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Impact of Initialization on Design of Endmember
Extraction Algorithms
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Abstract—Many endmember extraction algorithms (EEAs)
have been developed to find endmembers that are assumed to be
pure signatures in hyperspectral data. However, two issues arising
in EEAs have not been addressed: one is the knowledge of the
number of endmembers that must be provided a priori, and the
other is the initialization of EEAs, where most EEAs initialize their
endmember-searching processes by using randomly generated
endmembers, which generally result in inconsistent final selected
endmembers. Unfortunately, there has been no previous work
reported on how to address these two issues, i.e., how to select
a set of appropriate initial endmembers and how to determine
the number of endmembers p. This paper takes up these two
issues and describes two-stage processes to improve EEAs. First, a
recently developed concept of virtual dimensionality (VD) is used
to determine how many endmembers are needed to be generated
for an EEA. Experiments show that the VD is an adequate mea-
sure for estimating p. Second, since EEAs are sensitive to initial
endmembers, a properly selected set of initial endmembers can
make significant improvements on the searching process. In doing
so, a new concept of endmember initialization algorithm (EIA)
is thus proposed, and four different algorithms are suggested for
this purpose. It is surprisingly found that many EIA-generated
initial endmembers turn out to be the final desired endmembers.
A further objective is to demonstrate that EEAs implemented in
conjunction with EIA-generated initial endmembers can signifi-
cantly reduce the number of endmember replacements as well as
the computing time during endmember search.

Index Terms—Automatic target generation process (ATGP),
endmember extraction algorithm (EEA), endmember initializa-
tion algorithm (EIA), iterative error analysis (IEA), maximin-
distance algorithm, unsupervised fully constrained least squares
(UFCLS) algorithm.

I. INTRODUCTION

ACCORDING to the definition given in [1], an endmember
is an idealized pure signature for a class. Endmember

extraction is one of the fundamental and crucial tasks in hyper-
spectral data exploitation. It has received considerable interest
in recent years, with many researchers devoting their effort to
developing algorithms for endmember extraction from hyper-
spectral data [2]. An ultimate goal of an endmember extraction
algorithm (EEA) is to find the purest form of each spectrally
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distinct material on a scene. Unfortunately, very little effort has
been reported on the issue of algorithm initialization, which
has a significant impact on the final selection of endmembers
produced by an EEA [3]. A similar problem is also encountered
in vector quantization, where an algorithm may be trapped
locally by an inappropriate selection of initial code words [4].
The issue of the initialization that occurs in vector quantization
also plays an important role in the EEA design [3] but has
been largely overlooked over the past years. This paper aims
to investigate, explore, and propose solutions in relation to this
neglected topic.

Overall, two primary factors have a significant impact on
an EEA. One is the adoption of an appropriate criterion to
terminate an EEA, such as application of a stopping rule, which
is implemented by either using an error threshold or setting a
predetermined number of endmembers to be searched. Since
error thresholds are usually dependent on the data properties, it
is highly complex to preset an appropriate threshold a priori
in many practical applications. Additionally, an inappropri-
ate error threshold may result in two consequences: one is
early termination of an EEA due to an insufficient number of
endmembers, and the other is a slowdown of the algorithm
due to expensive computations related to a high number of
endmembers, which is more than what it is needed for the
search.

Therefore, a more reasonable and feasible approach is to pre-
set an appropriate number of endmembers p for each algorithm
to be terminated. In this case, the determination of p becomes
critical. If p is set too low, the extracted endmembers may
not represent the data well. On the other hand, if p is set too
high, some endmembers may not be pure signatures; instead,
they may be either mixed or interfering signatures. In order to
cope with this issue, a recently developed concept of virtual
dimensionality (VD) in [5] and [6] is used to estimate the value
of p. Experiments demonstrate that the VD indeed provides a
very reliable estimate of p for each EEA.

Once the value of p is determined, a second relevant issue
is the selection of a set of appropriate p initial endmembers
to speed up the searching process. According to the algorithm
design, an optimal algorithm should not depend on the selection
of initial conditions, which can only affect the algorithm
convergence rate, albeit without altering the final results. This
is not true for many algorithms that are implemented in a
finite number of runs. For example, Newton’s method will
never converge if an initial condition is selected incorrectly [7].
As will be demonstrated, an EEA also suffers from similar
problems. Since all available EEAs are computationally ex-
pensive, the endmember-searching processes implemented by
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these algorithms are generally nonexhaustive but rather
focused on selective feasible regions. Therefore, an initial set
of selected endmembers may ultimately determine the final
set of endmembers. In this case, how to select a desired initial
set of endmembers becomes a key issue in the EEA design.

In this paper, a new concept of endmember initialization
algorithm (EIA) is introduced. More specifically, four EIAs
are proposed to produce a set of target pixels that can be used
as initial endmembers, namely: 1) automatic target generation
process (ATGP) [5], [8]; 2) unsupervised fully constrained
least squares (UFCLS) algorithm [9]; 3) iterative error analysis
(IEA) algorithm [10]; and 4) maximin-distance algorithm
[11]. Two EEAs, namely: 1) pixel purity index (PPI) [12]
and 2) N-finder algorithm (N-FINDR) [13], are selected to
study their sensitivity to initial conditions. Various scenarios
are simulated for performance evaluation and analysis. As
shown in conducted experiments, the VD actually provides a
good estimate of the number of endmembers to be used for
initialization. Additionally, our experiments also demonstrate
that many EIA-generated initial endmembers become the final
endmembers and that an EEA implemented in conjunction with
EIA-generated initial endmembers can significantly reduce
endmember replacements as well as computing time during the
course of the endmember-searching process.

