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Two Iterative Algorithms for Finding 
Minimax Solutions 

CHEIN-I CHANG, MEMBER, IEEE, AND LEE D. DAVISSON, FELLOW, IEEE 

Abstract -Two iterative minimax algorithms are presented with associ- 
ated convergence theorems. Both algorithms consists of iterative proce- 
dures based on a sequence of finite parameter sets; in general these finite 
parameter sets are subsets of an infinite parameter space. To show their 
applicabilities, several commonly used examples are presented. It is also 
shown that minimax problems with or without finite parameter sets can be 
solved by these two algorithms numerically to any assigned degree of 
accuracy. 

I. INTRODUCTION 

INIMAX problems in statistical decision theory M have received considerable attention over the years 
[1]-[5]. The importance of such studies resides in the fact 
that the prior knowledge of observations obtained from 
experiments usually are incomplete and insufficient; the 
minimax risk simply provides the best performance under 
worst case conditions. However, most of the work in 
today’s minimax theory is analytic; little has been done 
numerically. To the authors’ best knowledge, Nelson’s 
paper [6 ]  is the only work devoted to solving general 
minimax problems by iteration methods. Unfortunately, 
Nelson proved the existence of such methods but failed to 
propose constructive schemes for finding solutions. Since 
present-day digital computers can perform sophisticated 
and complicated calculations, developing computational 
algorithms for finding numerical solutions is increasingly 
important. 

We present two iterative algorithms for solving minimax 
problems. The problem to be considered is formulated as a 
general statistical decision game so that the two algorithms 
can be applied to diverse areas including communications 
and control. The algorithms (to be called Algorithms I and 
I1 henceforth) consist of iterative procedures based on a 
sequence of finite parameter sets; these finite parameter 
sets are subsets of a parameter space that may or may not 
be finite. The associated convergence theorems show that 
the algorithms eventually converge to the same minimax 
value. The difference between these two algorithms is that 
Algorithm I iterates on a sequence of parameter sets with 
fixed size; while Algorithm I1 iterates with varying sizes. 
More precisely, at each iteration, both algorithms find all 

4 

i 

Manuscript received July 17, 1987: revised February 23, 1988. 
L. D. Davisson is with the Electrical Engineering Department, Univer- 

C.-I. Chang is with the Electrical Engineering Department, University 

IEEE Log Number 8933118. 

sity of Maryland, College Park, MD 20742. 

of Maryland, Catonsville, MD 21228. 

possible locally maximizing points of the risk function over 
the original parameter space with respect to the minimax 
rule obtained at that iteration. Then to generate a new 
parameter set for the next iteration, Algorithm I replaces 
those parameters in the current parameter set with low 
probabilities by those locally maximizing points just found 
at that iteration. Instead of replacing points as does Algo- 
rithm I, Algorithm I1 simply collects and includes these 
locally maximizing parameters in the present parameter set 
to generate the next parameter set. Both algorithms pro- 
duce a monotonically increasing sequence of estimated 
minimax values which eventually converges to the desired 
minimax risk. 

In general, the performance of Algorithm I1 is superior 
to Algorithm I on the basis of the advantage that the size 
of the initial parameter set can be chosen arbitrarily. 
Computationally, however, Algorithm I1 is inferior to Al- 
gorithm I because, while Algorithm I uses a buffer of fixed 
size to store the data, Algorithm I1 needs more storage to 
accommodate the increasing data after an iteration cycle 
and thus requires more computations. Moreover, it will be 
shown that, if the risk function has a finite number of 
locally maximizing points for all nonequalizer decision 
rules No, then by choosing an initial parameter set with 
size sufficiently enough both algorithms converge and yield 
essentially the same performance. 

Since the finiteness of No is practically true and gener- 
ally satisfied for many common probability distribution, 
this condition will be assumed throughout the paper. As 
shown in a step of the proof of convergence for Algorithm 
I under this assumption, a new property (to be called the 
Bayesian transistivity property or BTP) is introduced and 
also studied by some examples for illustration. The 
Bayesian transitivity property is necessary and very impor- 
tant because it determines the size of an initial parameter 
for Algorithm I. To extend the BTP to cover more general 
cases, a general theory (stated in the Appendix) is proven 
which says that, for a given error tolerance E > 0, if a 
condition probability distribution p ( x l 8 ) ,  @ E 0 is contin- 
uous and 0 is compact, then there exists a probability 
distribution jj( X I @ ) ,  a polynomial approximation of p ,  
such that the minimax risk using p and jj differ by no 
more than c. With any polynomial conditional distribution 
and jointly continuous loss function, the associated risk 
function, Y ( .  1 . )  will have at most No local maxima and the 
BTP can be proven satisfied for continuous probability 
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distributions. As a result, this theorem can be applied to a 
variety of Bayes problems to reduce computational com- 
plexity. It is believed that in most practical problems, 
Algorithm I will be applicable and the storage we really 
need is generally much less than that for Algorithm I1 
although the Bayesian transistivity property must be justi- 
fied beforehand for Algorithm I. 

In essence, Algorithm I originates in an algorithm which 
was used for source matching problems [7] and is a gener- 
alization suited for general statistical decision problems. 
Algorithm I1 is a slightly different version of Algorithm I. 
The idea was implicitly used in one of Nelson’s examples 
[6]. He showed that a sequence of prior distributions for a 
fixed parameter space can be generated, and further proved 
that this sequence converges to a least favorable distribu- 
tion. Unfortunately, he did not explicitly construct this 
sequence. Therefore, in this paper, a modified Nelson’s 
algorithm for a fixed parameter space is described in which 
a sequence of successive prior distribution can be gener- 
ated until a least favorable distribution is found. Then 
including this modified version of Nelson’s algorithm as a 
subalgorithm, Algorithms I and I1 can actually produce a 
desired least favorable distribution throughout iterations. 

Finally, two numerical examples are presented to exem- 
plify the relative performance of Algorithms I and 11. 
According to the numerical results, two algorithms have 
different advantages and disadvantages, and so it cannot 
be concluded that one is better than the other. The prefer- 
ence really depends upon applications. 

This paper is organized as follows. In Section 11, Algo- 
rithm I is stated, and its convergence theorem is proven. In 
Section 111, Algorithm I1 is given, and its convergence 
theorem is also proven with a slightly different approach. 
In Section IV, the Bayesian transitivity property is defined 
and studied. Two approaches for proving this property are 
proposed. In Section V, two numerical examples are given 
for cases of two different performance criteria-are rela- 
tive entropy loss and squared error loss. These examples 
provide evidence that Algorithms I and I1 indeed have 
respective advantages in different applications. In the Ap- 
pendix, a general theorem is proven for an extension of the 
Bayesian transistivity property to a broader class including 
continuous probability distributions. 

11. AN ALGORITHM FOR SOLVING MINIMAX 
SOLUTIONS BASED ON A SEQUENCE OF FIXED-SIZE 

PARAMETER SETS 

We shall consider a general statistical decision problem 
(0, D, R )  of fixed sample size and also establish the fol- 
lowing definitions and assumptions described in [6]. 

1) Let X be a random variable with observations x in a 
sample space X, and let B ( X )  be the Borel field of X .  
There exists a a-finite measure p on B ( X )  such that, for 
8 E 0, a probability distribution Po, has a density p ( x l 8 )  
with respect to p and p ( .  1 . )  is measurable on the a-field 
B( X )  x B ( 0 )  where B ( 0 )  is the Borel field of 0. Further- 
more, for each x E X ,  p ( x 1 . )  is continuous on 0. 

2) Let C be an essentially complete compact class of 
decision rules for the game (0, D ,  R ) .  

3) The parameter space 0 and the action space A are 
compact. 

4) The loss function L ( . ; )  is real-valued and jointed 
continuous on O X A .  Consequently, L is bounded and 
uniformly continuous on 0 X A .  

5) Let 7 be any prior distribution over 0. For 
any x E X, except possibly on a set of p-measure 0, there 
is at most one decision d(x) E A that minimizes 

6) For any a priori distribution 7 that does not satisfy 
5) ,  r ( T , S , )  = 0, where r (7 ,6 , )  is the Bayes risk with re- 
spect to the prior distribution 7, whereas, supa{ r( a, S a ) }  
> 0. 

7) Let J be the size of the given initial parameter set for 
Algorithm I, N b =  arg[maxo,eR(8,6)] be the set of pa- 
rameters which maximize R ( 8 , S )  locally, and No = 

~up, ,~ , (N, (  < CO where D’ is the set of all nonequalizer 
rules in D .  Note that if  there is an equalizer rule 6, in D ,  
then R(8,  So) is flat over 0 and thus, if No were defined 
on D instead of D’, we would have No = 00. In t h s  case 
and if we know So, we can check whether or not it is a 
minimax rule. Otherwise, we will assume that 00 > J 2 No. 

