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A computational scheme for calculating the capacity of continuous-input 
discrete-output memoryless channels is presented. By adopting relative entropy as 
a performance measure between two channel transition probabilities the method 
suggests an algorithm to discretize continuous channel inputs into a set of finite 
desired channel inputs so that the discrete version of the well-known Arimoto- 
Blahut algorithm is readily applied. Compared to recent algorithms developed by 
Chang and Davisson, the algorithm has a simple structure for numerical implemen- 
tations. To support this justification a numerical example is studied and the relative 
performance is compared based on computing time. ? I990 Academx Press. Inc 

I. INTRODUCTION 

The problem of computation of channel capacity for discrete memoryless 
channels was solved by Arimoto (1972) and Blahut (1972). Although the 
algorithm developed by them indeed offers a very efficient computational 
method, a continuous version of this algorithm is not practical in the sense 
that at each iteration cycle it needs to repeatedly compute integrals over 
the entire channel input space which is generally uncountable. In order 
to circumvent the difficulty of evaluation of integrals, Chang and 
Davisson (1988) devised two algorithms (to be called Algorithm I and 
Algorithm II) for discretization of channel inputs so that the elegant 
Arimoto-Blahut algorithm is readily applied. The idea is to use a succes- 

0890-5401/90 $3.00 
Copyright (’ 1990 by Academx Press. Inc 

All rights of reproducuon in any form reserved 



2 CHANG, FAN, AND DAVISON 

sion of finite approximations to achieve the channel capacity within any 
desired accuracy. The technique involved in their algorithms is to find a set 
of local maxima for a nonlinear function which usually requires a large 
amount of computing time, 

In this paper, we further propose a simple algorithm which is also a dis- 
cretization algorithm but has a much simpler structure than Chang and 
Davisson’s algorithms. In particular, the suggested algorithm does not 
necessarily search for local maxima; instead, it partitions the channel input 
space into a finite class of subspaces according to the criterion of relative 
entropy whose concept was widely used in source coding. Since the channel 
capacity is calculated on the basis of mutual information, the relative 
entropy is adopted for measuring how close the mutual information 
conveyed by two channel transition probabilities are. If channel transition 
probabilities yield nearly the same mutual information, we group them 
into a class and select one of the members of this class to be a repre- 
sentative for channel capacity computation. With these candidates chosen 
from each of such classes, a continuous channel input space can be 
discretized into a finite set of channel inputs each of which represents 
one class whose members have very close mutual information and so, a 
new discrete memoryless channel is introduced to be a test channel to 
approximate the original channel. Obviously, the more relined the groups, 
the more accurate the approximation. 

The proposed algorithm (to be called Algorithm III) involves a two- 
stage implementation which requires generating an adequate discrete test 
channel by means of a sequence of discretization procedures; it then utilizes 
the Arimoto-Blahut algorithm to find an approximation to the original 
channel capacity. The dicretization process is devised based on a slight 
modification of a lemma proven for noiseless universal source codes in 
Davisson et al. (1981). 

This approach is very similar to a quantization technique which was 
developed by Finamore and Pearlman (1980) for discretization of a con- 
tinuous memoryless source to calculate the rate-distortion function with 
the Blahut rate-distortion function algorithm. The main difference is that 
the distortion measure is not relative entropy which results in different 
approaches. 

The paper is organized as follows. In Section II the lemma (i.e., 
Lemma 1) derived in Davisson et al. (1981) is modified and reproven for a 
memoryless channel. In the following section, a simple procedure to 
discretize continuous channel inputs is presented. By coupling the 
Arimoto-Blahut algorithm, the capacity of a continuous-input discrete- 
output memoryless channel can be calculated and approximated to any 
desired accuracy. To compare the relative performance of Chang and 
Davisson’s algorithms and Algorithm 111 a numerical example is studied. It 
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is shown that in general, Algorithm III does not perform as well as Chang 
and Davisson’s algorithms (Algorithms I and II); however, the payoff is its 
easy computer implementation. More importantly, numerical results also 
show that when the number of channel outputs is large, Algorithms I, II, 
and III achieve nearly the same performance. In this case, computing time 
becomes a significant issue for numerical computations; thus it will be a 
chief advantage of Algorithm III and can make Algorithm III more attrac- 
tive than Algorithms I and II. 

II. PRELIMINARY 

In this section we interpret Lemma 1 in Davisson et af. ( 1981) and prove 
it for a memoryless channel. 

Suppose that a continuous-input discrete-output memoryless channel 
is specified by input space X, output space Y, = {v,, . . . . ~~1, and 
channel transition probabilities {P( yr. 1 x} rE .y,Jk E y,w. Let p(y), q(y) be two 
probability vectors defined on the channel output space, Y,. The relative 
entropy between p(.r) and q(y) is defined by 

ff(p(!lh q(y))= f P(?‘k)log- P(Yk) 

k= 1 d?‘k)’ 

Then Lemma 1 in Davisson et al. ( 1981) can be modified and proven for a 
memoryless channel described above as follows. 