The remainder of this paper is organized as follows.
Section II discusses two major issues that arise during the
initialization of EEAs. Section III develops four EIAs that
produce a set of target pixels directly from the data, which
can be used as initial endmembers. Section IV briefly describes
two EEAs (PPI and N-FINDR) to be used for comparative
study and analysis. Section V includes the development of
computer simulations to demonstrate the significant impact
of initialization issues (such as the number of endmembers
and the selection of initial endmembers) on the performance
of EEAs. Section VI includes similar experiments using real
hyperspectral data. Finally, Section VII summarizes the main
contributions of this paper and concludes with some remarks.

II. INITIALIZATION ISSUES

From a viewpoint of algorithm design, three major issues
determine the performance of an algorithm, namely: 1) initial
conditions; 2) stopping criteria; and 3) learning rules. On some
occasions, the stopping criteria are closely related to the initial
conditions, which are thresholds set to terminate an algorithm.
This section aims to probe the first two criteria, initial condition
and stopping rule, which have a significant influence on the
performance of EEAs. Over the past years, algorithms designed
for finding endmembers have mainly focused on the third issue,
i.e., learning rules. However, little work has been devoted to
algorithm initialization, which can be considered as important
as learning rules, as will be described.

A. Initial Conditions Preset to Terminate an EEA

There are generally two initial conditions that can be used
to terminate an EEA: one is to preset an error threshold ε to
terminate the algorithm. Since the selection of an appropriate

ε is usually data dependent, it is generally difficult to do so
without prior knowledge of the data [4]. On one end, if the value
of ε is set too low, the algorithm may run into a stability prob-
lem. Additionally, it may take a long time to converge while
producing more endmembers than what is actually needed.
On the other end, if the value of ε is too high, the algorithm
may terminate earlier than it should. In this case, the set of
generated endmembers may be insufficient, and some desired
endmembers will not be included. As an alternative, we can
preset the number of endmembers required to be generated, i.e.,
parameter p. In this case, a problem similar to the selection of
an error threshold ε occurs, i.e., determination of an appropriate
value for p. If the value of p is selected to be too low, then not all
desired endmembers will be extracted (specifically, those being
“weak” endmembers). On the other hand, if the value of p is
selected to be too high, some extracted endmembers may turn
out to be unwanted nonpure signatures.

Therefore, a dilemma similar to that encountered in the
selection of an appropriate value for ε also arises in the selection
of an appropriate value for p. Interestingly, this problem may
be taken care of by a new concept called VD, which was
recently developed in [5] and [6] and can be used to estimate
an appropriate value for p. Despite the fact that the VD may
not necessarily correspond to the intrinsic dimensionality (ID)
of the data, it has been shown in [5] and [6] that this criterion is
practically useful and provides a good estimate of the number of
spectrally distinct signatures in a given data set. This is because
the VD does not require prior knowledge of the data. Instead,
the VD-estimated value is determined by the false alarm prob-
ability PF , which can be directly derived from the data to be
processed. It first calculates eigenvalues for both the sample
correlation matrix and the sample covariance matrix (referred to
as correlation-eigenvalues and covariance-eigenvalues) for each
of the spectral bands. If a distinct spectral signature makes a
contribution to the eigenvalue-represented signal energy in one
spectral band, then its associated correlation-eigenvalue will
be greater than its corresponding covariance-eigenvalue in this
particular band. Otherwise, the correlation-eigenvalue would
be very close to the covariance-eigenvalue, in which case only
noise would be present in this particular band.

By applying this concept, the Neyman–Pearson detection
theory is introduced to formulate the issue of whether a dis-
tinct signature is present or not in each of the spectral bands
as a binary hypothesis testing problem, where a so-called
Neyman–Pearson detector is generated to serve as a decision
maker based on a prescribed PF (i.e., false alarm probability).
In light of this interpretation, the issue of determining an
appropriate value for p is further simplified and reduced to a
specific value of PF that is preset by the Neyman–Pearson
detector. Compared to the selection of an appropriate error
threshold ε without prior knowledge, specifying a fixed value
for PF is more reasonable and realistic for practical applica-
tions because the results are determined by the PF that an
EEA is designed to tolerate. As demonstrated in experiments,
a suitable empirical choice is PF = 10−3 [5], [6], where the
method used to estimate the VD was that by Harsanyi et al. [14],
which is referred to as the HFC method. Since this method
does not require a noise whitening process, weak signal sources
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may be obscured by noise while remaining undetected. As an
alternative, the HFC method can be modified by including a
noise whitening process as preprocessing to remove the second-
order statistical correlation. The purpose is that signal sources
can be decorrelated from the noise to achieve better signal
detection. The resulting method will be referred to as the noise-
whitened HFC (NWHFC) [5], [6].

B. Use of an Initial Set of Endmembers for an EEA

After the number of endmembers p has been determined,
a follow-up step is to select a set of initial endmembers
{e(0)

1 , e(0)
2 , . . . , e(0)

p } in order to initialize an EEA. It is in-
teresting to note that as far as we know, none of the existing
EEAs have discussed the issue of how to select such an initial
set. An appropriate selection of initial endmembers can be
very beneficial. On some occasions, it is critical to produce
correct results as well as to speed up the endmember-searching
process. As a result, the design of algorithms for finding the
appropriate initial conditions becomes highly desirable [15]. As
noted, an EEA often starts with any set of initial endmembers,
which are most likely to be randomly generated. If an EEA
performs an exhaustive search for p endmembers, then the
final results should not be dependent on what set of initial
endmembers is selected for initialization. Unfortunately, such
an exhaustive search suffers from several drawbacks. First, it is
computationally very expensive, in particular, for hyperspectral
imagery with large volumes of data. Second, it may take quite
long to find a desired set of p endmembers. Finally, it is not
feasible in many practical applications. Therefore, an efficient
EEA does not conduct a fully exhaustive search but rather
focuses on the selections of endmembers from some feasible
regions. However, these regions are generally determined by
the initial conditions and must be selected very carefully to
avoid being trapped in local optimality. Therefore, in order for
an EEA to be effective, the selected initial endmembers must be
representative and not arbitrary. Surprisingly, this issue has not
received attention in the past.

