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Abstract. The hidden Markov model (HMM) has been widely used in
speech recognition where it models a speech signal as a doubly sto-
chastic process with a hidden state process that can be observed only
through a sequence of observations. We present a new application of
the HMM in hyperspectral image analysis inspired by the analogy be-
tween the temporal variability of a speech signal and the spectral vari-
ability of a remote sensing image pixel vector. The idea is to model a
hyperspectral spectral vector as a stochastic process where the spectral
correlation and band-to-band variability are modeled by a hidden Markov
process with parameters determined by the spectrum of the vector that
forms a sequence of observations. With this interpretation, a new HMM-
based spectral measure, referred to as the HMM information divergence
(HMMID), is derived to characterize spectral properties. To evaluate the
performance of this new measure, it is further compared to two com-
monly used spectral measures, Euclidean distance (ED) and the spectral
angle mapper (SAM), and the recently proposed spectral information
divergence (SID). The experimental results show that the HMMID per-
forms better than the other three measures in characterizing spectral
information at the expense of computational complexity. © 2001 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1404430]
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information divergence; hyperspectral images; spectral angle mapper; spectral
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1 Introduction

The advent of recent remote sensing instruments has
nificantly improved capability of ground-based data colle
tion in many fields such as agriculture, geology, geograp
law enforcement, defense, etc.1 For example, two hyper-
spectral sensors, 224-band AVIRIS~airborne visible/
infrared imaging spectrometer! and 210-band HYDICE
~hyperspectral digital imagery collection experiment!, that
are currently being used and operated in an airborne p
form implement hundreds of spectral channels to unco
many material substances that generally are resolved
multispectral sensors with difficulty. Since a scene pixe
usually represented by a column vector, where each c
ponent contains specific spectral information provided
one particular channel, the more channels are used,
more spectral information is available. As a result, a hyp
spectral image pixel vector possesses much richer spe
information than does a multispectral image pixel vec
and may also have subtle information that a multispec
image pixel vector may not have.

However, due to noise and atmospheric effects, a m
rial substance, referred to as the endmember,2 may be rep-
resented by different spectral signatures from pixel to pi
during data acquisition and varies with different degrees
its mixture with background signatures. To account for su
spectral variability, an information theoretic criterion-bas
hyperspectral measure, spectral information diverge
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~SID!, was recently developed3 and has shown some suc
cess in spectral characterization. It models the spectrum
a hyperspectral image pixel vector as a random variabl
capture the stochastic behaviors of the pixel vector. T
similarity between two pixel vectors is then measured
the SID. The results were compared to several commo
used metrics, such as Euclidean distance4 ~ED! and spectral
angle mapper2~SAM!, and were shown to be more effectiv
than ED and SAM in the sense of capturing the spec
similarity and variability.3

In this paper, we present another statistical approach
makes use of a hidden Markov model~HMM ! to character-
ize the unobserved and hidden spectral properties of a
perspectral image pixel vector. The HMM has been wid
used in speech recognition5–7 to model a speech signal as
doubly stochastic process with a hidden state process
can be observed only through a sequence of observati
Since the temporal variability of a speech signal is simi
to the spectral variability of a remote sensing image pi
vector, the same idea can be applied to a hyperspe
spectral vector. It makes use of a hidden Markov proces
characterize the spectral correlation and band-to-band v
ability where the model parameters are determined by
spectrum of the pixel vector that forms an observation
quence. In speech processing, the same word spoke
different times generally results in different speech sign
such as pitches. This is also true for the case that the s
trum of the same endmember varies from pixel to pix
2277© 2001 Society of Photo-Optical Instrumentation Engineers
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Du and Chang: Hidden Markov model approach . . .
because it may be mixed with various endmembers suc
background or natural object signatures. Using the HM
as an underlying process that describes the unobse
spectral properties, a new HMM-based spectral meas
referred to as the HMM information divergence~HMMID !,
is derived for spectral characterization. Because the HM
has been successfully applied to speech recognition,
HMMID may also provide new insight into spectral anal
sis of hyperspectral imagery.