Here are some comments on the assumptions. 
a) Assumption 6 prevents the algorithms from dealing 

with pathological cases. This was discussed in [6]. 
b) Since both algorithms operate on finite parameter 

sets, it is desirable to assume N , < ~ o .  This is not a 
restrictive assumption because in most practical cases this 
assumption will be satisfied by involung the Stone- 
Weierstrass approximation theorem which states that any 
continuous function on a compact set can be approxi- 
mated uniformly by a sequence of finite degree polynomi- 
als to any degree of accuracy. 

c) As an example, let 0 = A = [0,1], X= {O,l}, p ( x 1 8 )  
= 6*(l- 8)lPx, and L(8 ,  a )  = (8 - a)2. Then for each 8 
and each nonrandomized decision rule d,  the risk function 
is given by 

163 ( 6 > 4 x 1) P ( x I 8 1 7 ( 8 1 d 8- 

R ( W )  = E o [ L [ W ( x ) l l  

= ( d ( o ) - e ) 2 ( i - e ) + ( d ( i ) - e ) 2 e  

= (i +240) -2d( i ) ) e2  

+ ( d2(1)  - d 2 ( 0 )  -2d(0))6 + d 2 ( 0 ) .  (2.1) 

Clearly, No 2 2 because we can find a nonrandomized 
decision rule d(x) defined by d(0 )  = d(1) =1/2 so that 
the maximizing points of R(8,  d )  over [0,1] are { O , l } ;  on 
the other hand, from (2.1), No I 2 since for each nonran- 
domized rule d the risk function R is quadratic in 6 .  
Therefore, No = 2. (Notice that from (2.1) it is easy to see 
that there exists only one equalizer rule do: { do(0) = 1/4, 
do(l) = 3/4}, which happens to be the minimax rule such 
that if No were defined over D instead of D’, No = CO.) If 
we choose J =  2 in this example, it is shown in [8] that, 
with a choice of an initial parameter set of size 2, Algo- 
rithm I does not work. Nevertheless, it does work for 
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J 2 3. This simply means that the size of an initial parame- 
ter set, J =  2, is too small and is not equal to No. In other 
words, we have to pick enough parameters for initializa- 
tion before we execute Algorithm I. As also shown in [8], 
Algorithm I1 does not have this defect. More details on 
this example were discussed in [8]. 

A. Description of Algorithm I 

The following algorithm is used in Algorithm I (and 
Algorithm 11) as a subalgorithm to generate a least favor- 
able distribution on a fixed finite parameter ppace and to 
find the corresponding minimax risk. 

Modified Nelson's Algorithm (Based on a Finite Parame- 
ter Set 69"): 

I )  Initiaiization: Given a parameter set 0" = 

{ e:, - . . ,e; } which is the input from the main algorithm 
(either Algorithm I or II), choose an arbitrary initial prior 
distribution a' on 0" and find the corresponding Bayes 
rule 82. Set m = 0. 

2) Set m = m + 1. Determine if am is least favorable on 
0" by checking to see if 

4 

$=on max R(O,8$)  =r(arn,8: , , , ) .  (2.2) 

3) If (2.2) holds, then output am,8$, and return to the 

4) Otherwise, construct a new prior distribution a"'+' as 
main algorithm. Let r" = am. 

d follows. 

Algorithm I: 
I )  Initialization: Given an error threshold E and a 

positive integer J 2 No, choose an arbitrary initial parame- 
ter set 0' = { 6:; . -,e;}.  Set n = 0. 

2) Set n = n + 1. Apply the modified Nelson algorithm 
to 0" to find a least favorable distribution r" on 0" and 
the corresponding Bayes rule 8s. 

3) Compute maxB E R( f3,8:m) and check the error 

E ,  = max R (8,8:.) - r (  r " ,  8:"). 
$663 

4) If E ,  < E ,  then halt and output the r", 8;" and 
r( r",  8:"). Otherwise, let {e'} be arranged in a nonincreas- 
ing order according to the probability distribution r" such 
that 

r " (  e;) > rn( e;) iff i < j .  

Let e*." = arg[maxeGe R(B, a:")], all locally maximizing 
points in 0 with risks R ( 8 , 8 $ )  2 r( r", a$), and define 
On+' as follows. If 10*."1= J ,  then let On+' = 0*,"; oth- 
erwise, let 

e;" = e;, 1 I j I J - lo*, "1 
=ej*,", J -  10*,"1+ 1 I j I J 

where 0; E O "  and 8,*~"E@*~", and then, let On+'= 
{ e;"}. Go to step 2). 

The following two remarks are relevant here. First, it is 
worth noting that in step 4) 0*," is chosen to be the set of 
all locally maximizing parameters e**" in 0 whose risks 
R(O**", 8:") 2 r ( r" ,  a,'!!). The condition that R(O*?", 8;") 2 
r( r",  8,") will guarantee inequality (2.3) valid in the proof 

a) Find 0*, n ,  m = arg[maxeGe. R ( e , 6 $ z ) ] ,  all maxi- 
mizing points of R ( 0 ,  8:m) over 0". 

b, Define a distribution p" = {p1",. . - 9  p % , n , r n l }  On of Lemma 1. However, another possibility to in- a n  L.. v uy equality (2.3) valid is to choose @ * i n  to be the set of all 
1 

pm(e;)  = ~ 

for 0; E 0*,"," p" 1@*,","1 i,. otherwise. 

c) Construct a family of distributions {a"','} indexed 
by X E (0,1], where 

am.' = AB" + (1 - A) am, for 0 < A I 1. 
d) Find the corresponding Bayes rule 6:m.X and the 

risk r( am*', S,"-,X). Let 

e) Define a"'+' = A"p" +(1- Am)am where A"' E A"'. 

Note: For computational purposes, (2.2) in step 2) can 

Go to step 2). 

be replaced by an error range 

for a prescribed tolerable error threshold eo. The conver- 
gence proof is in [6, corollary to theorem 6, p. 16501. 

The following recursive algorithm is used based on a 
sequence of finite fixed size parameter subsets in the finite 
set 0. 

possible globally maximizing parameters rather than lo- 
cally maximizing parameters. Henceforth, we shall call the 
replacement procedure done by locally maximizing param- 
eters the local maxima replacement, while the replacement 
done by globally maximizing parameters the global max- 
ima replacement. The relative performance will be studied 
through numerical examples in Section V. 

Second, with a slight modification the replacements 
made in step 4) according to probabilities on parameters 
can be also done by risks that are generated by parameters 
yield such that inequality (2.3) is still satisfied. A numeri- 
cal result based on this modified algorithm applied to 
channel capacity problem can be found in [4]. ' 

B. Convergence Theorems for Algorithm 1 

Before stating the main theorem, we define a property 
that will be needed to prove the convergence of Algorithm 
I. Note that in step 4) of Algorithm I, the ( n  + 1)st 
parameter set 0"" is obtained by replacing those parame- 
ters in 0" with the lowest probabilities by the parameters 
in e*.". It is not immediately obvious that the procedure 
will converge. For instance, if 10*."I = J ,  then 0"'' = e**" 
because all elements in 0" are replaced by all elements 
ej*," in e**". Thus 0" n On+' = +. This situation reveals a 
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lack of connection between On+' and 0" that could force 
the process to go back to the initial status. That is, without 
taking into account the information obtained previously 
we restart an initial parameter set On+' and repeat the 
whole procedure again. Accordingly, the following prop- 
erty is given for this purpose to bridge the gap between 

By the assumption 6:" satisfies the Bayesian transitivity 
property. Thus there is a prior distribution on On+' 
such that the corresponding Bayes rule 6gnzt = a,?, and 
a,$'.' is also a rule for the game (On", D ,  R ) .  Since w is 
arbitrary in (2 .3) .  we can choose w = f in",  and thus we 
have 

two consecutive iterations and conveys the least informa- 
tion of the present iteration to the next stage of iteration 
such that the iterative processes will eventually converge. 

Definition (the Buyesian Transitivity Property): Given two 
statistical decision games (0', D, R )  and (O', D, R ) ,  a 
decision rule 6 is said to satisfy the (0',0') Bayesian 
transitivity property if the 6 that is Bayes with respect to a 
prior on 0' is also Bayes with respect to some prior on 0'. 

Note: 0' and 0' can be defined on different spaces and 
need not have the same cardinalities. 