Sections V and VI demonstrate that EEAs are actually sensi-
tive to the selection of endmembers to be used for initialization.
This evidence implies that a judicious selection of initial end-
members is crucial for success in the final selection of endmem-
bers. To address this issue, four unsupervised target detection
algorithms are developed in the next section. These algorithms
can be used to produce a better set of initial endmembers, which
can speed up algorithm performance and help generate the best
possible final endmembers in terms of signature purity.

III. EIAS

The four EIA algorithms presented in this section generate
target pixels in accordance with certain criteria, such as or-
thogonal subspace projection (OSP)-based ATGP, LSE-based
UFCLS and IEA algorithms, and a simple maximin-distance
algorithm.

There are some important differences between EIAs and
EEAs. When an EEA is implemented, it assumes that the
number of endmembers is known in advance and produces p

endmembers “simultaneously.” So, for a different value of p,
an EEA generally produces a different set of endmembers. In
other words, for any given number of endmembers p, an EEA
must recalculate all the endmembers and cannot take advantage
of a set of p− 1 endmembers previously generated by the
same algorithm. In addition, these p− 1 endmembers do not
necessarily constitute a subset of the set of p endmembers
generated subsequently. In contrast, an EIA produces a set of
target pixels in a “sequential” order. A set of p EIA-generated
pixels always includes the set of previously generated p− 1
target pixels. This feature is highly desirable for an EIA because
it saves a great deal of computational time. An EEA generally
extracts endmembers in the sense of purest signatures (provided
that it is not possible to find completely pure signatures). As
a result, the spectral signatures generated by an EEA are not
necessarily real-image pixels, whereas an EIA is generally
designed to search for the target pixels of interest, even though
their spectral signatures may not necessarily be pure signatures.

A. ATGP

The ATGP algorithm was previously developed in [5] and [8]
to find potential target pixels that can be used to generate a sig-
nature matrix used for an OSP approach in [16]. Let the initial
target signature t0 be the pixel vector with a maximum length.
The ATGP begins by applying an orthogonal subspace projector
P⊥U = I−U(UT U)−1UT with U = [t0] to every pixel vector
r in the data. It then finds a target signature, which is denoted
by t1, with the maximum absolute projection in 〈t0〉⊥ produced
by P⊥t0 , which is the space orthogonal to the space linearly
spanned by t0. A second target signature t2 can then be found
by applying another orthogonal subspace projector P⊥[t0t1] with
U = [t0 t1] to the original image, where the target signature
that has the maximum orthogonal projection in 〈t0, t1〉⊥ is
selected as t2. The preceding procedure is repeated until a set
of target pixels {t0, t1, . . . , tp−1} = t0 ∪Up−1 is extracted.

B. UFCLS

The UFCLS algorithm takes advantage of the fully
constrained (i.e., abundance sum-to-one and nonnegativity
constraints) least squares (FCLS) method developed for
unsupervised linear spectral unmixing [5], [9]. It first finds the
pixel vector with the maximum length and selects it as a desired
initial target denoted by t0. It then assumes that all other pixels
in the image scene are pure pixels made up of t0 with
100% abundance. Of course, this is not generally true. Thus, it
subsequently finds a pixel that has the largest least squares error
(LSE) from t0 and selects it as the first target pixel denoted by
t1. The FCLS method is then used to estimate the abundance
fractions for t0 and t1, which is denoted by α̂

(1)
0 (r) and α̂

(1)
1 (r),

respectively, for each pixel vector r. The superscript indicates
the number of iterations that have already been executed.

Then, the algorithm approximates r by an optimally
constrained linear mixture of t0 and t1 given by α̂

(1)
0 (r)t0 +

α̂
(1)
1 (r)t1, and the pixel that yields the largest LSE from its

estimated mixture is selected as the second target pixel t2.
The same procedure is repeated until a set of target pixels
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{t0, t1, t2, . . . , tp−1} = {t0}∪{t1, t2, . . . , tp−1} is extracted.
When the UFCLS algorithm is terminated, the final generated
target set {t0, t1, . . . , tp−1} is selected as a set of initial

endmembers {e(0)
1 , e(0)

2 , . . . , e(0)
p } for an EEA.

C. IEA

The IEA algorithm proposed in [10] is similar to the UFCLS
algorithm in the sense that both make use of FCLS-based linear
spectral unmixing to search for possible endmembers. In this
paper, we use a special case of the IEA algorithm in which
the final spectra obtained by the algorithm are not obtained
as averaged values of a set of pixels but as real pixels in the
data instead. Therefore, the only difference between the UFCLS
algorithm and our version of the IEA algorithm is the starting
value that each algorithm uses. While the UFCLS selects the
pixel vector with the maximum length as the initial target pixel,
the IEA algorithm selects the mean spectrum of the data to start
its searching process.

D. Maximin-Distance Algorithm

In this subsection, we describe a very simple EIA called
the maximin-distance algorithm, which has been commonly
used in pattern recognition applications [11]. It can generate
a reasonably good set of initial endmembers.