To evaluate the performance of the HMMID, the ED, t
SAM and the SID are used for comparison. The ED and
SAM capture the geometric difference between the spe
of two pixel vectors and there is no probabilistic descr
tion involved in these measures. Therefore, the ED and
SAM can be viewed as deterministic spectral metrics.
contrast, the SID and the HMMID are stochastic measu
that introduce the concept of probability to describe
spectral band-to-band correlation. Compared to the S
which models a hyperspectral image pixel vector as a r
dom variable, the HMMID assumes that each pixel can
characterized by an HMM with the hidden state proc
estimated from its spectrum. The resulting HMM is th
used to describe the unobserved spectral properties. A s
lar approach was also found in a Kalman filtering-bas
linear unmixing method that used a state equation to
scribe the interpixel correlation.8,9 Consequently, the HMM
complexity should provide a better capability than the S
in capturing spectral variability. As we show in the expe
ments, this is indeed the case.

The remainder of this paper is organized as follow
Section 2 briefly describes the HMM. Section 3 present
new HMM-based hyperspectral similarity measu
HMMID, for spectral similarity. Section 4 introduces tw
criteria for spectral discriminability.3 Section 5 conducts
experiments to demonstrate the performance of the H
MID relative to the SID, the ED and the SAM. Section
concludes with brief remarks.

2 HMM

Let o5(o1o2 . . . oT) be an observation process withot
being the observation taken place at timet and T is the
number of observations made in the process. Assume
there areN states denoted by$1,2, . . . ,N% and the state a
time t is denoted byqt . Let A5$ai j %1< i , j <N be the state
transition matrix withai j given by

ai j 5P~qt115 j uqt5 i !, ~1!

andB5@bj (ot)#1< j <N,1<t<T be the observation probabilit
density matrix, wherebj (ot) is the probability density of
the observationot at time t in the j ’th state. We further
assume thatp5(p1p2 . . . pN) is the initial state distribu-
tion with p j given by

p j5P~q15 j !. ~2!

Thus, an HMM can be uniquely defined by a parame
triplet, denoted byl5(A,B,p), which can be estimated b
the Baum-Welch algorithm using the maximum likelihoo
estimation as follows.5
2278 Optical Engineering, Vol. 40 No. 10, October 2001
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Assume that the probability densitybj (ot) is a Gaussian
mixture. It was shown in Ref. 6 that it is equivalent to
multistage single Gaussian density given by

bj~ot!5
1

@2ps j
2#1/2 expF2

~ot2m j !
2

2s j
2 G , ~3!

wherem j ands j
2 are the mean and variance of the obs

vation ot in the j ’th state, respectively.
Now we define the forward probabilitya j (t) as the joint

probability of observing the first t observations
o1 ,o2 , . . . ,ot in the j ’th state at timet. It can be solved by

a j~1!5p jbj~o1!, ~4!

a j~ t !5F(
i 51

N

a i~ t21!ai j Gbj~ot! for 1,t<T. ~5!

Similarly, we define the backward probabilityb j (t) as
the conditional probability of observing the observatio
ot11 ,ot12 , . . . ,oT given that the state at timet is j. It can
be solved by

b j~T!51, ~6!

b j~ t !5(
i 51

N

aji bi~ot11!b i~ t11! for 1,t<T. ~7!

Let g j (t) denote the conditional probability ofbj (ot) given
the observationo5(o1o2 . . . oT) and j i j (t) denote the
conditional probability of a transition from statei to statej
at timet11 given the observationo5(o1o2 . . . oT). Then
they can be calculated as follows

g j~ t !5
a j~ t !b j~ t !

( i 51
N a i~ t !b i~ t !

, ~8!

j i j ~ t !5
a i~ t !ai j bj~ot11!b j~ t11!

(k51
N ( l 51

N ak~ t !aklbl~ot11!b l~ t11!
. ~9!

Using Eqs.~8! and ~9!, the m j , s j
2, ai j and p j can be

estimated by the following equations

m̂ j~ t !5
( t51

T @g j~ t !ot#

( t51
T g j~ t !

, ~10!

s j
2~ t !5

( t51
T @g j~ t !~ot2m̂ j~ t !!2#

( t51
T g j~ t !

, ~11!

âi j ~ t !5
( t51

T21j i j ~ t !

