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1 Introduction (SID), was recently developddind has shown some suc-
cess in spectral characterization. It models the spectrum of
a hyperspectral image pixel vector as a random variable to
capture the stochastic behaviors of the pixel vector. The
similarity between two pixel vectors is then measured by
the SID. The results were compared to several commonly
used metrics, such as Euclidean dist4r{&®) and spectral
angle mappétSAM), and were shown to be more effective
than ED and SAM in the sense of capturing the spectral
similarity and variability®

The advent of recent remote sensing instruments has sig
nificantly improved capability of ground-based data collec-
tion in many fields such as agriculture, geology, geography,
law enforcement, defense, étdzor example, two hyper-
spectral sensors, 224-band AVIRI&irborne visible/
infrared imaging spectromeferand 210-band HYDICE
(hyperspectral digital imagery collection experimerthat

are currently being used and operated in an airborne plat-

form |mplem.ent hundreds of spectral channels to uncover In this paper, we present another statistical approach that
many material substances that generally are resolved bymayes use of a hidden Markov modeIMM) to character-
multispectral sensors with difficulty. Since a scene pixel is ;o the unobserved and hidden spectral properties of a hy-
usually represented by a column vector, where each com-perspeciral image pixel vector. The HMM has been widely
ponent contains specific spectral information provided by sed in speech recognitior to model a speech signal as a
one particular channel, the more channels are used, thejouply stochastic process with a hidden state process that
more spe_:ctral |nf(_)rmat|on is available. As a res'ult, a hyper- can be observed only through a sequence of observations.
spectral image pixel vector possesses much richer spectrakince the temporal variability of a speech signal is similar
information than does a multispectral image pixel vector to the spectral variability of a remote sensing image pixel
and may also have subtle information that a multispectral vector, the same idea can be applied to a hyperspectral
image pixel vector may not have. spectral vector. It makes use of a hidden Markov process to
However, due to noise and atmospheric effects, a mate-characterize the spectral correlation and band-to-band vari-
rial substance, referred to as the endmerilseay be rep-  ability where the model parameters are determined by the
resented by different spectral signatures from pixel to pixel spectrum of the pixel vector that forms an observation se-
during data acquisition and varies with different degrees of quence. In speech processing, the same word spoken in
its mixture with background signatures. To account for such different times generally results in different speech signals
spectral variability, an information theoretic criterion-based such as pitches. This is also true for the case that the spec-
hyperspectral measure, spectral information divergencetrum of the same endmember varies from pixel to pixel
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because it may be mixed with various endmembers such as  Assume that the probability density(o,) is a Gaussian

background or natural object signatures. Using the HMM

mixture. It was shown in Ref. 6 that it is equivalent to a

as an underlying process that describes the unobservednultistage single Gaussian density given by

spectral properties, a new HMM-based spectral measure
referred to as the HMM information divergen¢MMID ),
is derived for spectral characterization. Because the HMM

has been successfully applied to speech recognition, the

HMMID may also provide new insight into spectral analy-
sis of hyperspectral imagery.

(Ot_Mj)z
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where u; and sz are the mean and variance of the obser-

To evaluate the performance of the HMMID, the ED, the Vationoy in the j’'th state, respectively.

SAM and the SID are used for comparison. The ED and the

SAM capture the geometric difference between the spectraProbability —of —observing

of two pixel vectors and there is no probabilistic descrip-

tion involved in these measures. Therefore, the ED and the

SAM can be viewed as deterministic spectral metrics. By

contrast, the SID and the HMMID are stochastic measures

that introduce the concept of probability to describe the
spectral band-to-band correlation. Compared to the SID,

which models a hyperspectral image pixel vector as a ran-

dom variable, the HMMID assumes that each pixel can be
characterized by an HMM with the hidden state process
estimated from its spectrum. The resulting HMM is then

used to describe the unobserved spectral properties. A simi-Ot+1:0t+2, -

lar approach was also found in a Kalman filtering-based

linear unmixing method that used a state equation to de-

scribe the interpixel correlatidh’ Consequently, the HMM
complexity should provide a better capability than the SID
in capturing spectral variability. As we show in the experi-
ments, this is indeed the case.

The remainder of this paper is organized as follows.

Section 2 briefly describes the HMM. Section 3 presents a

new HMM-based hyperspectral similarity measure,
HMMID, for spectral similarity. Section 4 introduces two
criteria for spectral discriminability. Section 5 conducts
experiments to demonstrate the performance of the HM-
MID relative to the SID, the ED and the SAM. Section 6
concludes with brief remarks.