Let the first initial endmember obtained be the pixel vector
with the maximum length, i.e., e1 = arg{maxr rT r}. Then, for
each 2 ≤ j ≤ p, the jth endmember ej with the largest dis-
tance to the set Sj−1 = {e1, e2, . . . , ej−1} is defined and found
as the following expression: ej = arg{maxr d(r, Sj−1)},
where d(r, Sj−1)=min1≤k≤j−1 d(r, ek) = min{d(r, e1), d(r,
e2), . . . , d(r, ej−1)}. It is worth noting that when j = 2, then
S1 = {e1}, in which case e2 = arg{maxr d(r, e1)}. It should
also be noted that the distance measure used in the maximin-
distance algorithm can be any spectral similarity measure such
as the Euclidean distance, Spectral Angle Mapper (SAM), or
spectral information divergence (SID) [5]. We rely on SAM to
produce a set of initial endmembers {e(0)

1 , e(0)
2 , . . . , e(0)

p } using
the maximin-distance algorithm.

IV. EEAS

Two well-known EEAs have been considered for our com-
parative study and analysis, i.e., the PPI in [12] and the
N-FINDR algorithm in [13]. The reason for our selection
is based on the fact that PPI has been widely available via
the Research Systems ENVI software package [17], whereas
N-FINDR has been openly used in the public domain for
endmember extraction.

Due to the lack of detailed implementations of these two
algorithms, we intend to offer our own understanding of these
two algorithms by providing detailed implementations. Hope-
fully, these experiments may allow any user who is interested
in the two algorithms to repeat our experimental results without
having to apply particular software packages such as ENVI.
It should be pointed out that our implementations have been
verified by direct comparisons to the original algorithms and by
using a variety of input data sets, where their produced results

have been the same in all cases. The step-by-step descriptions
of these algorithms are given next.

A. PPI

The PPI algorithm by Boardman et al. [12] works as a
simple technique designed to search for a set of vertices of a
convex hull in an L-dimensional hyperspectral image cube. The
algorithm is initialized by a large set of randomly generated
L-dimensional vectors called “skewers,” which is denoted by
{skewerj}, where a skewer is defined as a random unit vector
that is used to “skew” the data, i.e., to find extreme pixels in
the direction of each skewer. Unfortunately, users of the ENVI
software cannot freely choose their own initial endmembers to
initialize PPI [17]. In order to adapt PPI to any set of initial
endmembers, we delineate the steps carried out by our own
version of PPI. A step-by-step description thus follows.

Step 1) Preprocessing. Apply a maximum noise fraction
(MNF) transformation [18] (or a so-called noise-
adjusted principal component (NAPC) in [19]) to
reduce the data dimensionality from L to p− 1.

Step 2) Initialization. Let {skewerj} be a large set of k
randomly generated L-dimensional “skewers,” and
let t be a preset threshold value.

Step 3) Skewer projections. For each skewerj , all the data
sample vectors are projected onto skewerj to find
sample vectors at their extreme positions to form
an extremal set for skewerj , which is denoted
by Sextrema(skewerj). Despite the fact that a dif-
ferent skewerj generates a different extremal set
Sextrema(skewerj), it is very likely that some
sample vectors may appear in more than one ex-
tremal set.

Step 4) Candidate selection. Define an indicator function
IS(r) of a given set S as

IS(r) =
{

1; if r ∈ S
0; if r 
∈ S

. (1)

Using the preceding function, select the sample
vectors that yield the t largest values of NPPI(r) =∑

j ISextrema(skewerj)(r).
Step 5) Endmember selection. Load the set of selected

{ri}ti=1 pixels in an L-dimensional visualization
tool [17] and manually select a subset of p ≤ t pixels
{ej}pj=1 ⊆ {ri}ti=1, which fall at the corners of the
input data cube.

All the steps executed in the preceding PPI algorithm
[(except step 5), which is subject to human manipulations]
have been verified via extensive experiments using Research
Systems ENVI 3.6, where both versions produced the same
results. The total number of runs is determined by the number of
skewers used throughout the process, and the set of final pixels
{ri}ti=1 will strongly depend on the selection of skewers, which
are generated by a random process.

Our aim in this paper is to use the set of spectrally distinct
pixels produced by an EIA as skewers for the PPI, instead
of using randomly generated skewers. It should be noted that
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the PPI only generates a list of candidates from which final
endmembers must be manually selected. A (subjective) manual
selection procedure is consequently performed by successively
projecting the data toward lower dimensional spaces using the
L-dimensional visualization tool available from Research Sys-
tems ENVI 3.6. To compare other methods, final endmembers
are not generated as mean spectra of pixel clusters near the ex-
tremes of skewer projections. Instead, individual image pixels
falling at the corners of the data cloud are selected, and the
resulting pixel signatures are then used to produce the final end-
member set. In this case, an endmember is actually a pixel rep-
resenting a pure pixel. It can also be called an endmember pixel.

B. N-FINDR

Another common EEA is the N-FINDR, which was de-
veloped by Winter [13]. This algorithm assumes that the
L-dimensional volume formed by a simplex with (L + 1) ver-
tices specified by the purest pixels is always larger than those
formed by any other combination of (L + 1)-dimensional pixel
vectors. This general idea was described in [13], but this source
lacked a detailed step-by-step algorithmic implementation. The
steps to implement the N-FINDR are given as follows.

Step 1) Preprocessing. Apply MNF or NAPC to reduce data
dimensionality from L to p− 1.