The BTP can best be illustrated by the channel capacity 
problem considered in [SI or [lo]. In these papers, for 
a given prior a = (a1,. . ., a J )  on the n th parameter set 
0" = { 8; ; .  ..e;}, the nth Bayes rule on the output k is 
given by q: =Ej,,ajpF where k E the output space= 
{l,. . . ,  L }  and J >  L.  If we solve the equation 

J J 
a.p0;= 1 k /2.P9" 

/ =1 ;=l 

for a probability vector f l  = (&;. . , f l J )  on On+' = 

{ e;+',. . ., e:+'}, the resulting 4; is also a Bayes rule with 
respect to the prior f i  on 0"". Hence it satisfies the 
(On ,@"+ ' )  BTP. More details will be given in Section IV 
and the Appendix. The main result of this paper is to 
provide implementable algorithms for the following mini- 
max theorem and to show that the minimax risk computed 
by these algorithms is indeed convergent to the desired 
minimax risk. 

Theorem I :  If there exists positive No such that R ( 8 , 6 )  
has at most No local maxima for every nonequalizer rule 
6, then there exists a least favorable distribution on 0 and 
corresponding Bayes rule 6, such that 

V = r ( T , 6 , )  = maxR(8,6,) = minmaxR(8,a) 
R E Q  S E D R E ~  

where V is the minimax risk. 

In what follows, we will show that a sequence of priors 
{ T " }  (and the corresponding Bayes rule 6;") constructed in 
Algorithm I will converge to the desired T (and to 6, as.), 
and thus limn+mr(Tn,6$) = V. 

Lemma 1: Suppose that for each n 6:" satisfies the 
(0 ", 0 "+ ') Bayesian transitivity property. Then 
{ r( T " ,  6:")) is a nondecreasing sequence in n ,  i.e., 

r (  T n ,  8:") I r (  T f l + ' ,  6;":;) 

with equalityiff r (7" ,6$ )  = maxR(8,6:"). 
R E O  

Proof: By the definition of r( T " ,  a:"), 
r(Tn,6:n) = cT-R(8;1,6:n)  5 ~ w j R ( 8 ~ + ' , 6 $ )  ( 2 . 3 )  

/ I 

for any probability vector w on On+' .  

r(T",6:.) = c T - R ( e ; , 6 : n )  I cp;+1K(e;+1.61;";t) 
I J 

- < C T , " + ~ R ( ~ ; , S ~ ! $ ? )  =r (Tn+ ' ,8$ i ) .  (2.4) 

The last inequality holds because T"+' is least favorable 
on 0"". This shows that Y(  T " ,  ST"!) 5 r( T " + ' ,  6:ntt) and 
that r(  T " ,  6:") is nondecreasing in n. 

I 

Proof of Equality: 
1)  Necessity: If r( T " ,  S:!) = r( T"+' ,  6:"t{), then from 

Y ( T " , ~ , " )  = X T - R ( ~ ; . S , ! ' ~ )  = ~P,"+'R(8,"+',6;;.'t?) 

(2.4) we have 

I J 

= CTY+'R( 8;+1,6:"$!) = Y (  T " + ' ,  S$?). 
I 

This implies that f l"+' is also least favorable on On+', SO 

r(Tn+1,8:"t!) = max R(e,S;t:) = max R(o,~;A~) 

> rnaxR(8,6:") > r ( ~ " , 6 , ! " )  

= r (  Tnfl, a:!:?). 

R E (V+l 

R € O  

R E @ " + I  

The second equality holds because S;L? is also a minimax 
rule for the game (On+', D, R ) ,  and the first inequality is 
true because of the choice of e,"+' and 6;Lt = S$.  Conse- 
quently, Y ( T " , ~ ; " )  = rnaxREeR(8,6%). 

2) Sufficiency: If r( r " ,  6:") = maxO R (  8, S:!), we want 
to prove that Y(  T " ,  6:") = r( T " + ' ,  6$!). Obviously, 6,"" is 
also a decision rule for the game (On+' ,  D, R ) ,  and 6$? is 
a minimax rule for (On+' ,  D ,  R ) .  This implies that 

Y ( T ~ + ~ , ~ : A ? )  = max R(e,8fnt!) 
R t @ " + I  

R CEO"+' 

R € @  

I max R ( 8 , 6 $ )  

I maxR( 8, S;.) 

= Y (  T " ,  6:"). 

The first equality follows because 6$1 is a minimax rule. 
and the first inequality holds because 6;" is a decision rule 
in D. The second inequality is true since 0"" is a subset 
of 0, and the last equality holds by the assumption of 
sufficiency. However, from the first part of the theorem 
{ r(  T " ,  a;")} is nondecreasing, and so we have r( T " ,  a$) = 

An immediate consequence of Lemma 1 is the following 
corollary, which can be proven by an appropriate modifi- 
cation of the proof of Lemma 1. 

Corollary I :  Under the assumption of Lemma 1 that aTnn 
satisfies the (0",0"+') BTP for each n ,  Algorithm I 

r(Tn+',  6$!). 0 
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converges and terminates at step N if and only if c N =  
maxB se R (  8,S,".) - r( r N ,  S$) < E for a given error thresh- 
old E. 

Lemma 2: Let { 8" } be a sequence of decision rules in 
D* and S* E D * .  If lirn,,,S" = S* a.e.-p on X .  Then 

limmax R ( 8 , S " )  = maxR(8,6*) .  
I1 - 008 E 8 8 E 8  . 

Proof: The theoretical foundation of this lemma was 
done in [6]. We refer all straightforward technical details 
to [8]. 

It has been shown in Lemma 1 that the sequence 
{ r (  r",  S $ ) }  is monotonically decreasing and thus con- 
verges to some number i. In the following lemma we prove 
that the limit of maxeeeR(8, 8;) also'converges to i. As 
a result, we can further conclude by a theorem (Theorem 2 
stated as follows) that the number i is actually equal to 
the minimax V in Theorem 1 whereby Theorem 1 is 

4 justified as well. U 

Lemma 3: 
lim maxR(8,6,:,) =i.  
11-m 8 6 8  

Proof: Based on the work in [6], it can be easily shown 
that r" converges weakly to r and thus 8;" -+ ST a.e. 
Furthermore, by Lemma 2 we can derive 

lim maxR(8,S;") = maxR(8,8,). 

However, by straightforward justification r is also a least 
favorable distributijln on 0 if we define r (B)  = 0 for all 
B E 0 - 6 where 0 is defined to be the limit of nth 
parameter set 0" on which Algorithm I iterates at nth 
iteration. This results in 

11-m 8 ~ 8  8 E 8  

maxR(8,Sr) = maxR(8,6,) = r ( r , S , ) .  
B E 0  8 6 8  

Moreover, as shown in Lemma 1, the sequence r(r",S;")-+ 
r ( r , S , )  = i. This shows that l i m , , , , m a ~ ~ , ~  R(8,S;") = 

i. 0 

Finally, we prove by the following theorem that the limit 
value i to which the sequence { r( r", a;)} converges is 
indeed the desired minimax value 

V =  min maxR(8,S)  
S E D  8 6 8  

in Theorem 1. 

Theorem 2: The sequence { r( r",  S,!!")} converges to the 
limit V = min E D. max e E R ( 8,s). 

Proof: Since V is the minimax value, 

On the other hand, by Lemma 1 we have 

lim maxR(8,S;") = maxR(8,6,) = r ( r , S , )  

= lim r (  r " ,  8;) = i I V .  (2.6) 

The last inequality holds because for each n ,  r ( r" ,  8:") is 

I l - + o o  8 6 8  8 6 8  

n+m 

bounded by V from Lemma 1. Combining (2.5) and (2.6) 
yields that V = i. So, the sequence { r( r",  S,"")} converges 
to the desired minimax risk. 0 

111. A SECOND ALGORITHM FOR FINDING MINIMAX 
SOLUTIONS BASED ON A SEQUENCE OF FINITE 

VARYING PARAMETER SETS 

A. Description of Algorithm 11 

In the first algorithm the number of parameters is fixed 
at J < CO. We now present a second algorithm that allows 
the number of parameters to vary. 

Algorithm 11: 
1) Initialization: Given an error threshold E and an 

arbitrary positive integer J', choose an arbitrary initial 
parameter set 0' = {e;,. .-, e$ 1. Set n = 0. 

2) Set n = n + 1. Apply the modified Nelson algorithm 
to 0" to find a least favorable distribution U" on 0" and 
the corresponding Bayes rule 8:". 

3) Compute m u B  se R( B,S,") and check the error 

E, = max R ( @,a:") - r ( U", 8:"). 
8 6 8  

4) If E" < E, then halt and output the least favor- 
able distribution U" and the corresponding Bayes 
rule 8:". Otherwise, delete the parameters in 0" with 
zero probability, relabel the remaining parameters and 
denote the resulting parameter set by 6". Let e**"= 
arg[maxe R (  8,6,7.)], all locally maximizing points of 
R( 8 ,  6:") over 0 and define 

e;+' = e;; 1 I j I @"I, for 8; E 6", 
= e*;"; 1 + I j I @"I+ p*q 

where 
O*." E @*.". 

