provided
with details. All the results in the table and figures show that Algorithm III
yields a moderate performance when the number of channel outputs, Y,,,
is small; but when Y,, gets large, Algorithm III becomes more efficient.
What is most important in this case is it produces a satisfactory performance
and essentially achieves the same performances as do Algorithm | and
Algorithm I1. This substantiates the assertion made earlier and justifies that
Algorithm III is indeed a very efficient algorithm compared to Algorithm I
and Algorithm II.

110

100 -

90 —

CPU {ms)
{Thousands}

|
L\

0 #—8-—B——w— T T T T T T T T T T ™1
23456 7 8 91011121314151617181920212223242526272829303132
M+1 = NUMBER OF INPUTS
» 1AS - 1BS B s I

FIGURE 1
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FIGURE 2

V. CONCLUSION

Three numerical methods of calculating the capacity of continuous-input
discrete-output memoryless channels are considered. Of particular interest
is a simple computational method (Algorithm IIT). Numerical results show
that Algorithm IIT has an advantage of simple implementations on com-
puters; but it is compensated for approximations with less accuracy.
Nevertheless, when the channel output space is very large, Algorithm III
does offer comparable performance to Algorithms I and II. Thus, in this
case, Algorithm III is more attractive than Algorithms1 and II because
Algorithms I and II need more iterations and also tremendous computing
time to find local maxima. Moreover, as reported in Chang er al. (1988),
Algorithm IIT can also be used as an alternative method to find minimax
codes for source matching problems (Davisson er al., 1980).
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