( t51
T21g i~ t !

, ~12!

p̂ j5g j~1!. ~13!

3 HMM-Based Hyperspectral Measure

As indicated previously, an endmember can be represe
by variants of its true spectral signature from pixel to pix
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Du and Chang: Hidden Markov model approach . . .
because of unpredicted mixing occurring in a pixel vect
However, we must have some unobserved properties g
erned by this particular endmember that can distinguis
from other endmembers. This spectral characterizatio
very similar to speech signals where one of the key featu
is pitch. If we assume the observation sequenceo
5(o1o2 . . . oT) is represented by the spectral signaturesi

of the i ’th sample pixel vectorr i in a hyperspectral image
we can use the HMM to capture the unobserved and hid
spectral properties ofsi . Let lsi

be the parameter vecto

used to specifysi and let HMM(lsi
) be the HMM deter-

mined bylsi
. Then we can define the self information ofsi

provided by HMM(lsi
), denoted byI HMM( lsi

)(si) as fol-

lows

I HMM ~lsi
!~si !52

1

T
@ log P~si ulsi

!#. ~14!

Assume that there is another HMM, denoted by HMM~l!
to model si . The discrepancy between HMM~l! and
HMM( lsi

) can be expressed by

JHMM~lsi
;l!5I HMM ~lsi

!~si !2I HMM ~l!~si !

5
1

T
@ log P~si ul!2 log P~si ulsi

!# ~15!

which is generally referred to as the entropy of HMM~l!
relative to HMM(lsi

) and also known as the Kullback
Leibler information distance, cross entropy or direct
divergence.10 Suppose that we are given two hyperspec
image pixelsr i and r j with their spectral signatures give
by si5(si1 , . . . ,siL)T and sj5(sj 1 , . . . ,sjL)T, respec-
tively, whereL is the total number of spectral bands. W
can further define an information distance between th
associated HMMs, HMM(lsi

) and HMM(lsj
), called HM-

MID, by

HMMID ~lsi
,lsj

!5JHMM~lsi
,lsj

!1JHMM~lsj
,lsi

!. ~16!

A similar hyperspectral measure, referred to as SID w
also based on Kullback-Leibler information distance.3 In-
stead of using HMM, as proposed, the SID normalized
spectral signaturesi5(si1 , . . . ,siL)T of a pixel r i to unity
and considered it as a probability distribution of the pix
vector r i . In this case, we can define a probability vect
pi5(pi1 , . . . ,piL)T resulting fromsi by

pil 5
sil

(k51
L sik

. ~17!

Similarly, we can also find a probability vector ofr j , pj

5(pj 1 , . . . ,pjL)T using its spectral signaturesj

5(sj 1 , . . . ,sjL)T with

pjl 5
sjl

(k51
L sjk

. ~18!
-
Now we can use Kullback-Leibler information distanc

to define SID between two pixel vectorsr i andr j with their
respective spectral signaturessi5(si1 , . . . ,siL)T and sj

5(sj 1 , . . . ,sjL)T by

SID~pi ,pj !5D~pi ipj !5(
l 51

L

pil log
pil

pjl
1(

l 51

L

pjl log
pjl

pil
.

~19!

To conduct a comparative analysis, two other popu
similarity measures, ED and SAM~defined next!, are used
for the experiments in Section 5 to evaluate performance
HMMID and SID.

ED~si ,sj !5isi2sj i5F(
l 51

L

~sil 2sjl !
2G1/2

, ~20!

SAM~si ,sj !5cos21S si•sj

isi iisj i
D

[cos21F ( l 51
L sil sj l

~( l 51
L sil

2 !1/2~( l 51
L sjl

2 !1/2G ~ in radians!.

~21!

Note that if bothsi and sj are normalized to unity, the
relationship between the ED(si ,sj ) and the SAM(si ,sj ) can
be established as follows.

ED~si ,sj !5~222^si ,sj&!1/2

5~2$12cos@SAM~si ,sj !#%!1/2

52H 12cos@SAM~si ,sj !#

2 J 1/2

52 sinFSAM~si ,sj !