Step 2) Initialization. Let {e(0)
1 , e(0)

2 , . . . , e(0)
p } be a set of

initial endmembers randomly generated from the
data. It should be noted that the original N-FINDR
algorithm description in [13] does not provide any
information about how to determine the number of
endmembers p to be extracted.

Step 3) Volume calculation. At iteration k ≥ 0, find
V (e(k)

1 , e(k)
2 , . . . , e(k)

p ) defined by

V
(
e(k)
1 , e(k)

2 , . . . , e(k)
p

)
=

∣∣∣∣det
[

1 1 · · · 1
e(k)
1 e(k)

2 · · · e(k)
p

]∣∣∣∣
(p− 1)!

(2)

which is proportional to the volume of the sim-
plex with vertices e(k)

1 , e(k)
2 , . . . , e(k)

p denoted by

S(e(k)
1 , e(k)

2 , . . . , e(k)
p ).

Step 4) Simplex replacement. For each sample vector r, re-
calculate the volumes of p simplexes V (r, e(k)

2 , . . . ,

e(k)
p ), . . . , V (e(k)

1 , e(k)
2 , . . . , r)denoted byS(r, e(k)

2 ,

. . . , e(k)
p ), . . . , S(e(k)

1 , e(k)
2 , . . . , r). Each of the pre-

ceding simplexes is formed by replacing one end-
member e(k)

j with the sample vector r. If none of

these p recalculated volumes is greater than V (e(k)
1 ,

e(k)
2 , . . . , e(k)

p ), then no endmember in e(k)
1 , e(k)

2 ,

. . . , e(k)
p is replaced. Otherwise, the endmember

absent in the combination resulting in the largest
volume among the p simplexes aforementioned is
replaced by the sample vector r. In this case, let
us assume that such an endmember is denoted by
e(k+1)

j . A new set of endmembers is then produced
by letting e(k+1)

j = r and e(k+1)
i = e(k)

i for i 
= j.

Let k← k + 1, and then go to step 3), (this process
is repeated until all the sample vectors in the data are
exhausted).

As seen in step 4), repeated replacements are required before
the algorithm arrives at the final set of desired endmembers. In
order to avoid many unnecessary replacements in step 4); the
algorithm can greatly benefit from an adequately selected set of
initial endmembers.

Before concluding this section, a comment is worth being
reiterated. While an EEA generates p endmembers simultane-
ously, an EIA produces one target pixel at a time “sequen-
tially.” Therefore, when the value of p is changed, the EEA
must be reimplemented as opposed to an EIA, which always
takes advantage of the target pixels previously generated. It
is realized by applying a smaller value of p, hence, with no
need to generate all the target pixels again. More specifically,
let us assume that p target pixels have already been generated.
In order for an EIA to produce q target pixels, with q > p, we
would only have to generate p + 1, p + 2, . . . , q − 1, q target
pixels, without having to refind a whole set of q target pixels.
This benefit allows us to save a vast amount of computing time.

V. SYNTHETIC-IMAGE EXPERIMENTS

Synthetic images are used via computer simulations to
demonstrate the significant impact of initialization on endmem-
ber extraction. A major advantage of using synthetic imagery is
that all the details of the simulated images are known under
a completely controllable environment because they can be
manipulated individually and precisely. As a result, algorithm
performance can be examined objectively and impartially. To
do so, the EEAs in Section IV will be used to substantiate
our experimental results, and EIA-generated pixels will be
extracted directly from the simulated synthetic images by using
the algorithms described in Section III, which do not necessar-
ily produce pure signatures as an EEA tends to do. In the use
of those pixels as initial endmembers, they are referred to as
endmember pixels instead of endmembers.

The reflectance spectra of ten U.S. Geological Survey
(USGS) ground-truth mineral spectra (alunite, budding-
tonite, calcite, kaolinite, muscovite [see Fig. 1(a)], chlorite,
jarosite, montmorillonite, nontronite, and pyrophilite [see
Fig. 1(b)] have been managed for computer simulations.
All signatures are available online (http://speclab.cr.usgs.gov/
spectral-lib.html). The ten signatures in Fig. 1 simulate a square
synthetic image scene (designated by CS1) with a size of
100 × 100 pixels. The four corner pixels of the image labeled
1, 2, 3, and 4 were simulated by the pure spectral signatures of
alunite, buddingtonite, calcite, and kaolinite in Fig. 1(a), with
the center pixel simulated by the pure signature of muscovite
and labeled 5 (see Fig. 2).

The signature abundance decreased linearly at the four
corner pixels 1, 2, 3, and 4 [see Fig. 2(a)–(d)] and at the
center pixel 5 [see Fig. 2(i)]. The images in Fig. 2(a)–(f)
were simulated by assuming that the pixels located at the
center of an imaginary circle consist of 100% abundance, with
their immediate neighboring pixels made up of progressively
reduced (and regularly decreasing) abundance fractions, until
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Fig. 1. USGS spectra. (a) Alunite, buddingtonite, calcite, kaolinite, and muscovite. (b) Chlorite, jarosite, montmorillonite, nontronite, and pyrophilite.

Fig. 2. Abundance maps for minerals in the simulated CS1 scene,
where white indicates 100% abundance and black indicates 0% abundance.
(a) Alunite. (b) Buddingtonite. (c) Calcite. (d) Kaolinite. (e) Chlorite.
(f) Jarosite. (g) Montmorillonite. (h) Pyrophilite. (i) Muscovite.

a fraction of 0% is simulated outside the imaginary circle. The
radii of the imaginary circles centered at the pixels labeled
1, 2, 3, and 4 in Fig. 2(a)–(d) were 60 pixels in all cases,
whereas the radius of the imaginary circle centered at pixel
5 in Fig. 2(i) was 25 pixels. Four other nonpure signatures
(90%-chlorite/10%-nontronite, 80%-jarosite/20%-nontronite,
70%-montmorillonite/30%-nontronite, and 60%-pyrophilite/
40%-nontronite) were simulated and placed halfway between a
pair of any two corner pixels. They were labeled 6, 7, 8, and 9,
as shown in Fig. 2(e)–(h). Purity in signatures also decreased
linearly at these four middle pixels. In this case, the radii of the
imaginary circles centered at those pixels in Fig. 2(e)–(h) were
49 pixels.