THEOREM 1. Given a memoryless channel with input space X, output 
space Y, , channel transition probabilities ( P( yk / x) ) .‘; E ,y. ?* t y,b,, and an 
arbitrarily small number E > 0, there exist a finite positive integer J, a finite 
set of probability vectors on Y,, , F = { qJ,( y) } ,!= , , and a corresponding finite 
partition of the input space X, (S, ) := , such that 

log Jd -M[log S], 
@- 1 

where 6 = - j42e"3 

s,= (-~EXIH(P(yl.~Y),ql,(o)<&}, 
and 

x= i, s,. 
.j= 1 

(1) 

Note that the probabilit~~ vectors q.,, t do not have to be the channel transition 
probabilities. 
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Proof. Let Q( Y,) be the set of all probability vectors defined on Y, 
and I/ (1 o; be the uniform norm defined by 

II Pll, =-y& I P(Y)l. 

Let m be a positive number which will be specified later on, and 

6= l 
W(m + 1)’ (2) 

Let Qs be the set of all probability vectors q(y) defined on Y, such that 
for any y in Y,, q(y) = it3 for some integer i>O. Then according to the 
definition of Q6, the set Q, is finite. If we let J be the cardinality of Qd, it 
is easy to show that log J< -M[log S] and for each p(y) in Q( Y,) there 
is at least one q(y) in Q, so that II p - q 11 E 6 (A4 - 1) 6. 

For any channel transition probability P(y / x) given with x E X, we want 
to construct a probability vector q:(y) defined on Y, such that 

H(P(Y I XI, q:LJ4 <EL 

Assuming that P(y, 1 x) B P(y, I x) > . . . > P(y, I x), it is clear that 
P(y, I x) > l/M. Now for each 2 6 k d M we introduce a new set of 
probability vectors as follows: 

qt,(.vk)=L1+6-‘P(y,Ix)J6, 

where La J is the largest integer 6 a. 
As a consequence, we obtain the inequalities 

kt2 P(Y,lX)< E d(JhK(M- l)b+ : P(YklX). 
k=2 k=2 

If we define 

then 

d(.h ) = 1 - .f q:(h), 
k=2 

O<P(y, Ix)-qt,(y,)<M- 1)s. 

Furthermore, by the ( Ielinition of qt, q:(y) E Q, and 

H(P(Y 

(3) 

k=l 

bp(Y,Ix)log 
PfY,lX) 
4.1-b’lI-~)’ 
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The above inequality holds because for any 2 6 k < M, P( yn- 1 x) < q’,( yk), 
and thus log(P(y, 1 x)/4:( yk)) < 0. 

However, from Eq. (3) we have 

>+wl)J 4.0’1) \ 
p(?-, I +x1 PO’, I .u) 

al-M(M-1)6. 

Plugging the 6 defined by (2) it yields that 

This implies that 

Therefore, if we choose nr such that (m + 1)/m = e’ and substitute the 
chosen m = l/(e’ - 1) into (2), we obtain the desired 6 which is given by 
(e’- 1)/M’s”. This shows that for every input .Y E X and its associated 
channel transition probability P( J’ 1 X) we can find a probability vector qi 
corresponding to it such that H(P(JJ/ x), qj;(y)) <E, where qi E Q,. Since 
Q, is finite with cardinality J and every member q(y) of Qs is of the 
form i6 for some integer i, we can arrange Q, in a lexicographic order and 
let { qz,},!= , be such an ordering of Q,. As a result, the matrix 
I + +L,(Yk)3,J2& I induced by QB is a discretized channel transition matrix 
of the original channel transition probabilities { P(y, 1 x)) which satisfies 
the desired properties and thus the proof follows. 

As shown in Theorem 1, if we use the relative entropy as a criterion for 
discretization, a continuous-input discrete-output memoryless channel can 
be actually discretized into a discrete memoryless channel where the size of 
inputs, J, is the cardinality of the set Q, bounded by C” log’. The 
parameter 6 is determined by the assigned error tolerance E and the size of 
the channel outputs, M, as well. Moreover, for any member .Y in dass S,, 
the relative entropy between P( y 1 X) and q:(y) is always less than E. This 
implies that as far as mutual information is concerned, the element X, is 
sufficient enough to represent all members in class S,. It also notes that in 
the proof of the theorem, the compactness of the channel input space X is 
not required. However, in practice, we assume that X is a compact (i.e., 
bounded and closed) set in the real line. 