Let On+' = {8;+'} .  Go to step 2). 
In analogy with Algorithm I, two similar comments can 

be made. In particular, policy analogous to step 4) can be 
adopted by adding the set of all globally maximizing 
parameters instead of locally maximizing parameters. We 
will call the local and global maxima additions respectively 
af tenvards . 

Note: Under the assumption No < m, the nth parameter 
set 0" always has its size I 3N0. This fact will be verified 
in the next section (Corollary 3). 

B. Convergence Theorem for Algorithm I1 

The convergence theorems for Algorithm I1 are nearly 
the same except Lemma 1. In the following we will prove a 
lemma analogous to Lemma 1 for Algorithm 11. However, 
unlike Lemma 1, the assumption of the BTP is not neces- 
sary for this lemma. It will be seen in the proof of the 
following lemma that the BTP is automatically satisfied. 

Lemma 1A (Convergence Theorem for Algorithm 11): 
{r(u",S,"n)} is a nondecreasing sequence in n ,  i.e., 
r ( u n ,  8,") 5 r(un+',S,$!) with equality iff r(u",S$)  = 
maxgs8 R ( 8 ,  13:"). 

J 

b 



Proof: Since an+' is a least favorable distribution on 
@"+I,  

r (  a"+1, 8$5?) 2 r (  a"+', 8$?) 

for any probability vector a"+' on On+'. In particular, we 
can choose a"+' as follows: 

Thus we obtain 

so { r (  U", 8,")) is nondecreasing in n. 

Proof of Equality: 
I )  Necessity: If r (  U", 8:") = r (  a"+', 8$.',;), then from 

(3.1), we have 

.(U"+', a;":?) = r (  a"+', sun,+,:> = r (  a", 8:") 

where 

This implies that a"" is not only least favorable on On" 
but also least favorable on 0". Hence the corresponding 
Bayes rule 8,!$t is a minimax rule for the game 
(a"+', D, R )  and is also a mininax rule for the game 
(e", D, R ) .  However, from [6] ,  the minimax rule is essen- 
tially unique, and thus the rule S$? is equivalent to the 
rule 8:". Thus 

The first inequality follows from the choice of On", and 
the first equality holds because 8$t is equivalent to 8;". 
Clearly, however, maxe G 0  R( 0,8$) 2 r (  U", 8:"). There- 
fore, r (u f l , 8$ )  = maxeE0R(8,8,"). 

2) Sufficiency: If r ( u " ,  8;") = maxeE8 R ( 0 ,  8$), we want 
to show that 

Obviously, 8:" .is also a decision rule for the game 

(@"+I,  D, R ) ,  since for each @;+'E OH+', 

The first equality holds because is a minimax rule. 
The first inequality follows from the fact that 8$tt is 
minimax and the rule 8;" is in D.  The second inequality 
holds since On+' is a subset of 0. The last equality is true 
because of the assumption. However, it has been shown 
that { r ( u " ,  a,".)} is nondecreasing. This implies that 

An immediate consequence of Lemma 1A is the follow- 

Corollary 2: Algorithm I1 converges and terminates at 
ing corollary. 

step N i f  and only if  

for a given error threshold c.  

Remark: A significant implication of Algorithms I and 
I1 is that these algorithms present a general approach to 
solving minimax solutions using the modified Nelson algo- 
rithm. However, in some specific problems the modified 
Nelson algorithm can be replaced by more efficient algo- 
rithms, e.g., in the source matching problems considered in 
[7] or in the channel capacity problems in [9], [lo], the 
modified Nelson algorithm is replaced by the Arimoto- 
Blahut algorithm. 

Thus far we have described two algorithms for finding 
minimax rules. As we have seen, Algorithm I iterates on 
fixed size parameter sets; whereas Algorithm I1 iterates 
with varying sizes. Seemingly, they look like different 
schemes, but they have common characteristics. Recall 
that No is defined to be the maximum number of locally 
maximizing points of the risk function on 0 over all 
nonequalizer rules. I f  we start with an initial parameter set 
of size 3N0, then Algorithms I and I1 essentially perform 
the same iterative processes; this will be shown in the 
following corollary. Of course, if Algorithm I1 begins with 
an initial parameter set with an arbitrary size less than 
3N0, in general, both algorithms will not produce the same 
iteration at each step. 

Corollary 3: Under the same assumptions made in Sec- 
tion 11, if Algorithms I and I1 are initiated by any arbitrary 
parameter set with a size of 3N0, algorithms I and 11 are 
identical in the sense that, for every n at the nth iteration, 
Algorithm I1  arranges the parameters in 0" as in Algo- 
rithm I, deletes the last 10*~"1 parameters, and then adds 
parameters in e*," to the resulting parameter set. 
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Proof: The minimax rule 6:" places nonzero probabil- 
ity on those values in 0" for which R(8,6:") equals the 
minimax risk, because, for each nonequalizer rule 6 the 
risk function R(B,6) has at most No locally maximizing 
points over all 8,  there can be at most 2No of these points 
in 0". Since there are at least No parameters with zero 
probabilities, i.e., a:'( 8;) = 0 for 2N0 + 1 I j I 3N0. How- 
ever, to find 0"" Algorithm I replaces by { e,*,"} at most 
No parameters { ~ ~ } ~ ~ ~ N o ~ l o ~ , n l + l  (which in fact have zero 
probabilities). Thus this process results in the same param- 
eter set 0"" produced by Algorithm 11. 

Some remarks on Corollary 3 are given as follows. 
1) In Corollary 3, it has been shown that under a mild 

condition Algorithms I and I1 could be regarded as the 
same algorithm as long as the size of the initial parameter 
set was chosen to be 3N0. Therefore, at any time the 
iterated parameter sets in both algorithms are always the 
same and have a constant size 3N0. 

2) Step 4) (i.e., the last step) of Algorithm I1 requires 
deleting all zero probability parameters to prevent the size 
of the parameter sets from growing; the algorithm does not 
have to arrange parameters as does Algorithm I. So, under 
the assumption No < + 00, all parameter sets are always 
I 3N0. On the other hand, in Corollary 3 the elements in 
0" of Algorithm I1 are well-arranged and only the last 
10*,"1 parameters are deleted to keep the parameter sets 
with a constant size 3N0 all the time. The reason that we 
adopted this technique is to ensure that Algorithm I1 
deletes the same parameters in 0" which are being re- 
placed by Algorithm I. 

3) As indicated in the beginning, if Algorithm I1 starts 
with an initial parameter set of size I 3N0, then the 
iterative processes may be terminated before the size of the 
parameter set in the last iteration reaches 3N0, but it may 
require more iterations than when the algorithm starts with 
an initial parameter set of size 3N0. So, the choices depend 
on the trade-off between costs. 

4) Note that we have referred only to nonequalizer rules. 
If at any step an equalizer rule, a:!., is found, the algorithm 
automatically terminates. 

IV. A FURTHER STUDY OF THE BAYESIAN 
TRANSITIVITY PROPERTY 

In Section 11-A we defined the BTP, a property required 
for Algorithm I. In what follows we study this property 
further by looking at two commonly used examples; we 
will see later that the buffer size J needed for Algorithm I 
is determined by the BTP, not by No. A more detailed 
study on the Bayesian transitivity property can be found in 
PI. 

Example I (Estimation Problems with Relative Entropy Loss) 

Most problems of this kind arise in communication 
theory and have already been investigated extensively. In 
this example we consider the probability mass function of 
a random variable X defined on the samples space X 

which is specified by a binomial distribution with N + 1  
observations. More precisely, we let 

[0,1], parameter space, 
[0,1], action space, 
{ 0,1, . - . , N }, sample space, 
= CN,x ex(l - e ) N - x  where CN,x = N ! / x ! ( N -  
x)!, conditional probability defined on X given 
BEQ, 

= { d  = (d(O), d ( l ) ; - . ,  d ( N ) ) l d ( x )  E A and 
Cf-,d( x )  = l}, decision space (i.e., any non- 
randomized decision rule d can be specified by 
an N + 1-dimensional probability vector 
( 4 0 ) ;  . ., 4" E D.)  
= log[p(xlO)/d(x)], loss function, 
C;=op(x (e ) [  p ( ~ ( e ) / d ( ~ ) ]  = relative entropy, 
risk function. 

subset 0' contained in 0 and any given prior a . -  

on e', a Bayes rule is given by 

for x = 0; . . , N (4.1) 
and so, 

x = 0,l;. -, N (4.2) 
Let O2 be another subset in 0 with the same size as 0'. 