2 G , ~22!

where^si ,sj&5( i 51
j sil sj l . When the SAM(si ,sj ) is small,

2 sin@SAM(si ,sj )/2#'SAM(si ,sj ). In this case, the
SAM(si ,sj ) is nearly the same as the ED(si ,sj ). This is
demonstrated in the AVIRIS experiments.

4 Spectral Discriminatory Criteria

In the previous section, the ED, the SAM, the SID and t
HMMID, given by Eqs.~16! and ~19!–~21!, were devel-
oped to measure the similarity between the spectra of
pixels. However, it seems that there is no criteria availa
in the literature to evaluate two given spectral similar
measures. In this section, we describe two spectral
criminatory criteria that may be useful for performan
analysis.3

4.1 Relative Spectral Discriminatory Probability

In many applications, it is often the case that we are
quired to identify a target pixel of interest, sayt from an
unknown image scene using an existing spectral library
databaseD. Under such a circumstance, it is interesting
calculate the likelihood oft to be identified by signatures in
2279Optical Engineering, Vol. 40 No. 10, October 2001
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Du and Chang: Hidden Markov model approach . . .
theD. Specifically, let$sj% j 51
J beJ spectral signatures in th

D. We first calculate the spectral discriminatory probab
ties of all sj ’s in D relative tot as follows.

pt,D
m ~ i !5

m~ t,si !

( j 51
J m~ t,sj !

for i 51,2, . . . ,J, ~23!

where(
j 51
J m(t,sj ) is a normalization constant determine

by t and D. The resulting probability vectorpt,D
m

5@pt,D
m (1),pt,D

m (2), . . . ,pt,D
m (J)#T is defined to be relative

spectral discriminatory probability~RSDPB! of D with re-
spect tot usingm(•,•) or spectral discriminatory probabil
ity vector of D with respect tot using m(•,•). Using Eq.
~23! we can identifyt via D by selecting the one with the
smallest relative spectral discriminability probability.

4.2 Relative Spectral Discriminatory Entropy

Sincept,D
m 5@pt,D

m (1),pt,D
m (2), . . . ,pt,D

m (J)#T, given by Eq.
~23!, is the relative spectral discriminability probabilit
vector of t using a designated set of spectral signaturesD
5$sj% j 51

J , we can further define the relative spectral d
criminatory entropy~RSDE! of D with respect to the spec
tral signaturet using m(•,•) denoted byHRSDE

m (t;D) as
follows.

HRSDE
m ~ t;D!52(

j 51

J

Pt,D
m ~ j !log pt,D

m ~ j !. ~24!

Equation~24! provides an uncertainty measure of identif
ing t using any spectral signature from a data base o
braryD5$sj% j 51

J . The smaller theHRSDE
m (t;D), the less the

uncertainty of identifyingt usingD.

5 Experiments

Two data sets were used for experiments to evaluate
performance of the HMMID. The first data set was a set
AVIRIS laboratory data and the second data set was
tained from a HYDICE image scene.

Fig. 1 Spectra of the five AVIRIS signatures: blackbrush, creosote
leaves, dry grass, red soil and sagebrush.
2280 Optical Engineering, Vol. 40 No. 10, October 2001
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5.1 Example 1: AVIRIS Data

The data used in the following example are the sa
AVIRIS reflectance data considered in Refs. 11 and
They were five field reflectance spectra, blackbrush~indi-
cated by an open circle!, creosote leaves~indicated by an
asterisk!, dry grass~indicated by a diamond!, red soil ~in-
dicated by a dash-dotted line! and sagebrush~indicated by a
dashed line! shown in Fig. 1 with spectral coverage from
0.4 to 2.5mm. There were 158 bands after water ban
were removed and all spectra were normalized to un
From Fig. 1, we can see that the spectra among blackbr
creosote leaves and sagebrush are very similar. Howev
rigorous measure of closeness between five signature
very difficult to estimate by visual inspection. Tables 1–
tabulate the spectral similarity among these five signatu
using the ED, the SAM, the SID and the HMMID, respe
tively. The smaller the value is between two signatures,
more similar are the two signatures. The results produ
by the ED and the SAM were nearly the same as shown
Eq. ~22!. According to these tables, blackbrush is closes
sagebrush, while the creosote leaves are closest to s
brush. If we examine the last column under sagebrush
Tables 1–4, we find that sagebrush is closer to blackbr
than to creosote leaves. The similarity values produced
the ED and the SAM between blackbrush and sagebr
were about twice as much as between creosote leaves
sagebrush. The similarity values produced by the SID
tween blackbrush and sagebrush were about five time
much as between creosote leaves and sagebrush. The
larity values produced by the HMMID between blackbru
and sagebrush were about six times as much as betw
creosote leaves and sagebrush. For signatures whose
tra are dissimilar, the HMMID produced even much grea
values than did other three measures. For example,
similarity values between red soil and blackbrush, betwe
red soil and creosote leaves, and between red soil and s
brush were 3.9182, 6.7333 and 3.4166, respectively, c