There are only five pure pixels, which are labeled 1, 2, 3,
4, and 5, in the scene. There are also four semipure pixels
labeled 6, 7, 8, and 9, which contain samples of signatures made
up of 90%-chlorite, 80%-jarosite, 70%-montmorillonite, and
60%-pyrophilite, respectively. Except for the pixels located at
the four corners and the center, which were pure, all the pixels

TABLE I
VD ESTIMATES FOR CS1 AND CS2 WITH VARIOUS

FALSE ALARM PROBABILITIES

in the synthetic image are mixed either in a binary mixture or a
ternary mixture. Finally, it should be noted that the abundance
fractions of all the simulated image pixels in the maps in Fig. 2
are fully constrained, i.e., they satisfy both abundance sum-to-
one and abundance nonnegativity constraints.

A different synthetic image (based on the previous one
and designated as CS2) was also generated. Its management
was carried out as follows: First, brightness variations were
simulated by replacing the muscovite mineral in Fig. 2(i) by a
shade endmember. The map in Fig. 2(i) was consequently used
as a mechanism to scale other spectra in the scene by a number
between 0 and 1. Second, slight variations of every considered
material (which are observed in real-world applications) were
simulated by using various types of randomly used minerals.
In particular, different spectra were used, such as 6 (for alu-
nite), 2 (buddingtonite), 3 (calcite), 8 (kaolinite), 6 (chlorite),
9 (jarosite), 10 (montmorillonite), 3 (pyrophillite), and 5 (non-
tronite), which are all available at the USGS library. Gaussian
noise with a 30 : 1 signal-to-noise ratio (SNR), as defined in
[16], was added to the two synthetic scenes aforementioned to
simulate contributions from ambient (clutter) and instrumental
sources.

To estimate the number of endmembers in CS1 and CS2,
both the HFC and NWHFC methods were applied. Table I lists
various values of p that are estimated for CS1 and CS2 by the
two methods with different false alarm probabilities. As shown
in Table I, both HFC and NWHFC consistently estimated the
VD as p = 9 for CS1, which is the same number for spectrally
distinct signatures present in the synthetic image. The table also
reveals that p = 9 was a good value for the VD as estimated by
both HFC and NWHFC in CS2 with PF ∈ [10−4, 10−5].

Table II shows the signature purity (by means of percent-
ages) in the nine pixels extracted from CS1 by the four EIAs
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TABLE II
SIGNATURE PURITY OF THE NINE PIXELS EXTRACTED BY THE FOUR EIAS AND BY SEVERAL COMBINATIONS OF EIAS/EEAS FROM SCENE CS1

EXPRESSED AS THE FRACTIONAL ABUNDANCE (IN PERCENTAGE) OF THE MOST PREDOMINANT MINERAL SIGNATURE FOR EACH EXTRACTED PIXEL

TABLE III
SIGNATURE PURITY OF THE NINE PIXELS EXTRACTED BY THE FOUR EIAS AND BY SEVERAL COMBINATIONS OF EIAS/EEAS FROM SCENE CS2

EXPRESSED AS THE FRACTIONAL ABUNDANCE (IN PERCENTAGE) OF THE MOST PREDOMINANT MINERAL SIGNATURE FOR EACH EXTRACTED PIXEL

and several combinations of EIAs/EEAs. Only the fractional
abundance of the most predominant signature in each extracted
pixel is reported. Most EIAs extracted pixels that are close to
the five pure pixels (100% abundance), which are located at the
vertices and center of the scene. The IEA algorithm performed
slightly better than ATGP for initial endmembers, whereas the
maximin algorithm provided the lowest performance rate.

As revealed in Table II, the four EIAs were unable to locate
the purest versions of “mixed” (semipure) endmembers: chlo-
rite (90% abundance), jarosite (80%), montmorillonite (70%),
and pyrophillite (60%). In contrast, as the four EIAs were used
to initialize the PPI and N-FINDR, the pixels extracted by both
algorithms were closer to the purest form of each spectrally
distinct material in the scene. Interestingly enough, Table II
discloses lower signature purity in the case of endmembers
extracted by EEAs, in particular, for the most highly “mixed”
endmembers, when random initial endmembers were used to
initialize the PPI and N-FINDR. Since the way of generating
random initial endmembers in the original N-FINDR algorithm
by Winter is not available in [13], their original software has
also been run for comparison purposes, and similar results have
been reached.

Table III shows the results obtained for the CS2 scene, where
the IEA algorithm provides the best initial endmembers in terms
of signature purity for the four tested EIAs. In turn, ATGP
yields a highly similar performance, being able to extract the
shade endmember at the center of the scene in pure form.

As the results in Tables II and III imply, ATGP seems to
perform best in combination with PPI and slightly better than
the UFCLS and IEA algorithms in combination with N-FINDR.
This conclusion indicates that a judicious selection of initial
endmembers can be beneficial to the endmember-searching
process. Using random initial endmembers tends to cause sig-
nificant drops in signature purity for both pure and “mixed”
endmembers. Additionally, we have observed that PPI produces
the same final set of endmembers when the number of ran-
domly generated skewers has been set to k = 1000 or above
(values of k = 104, 105, and 106 were also tested). Based on
the preceding experiment, we have set the cutoff threshold
parameter t to the mean of the PPI scores being obtained after
k = 1000 iterations. These parameter values agree with the
previous scores in [2].