For the decision rule d ,  = (d(O), d(l), . . . , d( N ) )  to satisfy 
the (e', 02) BTP, we must be able to find a prior p on O2 
such that for each x = 0,l;. ., N ,  

d , ( x )  = ds(x> = cN,J  e x ( i  - e)" - "p(e)  de. (4.3) 
e2 

In the following we propose two approaches to proving 
the (0',02) BTP. Since we are only interested in finite 
parameter sets, the sets 0', O2 are assumed to be finite and 
of the same size. 

1) Algebraic Approach: Let 0' = 0" = { 0;; . 0 ,  e:} and 
0 2  = en+'= {e,"+',. . ., B'+'}, then (4.1) becomes 

J 

d,(x) = c ( Y / P ( X l e j t )  
\ 

J = 1  

where 

a, = a(  e;), p (.le;) = cN,x (e;) (1 - e;) N - x .  

To find a probability vector p defined on On+' such 
that d ,  satisfies ( O n ,  On+') Bayesian transitivity property, 
we only have to solve for a f i  the following set of N +1 
linear algebraic equations that is equivalent to (4.3): 

J J 

&(x) = c .,P(xle;) = c P , P ( X l e ; l + l )  = d p ( x ) ,  
/ = 1  J - 1  

forall x = O , l ; - - , N .  (4.4) 

e 
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Since a,  p, p(xl8 j”)  and p(xl8j””) are all probability 
vectors, (4.4) can be solved if J 2  N +l.  This shows that 
the BTP is valid whenever p ( x l 8 )  is a probability mass 
function of a discrete random variable X ,  in particular this 
is true for binomial distributions. 

2) Moment Approach: From (4.2) we derived that d ,  is 
uniquely determined by the first N moments of a,  and so 
is ds from (4.3). This observation reveals an important fact 
-that the Bayesian transitivity property essentially hinges 
on the moments induced by the prior a. 

If we are given a probability mass function of a polyno- 
mial form in 8, and if a Bayes rule d ,  defined on X with 
respect to a prior a on a parameter subset 0’ is uniquely 
determined by the first N moments of the prior a, then for 
any other parameter subset 0’ with the same size as e’, 
we are able to find a prior p on O2 such that, for each x in 
X ,  d,(x) = d s ( x )  where ds is a Bayes rule defined on X 
with respect to p. According to (4.2), for a binomial 
distribution p(x l8 ) ,  d ,  is uniquely determined by the first 
N moments of the prior a.  Therefore, the trick is that 
instead of directly solving for a p on 0’ for the given 
probability mass function, we use a binomial distribution 
as a base to consider a binomial distribution with N 
observations with respect to the same prior a so that based 
on (4.4), a p can be found. Since the binomial distribution 
with N + 1 observations is a polynomial in 8 with the 
degree N ,  (4.2) also uniquely determines the first N mo- 
ments of the a and so does the p from (4.3). It is 
important that each x in X determines a moment of the 
prior a and vice versa, e.g., if x = k, then it determines the 
k th  moment of a. As a result, this p is exactly what we 
need. However, note that , jn  t h s  case, /3 need not be 
unique, because any prior p defined on O2 satisfying the 
first N moments determined by (4.2) is also a candidate 
for d,(x) satisfying (e’, 0’)-BTP. 

Example 2 (Estimation Problems with Squared Error Loss) 

In this example we consider estimation problems with 
squared error loss where all assumptions made in Example 
1 are the same except that the loss function is chosen to be 
squared error. It is well-known that a Bayes rule for an 
estimation problem with respect to square error loss is 
obtained by calculating a posterior conditional mean. More 
precisely, for any prior a on a parameter space 0, a Bayes 
rule d ,  with respect to a is given by E,[OIX = x ]  for every 
x in the sample space X ,  that is 

OX+’(1 - 1 3 ) ” - ~ a (  8) d8 
LY 

= 

e x ( i - e ) ” - x a ( e )  de 

for ~ = 0 , 1 , 2 ; .  . , N (4.5) 
where the term CN,x  appears in both numerator and de- 
nominator and has been canceled out. 

Obviously, the algebraic method suggested in Example 1 
cannot be directly applied to proving the BTP. However, if 
we compare (4.5) with (4.1) we will find that for each x the 

Bayes rule d,( x )  in (4.1), is exactly the denominator of the 
d , ( x )  in (4.5) scaled by the constant CN,x.  On the other 
hand, the numerator in (4.5) is simply specified by the 
moments of the prior a on 0’. Therefore d,(x) in (4.5) is 
uniquely determined by N + 1 moments of a on 0’. As 
shown in the expression of ( 4 3 ,  one more moment is 
required than that in (4.1) (i.e., N + 1 st moment). This 
extra term is due to the numerator in (4.5) when x = N .  
Consequently, the moment approach is readily applied 
here. A simple example to illustrate how the moment 
method is applied to finding the desired /3 which will yield 
d s ( x )  = d , ( x )  for x = 0,l;. ., N is given in [SI. 

Although we only considered binomial distributions for 
p(x lB) ,  the argument can be carried out to deal with 
Poisson and Gaussian distributions by using the 
Stone-Weierstrass approximation theorem. The details can 
be also found in [8]. 

We close this section with some comments on the rela- 
tionship between BTP and No. Recall that, in the previous 
examples, the sample distributions with which we dealt 
were polynomials in 8. It follows that No is finite and the 
BTP is valid by applying either the algebraic approach or 
the moment approach. As a result, Algorithms I and I1 are 
applicable. This idea reduces the problems of proving 
No < + CO and BTP to that whether or not we can approxi- 
mate a sample distribution by a polynomial uniformly on 
0. Fortunately, under some regularities (e.g., 0 is compact 
and the risk function is continuous on 0) this can be done 
within any assigned degree of accuracy by a well-known 
theorem, the Stone-Weierstrass approximation theorem (see 
the Appendix). The significant implication of this theorem 
offers a connection that, in the some sense, requiring 
No < + 00 is equivalent to justifying the BTP, and thus 
Algorithms I and I1 have the same extent in applications 
to which we have freedom to choose either one for imple- 
mentations. However, note that before applying Algorithm 
I we ought to find J which is equivalent to proving the 
Bayesian transitivity property. Hence, whenever there is a 
difficulty with determining J ,  Algorithm I1 is always pre- 
ferred. Nevertheless Algorithm I has an advantage that it 
only needs J buffers, and thus it is more efficient than 
Algorithm I1 when J or No is large. 

V. NUMERICAL RESULTS 

In the last section we studied the theoretical bases for 
Algorithms I and I1 on estimation problems with relative 
entropy loss and squared error loss. Now we study two 
numerical examples corresponding to Example 1 and 2, 
respectively, and analyze the relative performance of Algo- 
rithms l and 11. 

Example 3 (Channel Capacity Problems) 

Basically, this example was studied in [5] ,  and numerical 
results obtained based on Algorithms I and I1 were also 
given there. However, to see how Algorithms I and I1 
apply to channel capacity problems, we briefly discuss this 
application and include some numerical results regarding 
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the global maxima replacement for Algorithm I and the 
global maxima addition for Algorithm I1 not available in 
[lo] but in [9] and also refer all the details to [9], [lo]. 

Let us consider a generalized binarylike memoryless 
channel that is specified by the input space X =  [0,1], the 
output space Y,,, = {0,1,2;. ., L } ,  and the channel tran- 
sition probabilities { P(  k l x ) } ,  E ,  E rL+,. given by 

P ( k l x )  = c ~ , k X ~ ( l - X ) ~ - ~  

where C,, = L ! / k ! (  L - k ) ! .  Then the channel capacity is 
defined by 

where q,*(k) = / x p ( x ) P ( k l x ) d x .  
It is easy to see that the parameter space is characterized 

by the input space, the sample space by the output space, 
the action space by [0,1], a decision rule..by an L + 1- 
dimensional probability vector and the risk function is 

4 

For any input probability vector p the optimum output 
probability vector q,* is the Bayes rule with respect to p .  
Furthermore, by the algebraic method the BTP is satisfied 
by choosing J = L + 1, the number of channel outputs. 