Table 1 Spectral similarity produced by ED among the five AVIRIS
data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 0.1765 0.2568 0.4031 0.0681

Creosote 0 0.4182 0.5637 0.1288

Drygrass 0 0.2175 0.2957

Redsoil 0 0.4477

Sagebrush 0

Table 2 Spectral similarity produced by SAM among the five AVIRIS
data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 0.1767 0.2575 0.4058 0.0681

Creosote 0 0.4213 0.5714 0.1289

Drygrass 0 0.2179 0.2968

Redsoil 0 0.4515

Sagebrush 0
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Du and Chang: Hidden Markov model approach . . .
Table 3 Spectral similarity produced by SID among the five AVIRIS
data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 0.0497 0.0766 0.1861 0.0063

Creosote 0 0.2298 0.4154 0.0303

Drygrass 0 0.0640 0.0973

Redsoil 0 0.2340

Sagebrush 0

Table 4 Spectral similarity produced by HMMID among the five
AVIRIS data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 1.5390 3.6717 3.9182 0.2263

Creosote 0 6.2549 6.7333 1.4102

Drygrass 0 1.1302 4.0073

Redsoil 0 3.4166

Sagebrush 0

Table 5 RSDPBs produced by ED, SAM, SID, and HMMID with t
chosen to be a mixture of 0.1055 blackbrush, 0.0292 creosote
leaves, 0.0272 dry grass, 0.7588 red soil and 0.0974 sagebrush.

Blackbrush Creosote Drygrass Redsoil Sagebrush

ED 0.2215 0.3417 0.1049 0.0773 0.2547

SAM 0.2212 0.3430 0.1044 0.0769 0.2546

SID 0.1897 0.4933 0.0588 0.0112 0.2500

HMMID 0.2395 0.4911 0.0511 0.0036 0.2147

Table 6 RSDEs of Table 5 produced by ED, SAM, SID, and
HMMID.

ED SAM SID HMMID

RSDE 1.4835 1.4822 1.2274 1.1940
pared to their counterparts produced by the ED, the SA
and the SID. However, inspecting the values in Tables 1
it may be difficult to compare the discriminatory power
the four measures.

To evaluate which measure is more effective in terms
spectral discriminability, a mixed spectral signature is ra
domly generated to be used as a target signaturet to be
identified, which is composed of 0.1055 blackbrush, 0.02
creosote leaves, 0.0272 dry grass, 0.7588 red soil
0.0974 sagebrush. Note that thet was generated randomly
not for a particular preference. From Tables 1–4, the sp
trum of red soil is very similar to that of dry grass. Usin
Eq. ~23! Table 5 tabulates the RSDPB of the ED, the SA
the SID and the HMMID. The ratio of using the ED and th
SAM to identify t as red soil to identifying it as dry gras
was 0.1049:0.0773'0.1044:0.0769'1.36. Compared to
the ED and the SAM, the SID and the HMMID yielde
0.0588:0.0112'5.25 and 0.0511:0.0036'14.19, respec-
tively. This experiment shows that the HMMID was mo
effective than other three measures in identifyingt as red
soil. Table 6 shows the RSDE of the ED, the SAM, the S
and the HMMID using Table 5 where the HMMID pro
duced the least entropy. Table 7 tabulates the RSDE res
of the HMMID using different numbers of states. We foun
that the RSDE decreased slightly as the number of st
increased. However, a high number of states generally
nificantly increases the computational complexity of the p
rameter estimation process. Thus, according to our exp
ments, a reasonable number of states ranges from 4
which enables us to achieve a good compromise.