In the following section, a constructive procedure to generate the desired 
sets F= {.x~},!=, and is,}:=, will be presented. As we will see from an 
example considered in Section IV, the number of desired channel inputs, J. 
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which we actually need is generally much less than the upper bound given 
by (1). The scheme is simple and is based on the assumption that X is com- 
pact. Nevertheless, this assumption is not essential because we can always 
make it compact by including its limit points if X is not closed. 

III. A SIMPLE PROCEDURE FOR THEOREM 1 

The main purpose of this section is to describe a simple implementable 
computer algorithm for Theorem 1. 

Let X be a closed interval [a, h]. It has been shown in Nelson (1966) 
that the set (H( ., q(y))1 q(y) E Q( Y,)} is equicontinuous on Q( Y,), i.e., 
given any E >O and a probability vector on Y,, I, there exists an 4 
such that if for any p(p’) E Q( Y,), // p -@ 11 71 < 4, then it implies that 
I H(P(Y), q(y)) - fJ(d(y), qOJ))l < 6 for all q(y) E Q( Y,). Furthermore, it 
was also shown in Davisson et al. ( 1980) that the relative entropy H(p(g), 
q(y)) is convex in p(y). Based on these properties we propose a simple 
algorithm analogous to a procedure in Davisson et al. (1981) as follows. 
Since the relative entropy H(P(y 1 x), P(y ( z)) between two transition 
probabilities P( ~1 IX), P( ~11~) is specified by the inputs x and Z, we will use 
the notation H(x, 2) to denote H(P(v1.u) P(JJ)z)) for simplicity.’ 

Algorithm CD (Channel Discretization) 

1. Initialization: 
Set s0 = an assigned error tolerance and r = 0. 

2. Set x0 = a, E, = ~~2--~, and J= 0. 

3. Set J=J+ 1. 
Find rlJ >-yJ-r such that H(x~-,,~,)=a,. 

4. If zJ > b, go to step (7). 
Otherwise, find xJ > zJ such that H(x,, zJ) = cr. 

5. If .YJ+ * <b, go to step 3. 
Otherwise, continue. 

6. If J> M, let xJ= b, output the sets (.~~j:= I and {z,>f=,, and stop. 
Otherwise, let r = r + 1 and go to step (2). 

7. IfJ>M, let zJ= b, output the sets {x~}::: and {zj)f= r, and stop. 
Otherwise, let r = r + 1 and go to step (2). 

Algorithm III 

1. Initialization: 
Let E = an assigned error tolerance for the Arimoto-Blahut algo- 
rithm. 
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2. Apply Algorithm CD to produce the desired sets (x,) and (z,). 

3. Apply the Arimoto-Blahut algorithm to the discretized channel 
determined by the input set F= {z,}:= , generated by Algorithm 
CD, the output set Y,, and the channel transition matrix 
CfYYkl,-.I).? J /E k LkE Y,W’ I 

4. Stop and output the channel capacity found in step (3) which is 
supposed to be an approximate of the original channel capacity. 

It is worth noting that in step (6) of Algorithm CD, the condition that 
J> M is examined because we must produce a sufficient number of inputs 
; before applying the Arimoto-Blahut algorithm. This fact is justified by 
kallager (1968, Corollary 3, p. 96). If J < M, it means that the prescribed 
error tolerance is not small enough, i.e., the relative entropy between two 
channel transition probabilities is still too large. Therefore, the whole 
procedure must repeat again with a smaller error threshold until condition 
(6) is met. Moreover, the set {x,} partitions [a, h] into a finite number 
of classes { Si}, where S, = [x, , , x,] . 

IV. A NUMERICAL EXAMPLE 

As discussed previously, the problem of calculating the capacity of con- 
tinuous-input discrete-output channels can be solved by three numerical 
methods which are Chang and Davisson’s algorithms (Algorithms I and II) 
developed in Chang and Davisson (1988) and Algorithm III proposed 
in this paper. To compare their relative performance, we consider the 
following example which was studied by Chang and Davisson (1988, 1990). 

Let a generalized binary-like memoryless channel be specified by the 
input space X= [0, 11, the output space Y, = (0, 1, . . . . M j, and the 
channel transition probabilities { P(k 1 x)} given by 

P(klx)= ; 
i > 

Xk(l-.X)M? 

Then the channel capacity is defined by 

C, = max p kEo ;P(x)P(kIX)log~i2.r], 
[ J P 

where q,(k) = SAP(X) P(k 1 x) dx. 
Notice that in this example, the numver of channel outputs is M+ 1. 

Moreover, the property that the channel transition probabilities are sym- 
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metric with respect to i further eases the computation of Algorithm III, 
where steps (4)-(7) in Algorithm CD can be simplified as follows. 