The numerical results are obtained based on two differ- 
ent policies for forming new parameter sets after complet- 
ing an iteration cycle, i.e., the global maxima replacement 
(addition) and the local maxima replacement (addition) for 
Algorithm I (11). L + 1 ranges from 2 to 30 and the error 
threshold is set to be 6 X Fig. 1 shows that for each L 
Algorithms I and I1 converge to nearly the same value for 
both cases (global maxima and local maxima). (Note that 
in Figs. 1, 2, and 3, G and L are abbreviations of global 

I 

maxima and local maxima.) Table I also shows that the 
global maxima replacement (addition) generally requires 
more iterations than does the local maxima replacement 
(addition). Moreover, from Table I we also learn that both 
algorithms are indeed very efficient. In most cases only 
two or three iterations are needed to terminate execution 
(no more than 6 iterations overall). A surprising observa- 
tion from Table I shows that the global maxima addition 
for Algorithm I1 outperforms the local maxima addition 
for Algorithm I1 and even Algorithm I. This is because 
Algorithm I1 deletes all zero probability parameters (in 
this example, we delete all parameters with probabilities 
less than l o - * )  before adding new parameters. For in- 
stance, when L + 1 2  20 the global maxima addition for 
Algorithm I1 requires less parameters than L + 1 which is 
required for Algorithm I and also less than does the local 
maxima addition for Algorithm 11. On the other hand, for 
L + 1 = 14, the local maxima addition for Algorithm I 
performs better than both Algorithm I and the global 
maxima addition for Algorithm 11. By and large, this 
example shows that the global maxima addition for Algo- 
rithm I1 has better performance than Algorithm I and the 
local maxima addition for Algorithm I1 at the expense of 
requiring more iterations. However, as long as the size for 
the initial parameter set can be preset by L + 1 in advance 
without considering buffer problems through the entire 
execution, Algorithm I is generally preferred to Algorithm 
11. 

Example 4 (Estimation Problems with Squared Error Loss) 

In this example we continue to investigate Example 2 by 
implementing Algorithms I and I1 on computers for a 
general binomial distribution where the sample space con- 
sisting of observations N + 1 ranging from 2 to 30 and the 
loss function is L(f3, a )  = (f3 - a)' where f3 and a E [0,1]. 

2 4  , 
2 3  

2 2  

2 1  
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1 9  

1 8  
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1 4  

1 3  
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1 

I 

. . .  
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L + 1 = NUMBER OF OUTPUTS A ALG.IIL 
0 ALG.IG + ALGAL 0 ALG.IIG 

Fig. 1. Channel capacity versus L + 1 = number of outputs. 
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N + 1  
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Fig. 2. Minimax risk versus N + 1 = number of observations. 

I I I I I I I I I I 

2 6 1 0  14 18 22 

N + l  
A ALGIIG 0 ALGIL + ALG.IG 0 ALGIIL 

Fig. 3. Comparison of number of parameters required for Algorithms IG, IL. IIG and IIL 

The error threshold is set to be Since the conditional 
binomial distribution is symmetric with respect to 1 / 2 ,  we 
can confine ourselves to the range [0,1/2), Therefore, 
whenever a 6 E [ 0 , 1 / 2 )  is selected, its symmetric point 
1 - 19 E ( 1 / 2 , 1 ]  is also chosen. On the other hand, accord- 
ing to the moment approach, the size of iterating parame- 
ter sets, J for Algorithm I is N + 2, for we need determine 
N + 1 moments and plus one extra N + 2nd moment re- 
sulted from the numerator in (4.5). Because 1/2 is the 
midpoint of [0,1], 1 / 2  is always included in the initial 
parameter set 0'. So, we set J = 2 N  + 1 by incorporating 
the symmetric points with respect to those parameters 
chosen from [0,1/2). For instance, for N =1, we have two 
observations, and thus we need three parameters (i.e., 
0,1/2,1). This fact has been seen in the thrd  comment 

following the assumptions made in the very beginning of 
Section 11. At this moment, we would like to point out that 
in this example we chose 2 N  + 1 for J, but it does not 
mean that J must be at least 2 N + 1 .  This can be seen 
from Table I1 where, in general, the number of parameters 
for Algorithm I1 is actually less than the J chosen for 
Algorithm I for most cases, particularly, when N is in- 
creasing. The reason for choosing 2 N  + 1 for Algorithm I 
is to ensure that there are always enough parameters. The 
numerical results show that, whatever parameters we start 
with for Algorithms I and 11, the parameters 0,1/2,1 are 
always chosen and the results in Fig. 2 yielded by these 
two algorithms are very close. Fig. 3 also shows that, 
although Algorithm 11 iterates finite parameter sets with 
varying sizes, i t  generally requires much fewer parameters 
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b 

TABLE I 
A COMPARISON OF PERFORMANCE BETWEEN ALGORITHM I AND ALGORITHM 11 IN EXAMPLE 3 (TAKEN FROM [4])" 

Algorithm I Algorithm I1 
Global Maximum Local Maximum Global Maximum Local Maximum 

Channel Number of Channel ~ Number of Number of Channel Number of Number of Channel Number of 
L Capacity Iterations Capacity Iterations Input Capacity Iterations Input Capacity Iterations 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

I 30 

1.00000000 
1.08746283 
1.24790640 
1.372271 90 
1.45797721 
1.53 585 166 
1.60792294 
1.67148683 
1.72680318 
1.77801 272 
1.82583107 
1.8702675 1 
1.91 131471 
1.94962998 
1.98584264 
2.02019351 
2.05274739 
2.08367546 
2.1 1304347 
2.14113732 
2.16805408 
2.19392388 
2.21887692 
2.24267607 
2.26567689 
2.28799788 
2.30938179 
2.33017246 
2.35033665 

1 
1 
2 
1 
1 
4 
4 
5 
5 
5 
6 
5 
3 
3 
5 
5 
5 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1.- 
1.08746283 
1,24790640 
1.37227190 
1.45797721 
1.53587065 
1.60795459 
1.67149199 
1.7268223 1 
1,77802079 
1.82584637. 
1.87028438 
1.91139536 
1.94964308 
1.98588584 
2.02021339 
2.05280604 
2.08372756 
2.1 1305547 
2.14116808 
2.16810322 
2.19397183 
2.21881660 
2.24269341 
2.26568557 
2.28701704 
2.30940827 
2.3 3020603 
2.35035823 

1 2 
1 3 
2 5 
1 5 
1 6 
3 7 
3 7 
3 8 
3 12 
3 12 
3 12 
3 15 
3 14 
2 14 
3 17 
3 19 

-\. 3 18 
2 18 
2 20 
2 18 
2 21 
2 20 
2 22 
2 23 
2 24 
2 23 
2 25 
2 27 
2 28 

1.00000000 
1.08746283 
1.24790661 
1.37277190 
1.45797721 
1.53585162 
1.60791719 
1.67148664 
1.72680062 
1.77801270 
1.82583121 
1.87026667 
1.91131471 
1.94963024 
1.98584285 
2.02019326 
2.05274735 
2.08367550 
2.11304347 
2.14113735 
2.16805421 
2.19392395 
2.21876916 
2.24267615 
2.26567699 
2.28789823 
2.30938190 
2.33017246 
2.35033668 

1 
1 
2 
1 
1 
4 
4 
5 
5 
5 
6 
5 
3 
3 
5 
5 
5 
3 
3 
3 
3 
3 
3 
3 
3 
2 
3 
3 
3 

2 
3 
5 
5 
6 

11 
12 
13 
15 
16 
15 
21 
13 
18 
27 
22 
21 
23 
24 
23 
27 
26 
28 
28 
31 
32 
34 
35 
35 

1.00000000 
1.08746283 
1.24790661 
1.37227190 
1.45797721 
1.53586957 
1.607951 16 
1.67149204 
1.72682026 
1.77802110 
1.82584434 
1.87028312 
1.91138040 
1.94963458 
1.98587671 
2.02022505 
2.05280645 
2.08372758 
2.1 1307271 
2.14116790 
2.16810326 
2.19397166 
2.21881651 
2.24269314 
2.26568556 
2.28791477 
2.30940754 
2.33020748 
2.35035611 

1 
1 
2 
1 
1 
3 
3 
3 
3 
3 
3 
3 
3 
2 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

" ~ = 6 X 1 0  '. L.=l-29. 