For illustration purposes, Table IV cross-tabulates the num-
ber of replacements and computing time in seconds (measured
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TABLE IV
NUMBER OF REPLACEMENTS AND COMPUTING TIME MEASURED

FOR EIAS AND EIA + EEAS FOR CS1 AND CS2

in a 512-MB RAM personal computer with a 2.6-GHz AMD
Athlon processor). This cross measurement is performed for
several combinations of EIAs/EEAs, where the computing time
for the tested EIAs is also reported in seconds. Two main
observations need to be made. First, not providing the number
of replacements for the random/PPI combination in Table IV is
due to the fact that in this case, the initial skewers are artificially
generated unit vectors (i.e., not real pixels in the input data).
However, it is worth mentioning that the number of distinct
pixels that are selected at least once as extremes throughout the
process is 36 in the case of CS1 and 41 in the case of CS2.
Second, the computing times calculated for PPI do not include
the manual step of the algorithm (i.e., they were calculated by
merely following steps 1)–4).

In the case of the N-FINDR, when used with EIA-generated
pixels as initial endmember pixels, a much smaller number of
replacements is observed in comparison with its initialization
made by random endmembers. We should point out that the
number of replacements for Winter’s N-FINDR algorithm has
not been included in Table IV because we lacked enough
specific knowledge about the initial (randomly generated) end-
members in the original algorithm [13].

Using EIAs to initialize EEAs often results in a reduction
of computing time. Since the two synthetic images used for
computer simulations are relatively small, improvement over
computational performance has not been significant. Such an
enhanced working rate has especially been lower than the
performance reported for a real hyperspectral data set, as shall
be examined in the next section.

VI. REAL-IMAGE EXPERIMENTS

The image scene in Fig. 3 was selected for real-data exper-
iments. It was collected by the AVIRIS spectrometer over the
Cuprite Mining District, NV, in 1997. The scene is available
online at http://aviris.jpl.nasa.gov/html/aviris.freedata.html and
consists of 350 × 350 pixels and 224 bands.

The data set is well understood mineralogically, a fact that
has made this scene a standard test site for validation and quan-

Fig. 3. Spectral band # 50 (827 nm) of the AVIRIS Cuprite scene.

TABLE V
VD ESTIMATES FOR THE AVIRIS CUPRITE SCENE WITH

VARIOUS FALSE ALARM PROBABILITIES

titative assessment of EEAs. The data set was also atmospher-
ically corrected and available in reflectance units. Such a
correction enables the results to be related to the USGS labo-
ratory reflectance data (available at http://speclab.cr.usgs.gov).
Prior to the analysis, 105–115 and 150–170 bands were re-
moved due to water absorption and low SNR.

The mineral signatures shown in Fig. 1 appear prominently
exposed and in pure form in the Cuprite scene, as indicated
by a USGS Tetracorder map that shows the spatial distri-
bution of minerals in the area (at http://speclab.cr.usgs.gov/
cuprite95.tgif.2.2um_map.gif). This map reveals several areas
made up of pure mineral signatures, with the buddingtonite
and calcite minerals often appearing as anomalies, along with
spatially homogeneous areas made up of alunite, kaolinite,
and montmorillonite at both sides of the road, crossing the
area from north to south. This area includes the well-known
“montmorillonite playa,” which is located at the rightmost
bottom corner of the scene. Additional minerals present in the
area include chalcedony (which also appears in spatially ho-
mogeneous areas), dickite, halloysite, andradite, dumortierite,
and sphene, where the latter three minerals have been recently
reported to be present [20]. Most mixed pixels in the scene
consist of alunite, kaolinite, and/or muscovite.

The number of endmembers p has been first estimated using
the VD concept. Table V tabulates various values of p calcu-
lated via the HFC and NWHFC methods (with different false
alarm probabilities PF ), where a reasonable estimate for the
VD seemed to be 22 when PF was set to 10−3 or 10−4. This
number was also in accordance with the number of distinct
minerals labeled in the USGS Tetracorder map. The results in
Table V are quite similar, meaning that the spectra representing
pure mineral signatures have consistently been extracted, and
most of the extracted pixels are overlapped for different values



PLAZA AND CHANG: IMPACT OF INITIALIZATION ON DESIGN OF ENDMEMBER EXTRACTION ALGORITHMS 3405

Fig. 4. Twenty-two initial endmember pixels, labeled in order, generated
by four EIAs for the Cuprite image scene. (a) ATGP. (b) UFCLS. (c) IEA.
(d) Maximin.

of p. Therefore, only the experiments for a case study with
p = 22 are discussed.

Fig. 4 shows the 22 target pixels (labeled in order) gener-
ated by the four considered EIAs. The pixel locations can be
assessed by using the reference USGS Tetracorder map. Using
these EIA-generated target pixels as initial endmember pixels,
the PPI and N-FINDR algorithms have been able to extract
22 endmember pixels. The number of skewers used for PPI
has been empirically set to k = 104, and t has been set to the
mean of PPI scores obtained after k = 104 iterations [2]. On
the other hand, Table VI shows the SAM values [5] between
the endmembers in the final set extracted by different EIA/EEA
combinations and their corresponding spectral signatures in
the USGS library. Small SAM values indicate a high spectral
similarity. It is worth noting that in several cases, different pure
variants of the same mineral were extracted as different end-
members, in particular, for the alunite, kaolinite, and muscovite
minerals. In those cases, the table shows the SAM scores for
each of the endmembers associated with the variants of the
same mineral. The numbers in parentheses indicate the number
of times each EIA/EEA combination achieved the minimum (or
equal minimum) SAM score (out of 22).