1. If zJ> f, set L=2J- 1 and go to step (7). 
Otherwise, find .yJ > zJ such that H(.u,, zJ) = si and continue. 

2. If .yJ < +, go to step (3). 
Otherwise, let L = 2J and continue. 

3. f L>M, let sJ=& zLCIPj=z, for 1 <j<J, .xL-,=x, for 
0 <j d J- 1, and output { x~}.,“=, and {q ;=,. } Then stop. 
Otherwise, let r = r + 1 and go to step (2). 

4. f La&f, let I z~=~,z~+,~~=z, for l<jdJ-1, s~-~=.x, for 
O<j<J- 1, and output (x;>:=, and {z,>f=,. Then stop. 
Otherwise, let r = r + 1 and go to step (2). 

The numerical results in Table I are obtained by Algorithm I, Algo- 
rithm II, and the above modified version of Algorithm III. Although 
Algorithms I and II were given in Chang and Davisson (1988), in order to 
compare Algorithm III, here we discuss briefly their ideas, in particular, a 
slightly diffeent approach (approach B) which was not in their paper will 
be described below. 

In general, Algorithms I and II are designed based on a sequence of 
iterations by trial and error proceses. In other words, both algorithms are 
executed by first guessing a finite set of channel inputs to form a discrete 
test channel, then computing its capacity, say Cf. In order to see whether 
or not Ct is desirable, the algorithms further find the maximum of mutual 
information yielded by every single channel input averaged over the chan- 
nel outputs and compare it to Ct. If the difference meets a prescribed error 
tolerance, the guessed test channel is good, which means that the Ct is the 
desired channel capacity and the algorithms terminate. Otherwise, a new 
test channel must be regenerated by either dumping those channel inputs 
which are not important in channel capacity computation or replacing 
them with some other promising channel inputs. Algorithm II is basically 
devised to take care of the former situation; in the meantime, add certain 
prospective channel inputs. On the other hand, Algorithm I is developed to 
handle the latter case. The process of how to replace points for Algo- 
rithms I is made according to either a single-point replacement or a multi- 
ple-point replacement in two different approaches, which are (A) those 
channel inputs of the test channel with small probabilities will be replaced 
and (B) those channel inputs whose mutual information averaged over the 
channel outputs are small will be replaced. (Notice that all the channel out- 
puts remain unchanged through executions of Algorithms I, II, and III.) To 
distinguish Algorithm I implemented in four different methods we denote 
Algorithm I using approach A with a single-point replacement by Algo- 
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rithm IAS, Algorithm I using approach A with a multiple-point replace- 
ment by Algorithm IAM, Algorithm I with approach B and a single 
replacement by Algorithm IBS, and Algorithm I with approach B and a 
multiple-point replacement by Algorithm IBM. As noticed in Chang and 
Davisson ( 1988, 1990) Algorithm I was implemented only based on 
approached A (i.e., Algorithm IAS and Algorithm IAM), where those chan- 
nel inputs with zero probability or small probabilities are replaced. 
However, the criterion of using mutual information of channel inputs for 
replacement was not considered in Chang and Davisson (1988, 1990) and 
so, the results produced by approach B are new. A more detailed study on 
this example can be found in Fan ( 1989). 

Figures 1 and 2 are plotted on the basis of CPU time of the three algo- 
rithms (Algorithm I, Algorithm II, and Algorithm III) run on a VAX 8600 
computer with four different types of Algorithm I. Table I is also provided 
with details. All the results in the table and figures show that Algorithm III 
yields a moderate performance when the number of channel outputs, Y,, 
is small; but when Y,v gets large, Algorithm III becomes more efficient. 
What is most important in this case is it produces a satisfactory performance 
and essentially achieves the same performances as do Algorithm I and 
Algorithm II. This substantiates the assertion made earlier and justifies that 
Algorithm III is indeed a very efficient algorithm compared to Algorithm I 
and Algorithm II. 

90 - 

80 - 

70 1 !r 

2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303~32 

M+l = NUMBER OF IYPUTS 
. IAS - IBS 11s : III 
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60 
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FIGURE 2 

V. CONCLUSION 

Three numerical methods of calculating the capacity of continuous-input 
discrete-output memoryless channels are considered. Of particular interest 
is a simple computational method (Algorithm III). Numerical results show 
that Algorithm III has an advantage of simple implementations on com- 
puters; but it is compensated for approximations with less accuracy. 
Nevertheless, when the channel output space is very large, Algorithm III 
does offer comparable performance to Algorithms I and II. Thus, in this 
case, Algorithm III is more attractive than Algorithms I and II because 
Algorithms I and II need more iterations and also tremendous computing 
time to find local maxima. Moreover, as reported in Chang et al. (1988), 
Algorithm III can also be used as an alternative method to find minimax 
codes for source matching problems (Davisson et al., 1980). 
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