TABLE I1 
A COMPARISON OF PERFORMANCE BETWEEN ALGORITHM I AND ALGORITHM I1 IN EXAMPLE 4" 

Algorithm I Algorithm I1 
Global Maximum Local Maximum Global Maximum Local Maxim 

Number Number Number Number Number Number Number 
of Minimax of of Minimax of of Minimax of of Minimax 

N + I  e Risk Iteration 0 Risk Iterations 0 Risk Iterations 0 Risk 

2 3 
3 5 
4 7 
5 9 
6 11 
7 13 
8 15 
9 17 

10 19 
11 21 
12 23 
13 25 
14 27 
15 29 
16 31 
17 33 
18 35 
19 37 
20 39 
21 41 
22 43 
23 45 
24 47 

0.06250000 
0.04289029 
0.02777444 
0.01705320 
0.01052182 
0.00701030 
0.00500124 
0.00377652 
0.00299463 
0.00 2 44 8 9 6 
0.00205113 
0.00174578 
0.00150441 
0.00131612 
0.00116728 
0.001 03 580 
0.00092505 
0.00081958 
0.00074127 
0.00067393 
0.00061521 
0.00056378 
0.00051843 

1 
1 
1 
1 
2 
1 
1 
1 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 

0.0625oooO 
0.04289029 
0.02777444 
0.01 705 3 20 
0.01053708 
0.00701030 
0.00500124 
0.00377652 
0.00299463 
0.00244896 
0.00205113 
0.00174578 
0.00150441 
0.00132544 
0.00116737 
0.00103580 
0.00092505 
0.00081958 
0.00074127 
0.00067393 
0.00061521 
0.00056378 
0.00051843 

1 
1 
1 
1 
3 
1 
1 
1 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

3 
5 
5 
6 

10 
10 
9 
12 
14 
13 
15 
14 
16 
17 
18 
20 
20 
21 
22 
22 
23 
25 
26 

0.0625oooO 
0.04289029 
0.02777445 
0.01678058 
0.01052687 
0.00694753 
0.00487785 
0.00374143 
0.00299448 
0.00243175 
0.00205554 
0.00170329 
0.00148033 
0.00131607 
0.00116724 
0.00103497 
0.00092446 
0.00083067 
0.00075043 
0.00065163 
0.00059350 
0.00055123 
0.00051355 

1 
2 
1 
1 
4 
3 
1 
3 
4 
2 
3 
1 
2 
2 
2 
3 
2 
2 
2 
1 
1 
2 
2 

3 
6 
5 
6 

32 
14 
9 
25 
15 
17 
17 
14 
20 
20 
21 
23 
24 
24 
25 
22 
23 
30 
31 

0.0625000 
0.0428902 
0.0277744 
0.0167805 
0.0105357 
0.0069963 
0.0048778 
0.0037725 
0.0029830 
0.0024486, 
0.0020569 
0.0017032 
0.0015173 
0.0013246 
0.0011664 
0.0010349 
0.0009244 
0.0008306 
0.0007504 
0.0006516 
0.0005935 
0.0005685 
0.0005224 
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than does Algorithm I. It is particularly true when N 
becomes large because J grows linearly in N with slope 2. 
This example shows that Algorithm I1 is generally superior 
to Algorithm I in computer implementations for squared 
error loss. In fact, Algorithm I1 needs much less computing 
time than Algorithm I. A potential application of this 
example to quantization has been discussed in some detail 
in [8]. 

VI. CONCLUSION 

Two iterative algorithms (Algorithm I and Algorithm 11) 
for solving minimax rules for general decision problems 
were presented. Both algorithms are designed based on 
iterative processes that successively select a finite set of 
parameters from the original parameter space that is gen- 
erally uncountable. By means of a sequence of improved 
finite approximations, the algorithms eventually generate 
the desired minimax rule. It has been shown in Example 3 
of Section V that Algorithm I is preferred to Algorithm I1 
in the sense that at Algorithm I iterates on a finite fixed-size 
parameter set. On the other hand, Example 4 shows that 
Algorithm I1 is better than Algorithm I in the sense that 
Algorithm I needs more parameters for iterations than 
does Algorithm 11, albeit algorithm I1 utilizes parameter 
sets with different sizes. The main difference between these 
two algorithms is that the Bayesian transitivity property is 
automatically satisfied for Algorithm 11, whereas the BTP 
must be justified before Algorithm I is used. Consequently, 
whenever it is not clear that the BTP is valid, Algorithm I1 
is always desirable. 

It is worth noting that in a recent study [ll] we have 
shown that there is a resemblance between the algorithms 
proposed in this paper and Remez’s algorithms arising in 
Chebyshev approximation theory. Based on implementa- 
tional techniques, Algorithm I is analogous to Remez’s 
second algorithm (or Remez’s exchange algorithm) and 
Algorithm I1 corresponds to Remez’s first algorithm. In 
particular, the Haar condition imposed in Remez’s algo- 
rithms has a property similar to the Bayesian transitivity 
property. This surprising discovery suggests that Algo- 
rithms I and I1 may find applications in digital filter 
design. 

APPENDIX 

CONDITIONAL DISTRIBUTION BY A POLYNOMIAL 
CONDITIONAL DISTRIBUTION 

In Section IV we showed that, with respect to some common 
loss functions, the BTP is satisfied for either a finite sample space 
or a conditional polynomial probability density function. Here 
we will prove that this property can be even carried through a 
continuous conditional probability density function by any de- 
sired degree of accuracy. Moreover, to prove this assertion, we 
further establish a general theorem that has its own interest and 
can also be applied to various Bayes problems to make argu- 
ments tractable. 

Recall that in the earlier assumptions 0 and A are compact 
and L ( 0 , a )  is jointly continuous on 0 X A .  Therefore, L is 
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uniformly bounded by a positive number M .  In addition, by the 
Stone-Weierstrass approximation theorem, for any x in X a 
continuous conditional probability density function p (  XIS) on 0 
can be approximated by a polynomial P ( x l S )  uniformly on 8 
within any assigned degree of accuracy. Let { P,(xJB)} be such a 
sequence of polynomials which uniformly approximate the 
p ( x I 0 ) .  Then for any arbitrarily small 0 < E < 1 there is a positive 
integer N ( x )  depending on x such that for n 2 N ( x )  we have 

( p (  X I S )  - P,( x l 0 )  I < c / 2  uniformly on 0, 

i.e., 

In inequality (A.1) we note that the integer N ( x )  varies when x 
ranges over the sample space X .  To find an N independent of x 
we further look at the given probability density function p ( x ) S )  
which is continuous on X X O .  It is apparent that if 0 is 
compact p ( x l 0 )  converges to 0 uniformly on 0 as llxll+ + CO. 

Accordingly, for this given E > 0, a positive number C exists such 
that p ( x I 6 )  < r / 2  uniformly on 0 whenever 11x11 > C, and in this 
case we simply let P( XIS) = 0. On the other hand, for IJxJJ I C, x 
lies in a compact set K bounded by C. Without loss of general- 
ity, we may assume that K = { x E XI llxll I C } .  

Let K , = { y ~ K I l p ( y ( S ) - p ( x ( e ) l < ~ / 2  for all S E @ } .  
Then K = U, E K, and K, is open because p ( x l 0 )  is continu- 
ous on X.  Since K is compact then there is a finite set F = { x, E 

K } such that K = U ,  , FKr, ,  where 

and some x, in K . 1 
Now let N = max,,, F N ( ~ , ) .  Then for n 2 N and any x in K 
there exists an x ,  such that x E K,, and from (A.1) we have 

i.e., 

O < p ( x ( S ) - c <  P , ( x , l S )  < p ( x ( S ) + c < l + c  (A .2)  

It is important to note that the (A.2) holds for all x E K ,  i.e., all 
llxll I C. In particular, (A.2) holds for probability density func- 
tions belonging to exponential families. Of course, if X is finite, 
(A.2) follows immediately by simply letting N = m a , ,  E u N ( x , ) .  

As we defined earlier, if p ( x , J S )  < c /2 ,  let P,,(x, IS) = 0. Hence, 
from inequality ( A . l )  e , ( x , (B )  is nonnegative and X,, F P , r ( ~ , I S )  
is bounded and greater than zero. We can define a new condi- 
tional probability mass function given 8, fp,,(x,lS), defined on F 
associated with P,,(x,lS). Let h ( 0 )  =E, ,E  FP, , (~ , IS)p(  K,,)  where 
p( K , , )  = jA5 dx and p is the Lebesgue measure. Then fP, (x , (B)  is 
defined by the following: 
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and 

FP.( x, 10 1 = f P j  x, 10 ) P (  K,, ) 
Obviously, E ,  E FPJx,  10) = 1 and F P l x ,  10) is a conditional 
probability mass function on F given 0. Notice that, although 
due to a factor h ( 0 )  appearing in the denominator of Fpn( x, le), 
FPLx,IO) is not a polynomial in 0 we will show, in the sequel, 
that the h ( 0 )  can be absorbed into the given prior considered in 
the problem by defining a new prior. Namely, if a prior a on 0 is 
considered in a Bayes problem, then we can introduce a modified 
version of a( 0 )  induced by a( e) ,  2( e) ,  as follows: 

(A.4) 
a ( @ ) h ( O )  & ( e )  = 

Therefore, if we let 

then /Pn(x,10)2(0)CPn,,  = P n ( x , l 0 ) a ( 0 ) .  The sequence of 
{ P,(x, 10)) constructed by the Stone-Weierstrauss theorem are all 
polynomials in 0 unless P , ( x , l 0 )  = 0 and the constant Cpn,, 
depends only on the given prior a and P,(x, l0)  which are fixed 
throughout the problem. In addition, notice that Cpn,, is an 
expectation of h ( 0 )  with respect to the prior a, of which h ( 0 )  is 
a finite sum of P,( x, 10) over F, and thus it is again a polynomial 
in 0. This implies that Cpn,, is indeed determined by all moments 
of the given prior a( 0 )  generated by the polynomials P,( x, 10) for 
all x, E F. 