5.2 Example 2: HYDICE Data

Unlike the AVIRIS data studied in the previous section, t
HYDICE data used in the following experiments were d
rectly extracted from a HYDICE image scene of size
364 shown in Fig. 2~a!, which has a large grass field on th
right and a tree line on the left where low signal/high no
bands: bands 1 to 3 and bands 202 to 210; and water v
absorption bands: bands 101 to 112 and bands 137 to
were removed. The spatial resolution is 1.5 m and spec
resolution is 10 nm. There are 15 panels located on the fi
and are arranged in a 533 matrix, as shown in Fig. 2~b!.

Fig. 2 (a) HYDICE image scene that contains 15 panels and (b)
spatial locations of 15 panels provided by ground truth.
Table 7 RSDE of HMMID resulting from different numbers of states.

Number of States 3 4 5 6 7 8 9 10

RSDE 1.1940 1.1939 1.1938 1.1936 1.1932 1.1943 1.1941 1.1941
2281Optical Engineering, Vol. 40 No. 10, October 2001
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Each element in this matrix is a square panel and den
by pi j with row indexed byi 51, . . . ,5 andcolumn in-
dexed by j 5a,b,c. For each rowi 51, . . . ,5, thethree
panelspia , pib , pic were made by the same material b
have three different sizes. For each columnj 5a,b,c, the
five panelsp1 j , p2 j , p3 j , p4 j , p5 j have the same size bu
were made by five different materials. Note that the pan
in rows 2 and 3 are made by the same material with diff
ent paints, so did the panels in rows 4 and 5. Neverthel
they were still considered as different materials. The si
of the panels in the first, second and third columns
3m33m, 2m32m and 1m31m, respectively. Thus, the
15 panels have five different materials and three differ
sizes. The ground truth of the image scene provides
precise spatial locations of these 15 panels. As show
Fig. 2~b!, black pixels are the panel pixels and the pixels
the white masks are either panel boundary pixels mi
with background pixels or background pixels close to p
els. The 1.5-m spatial resolution of the image scene s
gests that all of these panels are only 1 pixel wide exc
that p2a , p3a , p4a , p5a which are 2-pixel panels. Figure
plots the five panel spectral signatures in Fig. 2~b!, where
the i ’ th panel signature, denoted byPi was obtained by
averaging the black panel center pixels in rowi. The spec-
tra of P1, P2, P3, P4 andP5 were shown in Fig. 3 and
formed the data setD5$P1,P2,P3,P4,P5% that would be
used for panel identification. Tables 8–11 tabulate the si
larity values resulting from the ED, the SAM, the SID an
the HMMID. Unlike Tables 1 and 2, the ED and the SA
generated different values in Tables 8 and 9. Howeve
the five panel signatures were normalized, the results
duced by the ED and the SAM were close as shown
Tables 1 and 2. These two experiments showed that the
and the SAM performed very similarly. From Tables 8–1
we can see that the signature ofP1 is close to that ofP2,
while P2 is even closer to the signature ofP3. Similarly,
bothP4 andP5 have very close signatures, which are ve
distinct from those ofP1, P2 andP3. This was confirmed
by Fig. 4, which shows the detection results of the panel
each row using the constrained energy minimizat
~CEM! approach proposed in Ref. 11. The CEM-deriv

Fig. 3 Spectra of P1, P2, P3, P4 and P5.
2282 Optical Engineering, Vol. 40 No. 10, October 2001
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Table 8 Spectral similarity produced by ED among the five HYDICE
panel signatures in Fig. 3.

P1 P2 P3 P4 P5

P1 0 1301.6 2033.3 4107.3 4831.6

P2 0 1340.4 5064.1 5733.0

P3 0 5434.1 5968.7

P4 0 1125.4

P5 0

Table 9 Spectral similarity produced by SAM among the five HY-
DICE panel signatures in Fig. 3.