As shown in Table VI, the ATGP/PPI and ATGP/N-FINDR
combinations result in the largest number of minimal SAM
values among all considered EIAs. These results are consis-
tent with those found previously in the computer simulations.
On the other hand, the maximin/PPI and maximin/N-FINDR
combinations were the least effective in real-data experiments,
as in the case of the computer simulations. Table VI also
demonstrates that atmospheric transmission effects were partic-
ularly relevant in specific minerals such as the two variants of

kaolinite, halloysite, or the andradite (the SAM values for these
minerals were generally higher than those reported for other
minerals). This situation reveals the importance of atmospheric
corrections in hyperspectral data processing. Overall, Table VI
indicates that an intelligent algorithm initialization can result in
improved endmembers according to signature purity criteria.

Table VII tabulates the computing time performed by the
four EIAs in seconds along with the number of replacements
and computing time for PPI (using EIA-generated initial end-
members) and N-FINDR (using both random initial endmem-
bers and EIA-generated endmembers). The overall number of
pixels selected as extremes by the random/PPI combination
is 82, resulting in a highly significant computation time for
the algorithm (the times reported in Table VII only refer to
steps 1)–4) of PPI). The rightmost column in Table VII lists
the number of final endmember pixels overlapped with the
initial endmembers for each EIA/EEA combination. Twelve
out of 22 ATGP-generated initial pixels turn out to be the
final endmembers for PPI, while ten out of 22 ATGP-generated
target pixels end up being final endmembers for the N-FINDR.
Both the UFCLS and IEA algorithms also produce many initial
pixels that became final endmembers for PPI (ten for both the
UFCLS and IEA algorithms) and N-FINDR (five for UFCLS
and seven for IEA).

ATGP has proved to be the most suitable EIA in terms of final
overlapped endmember, as opposed to maximin, which seemed
to be the least effective. A great deal of saving is also evident
in terms of the number of replacements and computing time,
to which using EIA-generated pixels as initial endmembers
leads. Although replacements and overlapped pixels have not
been included in Winter’s N-FINDR algorithm, a computation-
ally effective software version of the N-FINDR is available.
Unfortunately, it has been run as a software package, and
knowing how the initial endmembers were selected has been
unfeasible. Such an improvement over computing time may
be due to the use of a programming language such as C++,
which is in contrast with our own higher level implementation
in Matlab being significantly slower. The experiments may thus
entail significant improvement over our EIA/EEA algorithms
for future work.

Finally, we would like to emphasize that our proposed
EIA/EEAs have been evaluated by a qualitative cross validation
among different spectral unmixing techniques. The objective
has been to observe if the improvements derived from the EIA
application to the final unmixing can be significant. The two
used methods for evaluation were fully constrained (FCLSU)
and unconstrained linear spectral unmixing (ULSU) [5]. Quan-
titative experiments demonstrated that the use of EIAs (instead
of random endmembers) to provide initial conditions for the
PPI and N-FINDR generally resulted in very similar abundance
fractions estimated by both FCLSU and ULSU. A common
indicator of poor model fitting and/or inappropriate selection
of initial endmembers is estimation of negative abundance
fractions by ULSU. This situation was very rarely observed
when an EIA was used for initialization. In contrast, a much
more significant fraction of negative fractional abundances was
observed when random endmembers were applied to the initial
condition.
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TABLE VI
SAM-BASED SPECTRAL SIMILARITY SCORES BETWEEN THE USGS MINERAL SPECTRA AND THEIR CORRESPONDING ENDMEMBER

PIXELS PRODUCED BY SEVERAL COMBINATIONS OF AN EIA FOLLOWED BY AN EEA

TABLE VII
NUMBER OF REPLACEMENTS AND COMPUTING TIME MEASURED FOR

EIAS AND EIA + EEAS FOR THE AVIRIS SCENE. THE NUMBER OF

OVERLAPPED PIXELS BETWEEN THE INITIAL AND FINAL

ENDMEMBER SETS ARE ALSO REPORTED FOR

EACH EIA/EEA COMBINATION

VII. CONCLUSION

This paper investigates two issues arising in EEA initializa-
tion that are crucial for algorithm design and yet have been
generally overlooked. The first major issue is determination of
the number of endmembers used for an EEA. This problem
can be resolved by using the concept of VD. According to our
experiments, the VD provides a good estimate of the number
of endmembers. The second major issue is how to produce an
appropriate set of initial endmembers to be used for an EEA.
This problem can be taken care of by introducing the concept
of EIA, which produces a set of target pixels used to initialize an
EEA. To meet this need, four algorithms are developed, includ-
ing the ATGP, the UFCLS algorithm, IEA, and the maximin-
distance algorithm. Experimental results reveal that the ATGP
outperforms the other EIAs on both synthetic and real-image

experiments. This algorithm was only slightly slower than
maximin but much faster than all other initialization methods
tested in this paper. Additionally, experiments also demonstrate
that an EIA not only can speed up algorithm performance
but also can produce a set of good initial endmembers, many
of which eventually become the final endmembers. Finally,
despite the PPI and N-FINDR having been known in public
domain for years, their detailed descriptions have not been
available for users who might be interested in such algorithms
without the need of using the software packages. The step-
by-step algorithmic implementations presented in this paper
may offer an additional benefit to those users.
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