According to the moment method described in Section IV, the 
Bayesian transitivity property works for any arbitrary polynomial 
probability density function. Hence, instead of using p ( x l 0 )  we 
would rather deal with the sequence of { Pn(x, lO)} .  

For any prior a E E and any decision function 6 E D*, we 
define a Bayes risk ?(a, 6 )  by 

and define r c ( a , 6 )  = / ~ / , , , , , ~ c L ( B , S ( x ) ) p ( x ( 0 ) a ( 0 ) d x d 8 ,  then 
it can be shown that for an arbitrarily small E 

lrc ( a, 8 )  - F, ( a, 6 )  I < c .  

This verifies the following result. 
Lemma A I :  Given continuous conditional probability p (  xl0) 

and a jointly continuous loss function, there exist a finite subset 
F in X and a sequence of polynomials { Pn(x,lO)} for some 
x, E F such that for any prior a on 0 and any decision rule 6 in 
D*, the Bayes risks defined by (A.6) converge to the original 
Bayes risk for p ( x ( 0 ) .  

As a matter of fact, a more compact form for Lemma A1 can 
be proven by straightforward justification and stated as the 
following theorem: 

Theorem A I :  Given continuous conditional probability density 
function p ( x l 0 ) ,  0 E 0, 0 compact, and an E > 0, then there 
exists a polynomial approximation j ( x l 0 )  such that the minimax 
risk using p and j differ by no more than E. Furthermore, under 
any polynomial conditional distribution and a jointly continuous 
loss function, r( . , .) will have at most No local maxima, and thus 
the BTP is satisfied. 

Although the above theorem was proven under the assumption 
that the sample space X is compact, it can be extended to the 
case of X not compact, particularly, countably infinite. By means 
of a truncation technique this can be easily justified by truncating 
the tails of X and replacing it with a single probability for the 
truncated tails, such that an increasing nested sequence of such 
truncations will converge to r( a, 6). 

The significant implication of this theorem is that whenever a 
Bayes problem is considered it suffices for us to restrict a 
continuous conditional probability density function to a class of 
specific probability mass functions on a compact space induced 
by polynomials constructed from the Stone-Weierstrass approxi- 
mation theorem so that the resulting Bayes risks will only differ 
from the original Bayes risk by a negligible amount. As a result, 
the BTP can be carried through continuous conditional probabil- 
ity by this technique. Furthermore, if we let rx, be the degree of 
P,(x,(B) and r = maxx,,Frx,, then the BTP determines J ,  the 
size of an initial parameter set, which is chosen for Algorithm I 
beforehand. In other words, J depends on r and is a function of 
r .  We demonstrate below how this technique is applied to prov- 
ing the BTP. 

If the error between r (a ,  6 )  and Fn(a, 6 )  is negligible, then in 
any Bayes problem it suffices to consider Fn(a,6) rather than 
r ( a , 6 ) .  Let aP,, E arg[min,Fn(a,6)] where 6p,m is a Bayes rule 
with respect to the prior a and the probability density function 
p .  Since the following loss functions are convex, we can restrict a 
decision policy to a nonrandomized rule and denote it by dp, , .  

1) If the loss function is square error, i.e., L ( 0 ,  d ( x ) )  = ( 0  - 
d ( ~ ) ) ~ ,  then the Bayes rule with respect to a prior 2 is given by a 
posterior conditional mean as follows: 

v 

So, this implies that the decision dlr,? ;(x) is determined by 
all moments of a generated by the polynomials P,,(x,lB) for all 
x, E F and 0. 

To prove the BTP, we assume that 0' and O2 are two 
parameter sets in 0 with the same cardinality and the Bayes rule 

dlp,, is determined by (A.7) with respect to the parameter set 
0'. To show that d," satisfies the (0',0') BTP, we must find a 
prior p on 0' such that d,r,T ;(x) = d/,,, ,j(x) for every x in X .  
As we have seen, for any x in X there exists an x, E F, x E K,r  
and from (A.7) d,p,z ,,(x) is determined by all moments of a on 
0' generated by the polynomial P,,(x,lO) and 0 in 0'. Now 
applying the moment approach described in Section V to dr,,pl ;, 
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These two equations enable us to find a p^ defined on O2 which 
corresponds to iu in Fn(a,6). Let Cpn,B _= l e 2 P ( B ) h ( 0 )  de. Then, 
from (AX) and (A.9), 

Let f i ( e ) = P ( 0 ) h ( e ) / C p n , , ;  then b is a prior on O2 and 
(A.lO) can be rewritten as follows: 

S,!P ( 6 1 fPn( x ,  IO de 

L 2 b (  e U P " (  X I  18) de 

which is exactly a Bayes decision on x ,  dfp , ,p (x )  with 
respect to the prior b on Oz. Moreover, from (A.lO) 

dfPn,B( x )  = dfPn,&( x ) ,  for all x 6 X .  

1 

This proves that dfPn,, satisfies (O', 02) Bayesian transitivity 
property. In the meantime, to apply Algorithm I we have to know 
how large J is. From (A.7) we easily derive that J 2 r + 1 where 
r = max,  E r,, and r,, is the degree of Pn(x, le). 

2) If the loss function is relative entropy, i.e., L(B, d ( x ) )  = 

l o g [ p ( x ) O ) / d ( x ) ] ,  then for any x in X there exists an x ,  such 
that x E K,, and the Bayes decision dfP, ,&(x)  with respect to a 
prior 2 is given by 

So, the decision dfp,,a( x )  is also determined by all moments of a 
on 0 generated by the polynomials P,,(x,lO) for all x ,  in F and 
Cp0,,. However, recall that 

which implies that the constant Cpn,, is also determined by all 
moments of a generated by the same polynomials Pn(x, )B)  for all 
x, in F. 

Now let 0' and O2 be two parameter subsets in 0 with the 
same cardinality. By the moment approach, there exists a j3 on 
O2 such that, for any x ,  in F, 

and thus (A.11) can be expressed as 

where 

Once again, we note that Cpn,s is also determined by all moments 
of P on 0' generated by the polynomials P,(x , (O)  for all x ,  E F. 

To prove the (e', 02) Bayesian transitivity property, we have 
to show that, for each x in X ,  

d / p " , & ( x )  = d / p " , B ( x ) >  

i.e., 

Obviously, (A.14) is not generally true. However, as we have seen 
previously, both constants CPn,, and Cp,, are, respectively, 
determined by all moments of priors a and P generated by the 
same polynomials Pn(x,le) for all x ,  E F. By the moment ap- 
proach and (A.14), Cpn,,= Cp,,B. Therefore, the (@',e2) BTP is 
satisfied for relative entropy loss. In this case from (A.ll) the size 
of an initial parameter set chosen for Algorithm I, J ,  is no less 
than r where r is defined as the same as case 1). 

Finally, when we make comparisons between the two different 
loss functions considered in cases 1) and 2), it turns out that 

1) For case l), (i.e., square error loss) it follows from (AX) that 
the Bayes rule dr, with respect to the prior iu does not depend 
on the constant dpn,, since Cpn,, is cancelled out during compu- 
tations. However, for case 2) (i.e., relative entropy loss), it can be 
seen from (A.ll) that the Bayes rule d,+ with respect to the 
prior 2 does depend on the constant CP,,, which appears in the 
denominator of drp.,,. 

2) As we have noticed, the size of an initial parameter set 
chosen for Algorithm I relies on the BTP, e.g., J 2 r + 1 for case 
l), and J 2 r for case 2). This is because in case 1) the Bayes rule 
d f p  in (AX) is determined by all moments of a generated by all 
pofynomials e)( x, 10) for all x ,  E F and 8; by contrast, in case 2) 
there is no 6 generating an extra moment of a. 

3) In spite of these differences, the BTP is satisfied for both 
cases. What is more, since in both casss the constants CP,,, and 
Cpn,B are, respectively, determined only through by the moments 
of a and ,L3 generated by the same polynomials P,,(x,lO) for all x ,  
in F, it yields that Cpn,, = Cpn,s ,  and thus these two Bayes rules 
are indeed the same, i.e., dfPn,,  = dfpn,a. 

c 
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