P1 P2 P3 P4 P5

P1 0 0.0435 0.0673 0.1144 0.1240

P2 0 0.0430 0.1479 0.1567

P3 0 0.1652 0.1710

P4 0 0.0248

P5 0

Table 10 Spectral similarity produced by SID among the five HY-
DICE panel signatures in Fig. 3.

P1 P2 P3 P4 P5

P1 0 0.0039 0.0086 0.0233 0.0313

P2 0 0.0033 0.0385 0.0484

P3 0 0.0476 0.0570

P4 0 0.0025

P5 0

Table 11 Spectral similarity produced by HMMID among the five
HYDICE panel signatures in Fig. 3.

P1 P2 P3 P4 P5

P1 0 0.0255 0.0291 0.2935 0.4798

P2 0 0.0215 0.2891 0.4483

P3 0 0.3590 0.5483

P4 0 0.0186

P5 0
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Du and Chang: Hidden Markov model approach . . .
filter was developed based on the concept that it would p
the desired targett through the filter while minimizing in-
terfering effects resulting from sources other than the
sired targett. In doing so, it designs a finite impulse re
sponse ~FIR! filter that constrains the desired targ
signaturet such asP1 to P5 in our experiments using
specific filter gain while minimizing the filter output energ
caused by other signal sources including unknown inter
ence. Its success in target detection for hyperspectral im
ery has been demonstrated in Refs. 13–16. As we can
from Fig. 4, when panels in row 2 were detected, so
panel pixels in row 3 were also detected as well and v
versa. Similarly, it was also true for panels in rows 4 and

To see the performance of the proposed HMMID
terms of RSDPB, a target pixel randomly extracted fro
the white mask ofp2c was used ast for identification since
P2 is very close to bothP1 andP3, but closer toP3. This
pixel t was a panel edge pixel mixed with the backgrou
grass signature. Table 12 shows the discriminatory pr
abilities against five panel signatures using the ED,
SAM, the SID and the HMMID. As we can see from Tab
12, the RSDPBs amongP1, P2 andP3 using the ED and
the SAM were very close, and the HMMID was clearly th
best. If we calculated the ratio of the second small
RSDPB to the smallest RSDPB for the ED, SAM, SID a
the HMMID, respectively,

pt,D
ED~P3!:pt,D

ED~P2!50.1530:0.1339'1.14, ~25!

pt,D
SAM~P3!:pt,D

SAM~P2!50.1482:0.1108'1.34, ~26!

pt,D
SID~P3!:pt,D

SID~P2!50.0813:0.0520'1.56, ~27!

Fig. 4 Detection results of the 15 panels by CEM.

Table 12 RSDPBs produced by ED, SAM, SID, and HMMID with t
chosen from the white mask surrounding the panel of the second
row and third column.

P1 P2 P3 P4 P5

ED 0.1530 0.1339 0.1578 0.2631 0.2922

SAM 0.1544 0.1108 0.1482 0.2837 0.3028

SID 0.1029 0.0520 0.0813 0.3419 0.4218

HMMID 0.0994 0.0419 0.0939 0.3680 0.3968
s

-
e

pt,D
HMMID ~P3!:pt,D

HMMID ~P2!50.0939:0.0419'2.24, ~28!

the HMMID was about twice as effective as the ED, t
SAM, and SID to identifyt asP2. Table 13 tabulates thei
respective RSDEs. Once again, the HMMID produced
least entropy.

6 Conclusion

This paper presents a new application of the HMM in h
perspectral image analysis. It uses the HMM to model
spectral properties of a hyperspectral pixel vector. A HMM
based hyperspectral measure, called HMMID is develop
One of the chief advantages of HMMID is that, as show
success in speech recognition to capture sophistic
speech patterns, the HMM is also able to specify com
cated hidden spectral properties that cannot be observe
the spectrum of pixel vectors. As the number of spec
channels grows, more subtle material substances will
extracted. These create more difficulty for spectral char
terization. Under this circumstance, the HMMID has bet
ability than do ED, SAM and SID in characterizing spectr
properties. This was demonstrated in the experiments.
disadvantage of HMMID is the complexity in the imple
mentation of the HMM where the parameter tripletl
5(A,B,p) used in the HMM must be estimated. Howeve
this problem is not a major issue since the number of sta
required is generally small.
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