2 HMM

Let o0=(040, ...07) be an observation process with
being the observation taken place at titnand T is the

Now we define the forward probability;(t) as the joint

the firstt observations
01,0, ... ,0 in thej’'th state at timd. It can be solved by
a;(1)=m;bj(0y), (4)

N
{E ai(t—1)a;

i=1

aj(t)= bj(o,) for 1<t<T. (5)

Similarly, we define the backward probabilifg;(t) as
the conditional probability of observing the observations
.,01 given that the state at timeis j. It can

be solved by

Bi(T)=1, (6)
N

,Bj(t)IZl a;ibi(014 1) Bi(t+1) for 1<t<T. (7)

Let y;(t) denote the conditional probability of (o) given
the observationo=(0,0;, ...07) and §;;(t) denote the
conditional probability of a transition from state¢o statej

at timet+ 1 given the observatioo= (04,0, ...07). Then
they can be calculated as follows

(o AW
TSN (0B

i=1%i
ai(t)ajjb;(oi, 1) Bj(t+1)
E’l:lzlzll\l:lak(t)aklbl(ou1)B|(t+ 1)

®

&i(t)= 9

number of observations made in the process. Assume that

there areN states denoted bj1,2, ... N} and the state at
time t is denoted byg,. Let A={a;j},<; j<n be the state
transition matrix witha;; given by

aij:P(Qt+1:j|Qt:i)a (1)

andB=[b;(0,)]1<;

density matrix, wheré;(o,) is the probability density of
the observatiorp; at timet in the j'th state. We further
assume thatr= (7, . .. y) is the initial state distribu-
tion with 7r; given by
m=P(q:=]). 2
Thus, an HMM can be uniquely defined by a parameter
triplet, denoted by. = (A, B, 7), which can be estimated by

the Baum-Welch algorithm using the maximum likelihood
estimation as follows.
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Using Egs.(8) and (9), the u;, a2, a;; and m; can be
estimated by the following equations

_=Laly(to]

ST o
=17]

Sy (0= (1)
(1) = ”[7'23 1;‘(5” ! (11)

=17

S1E(
(=3 o (12
mi=v;(1). (13

HMM-Based Hyperspectral Measure

As indicated previously, an endmember can be represented
by variants of its true spectral signature from pixel to pixel
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because of unpredicted mixing occurring in a pixel vector.
However, we must have some unobserved properties gov-
erned by this particular endmember that can distinguish it

from other endmembers. This spectral characterization is — =(Sj1, - -
very similar to speech signals where one of the key features

is pitch. If we assume the observation sequerce
=(04,0, ...07) is represented by the spectral signatgre
of thei’'th sample pixel vector; in a hyperspectral image,

we can use the HMM to capture the unobserved and hidden

spectral properties of . Let A be the parameter vector
used to specifys and let HMM()\%) be the HMM deter-
mined by\ . Then we can define the self informationsf
provided by HMMQ\%), denoted byl HMM(A%)(s) as fol-
lows

1
|HMM<>\SI)(S):_T[|09 P($|)\q)] (14
Assume that there is another HMM, denoted by HKM
to model 5. The discrepancy between HMM and

HMM(A) can be expressed by

Jrmm(Ag; M) =1 HMM()\%)(Si)_IHMM()\)(Si)

1
7llogP(s[\) ~logP(s|As)] (15

which is generally referred to as the entropy of HNNW
relative to HMM()\ ) and also known as the Kullback-
Leibler |nformat|on distance, cross entropy or directed
divergencé? Suppose that we are given two hyperspectral
image pixelsr; andr; with their spectral signatures given
py s=(Si1, - - . Si) and s=(sj1, - - ,st)T, respec-
tively, whereL is the total number of spectral bands. We
can further define an information distance between their
associated HMMs, HMI\/D(Sl) and HMM()\SJ,), called HM-

MID, by

HMMID (X5, As)=Jumm(Ag A ) + Inmm (s Ng)- (16)

A similar hyperspectral measure, referred to as SID was

also based on Kullback-Leibler information distarick-
stead of using HMM, as proposed, the SID normalized the
spectral signaturg=(s;;, ...,s)" of a pixelr; to unity
and considered it as a probability distribution of the pixel

vectorr;. In this case, we can define a probability vector,
pi=(Pi1, - - - ,piL) " resulting froms; by
By == — an

TS s

Similarly, we can also find a probability vector of, p;

=(pj1, - - - ,pJL)T using its spectral signatures;
:(Sjli . SjL) W|th

oS (18
Pi Ekzlsjk'

Now we can use Kullback-Leibler information distance
to define SID between two pixel vectarsandr; with their

respective spectral signaturess= (S, - - s,L) and s
SJL) by
Pji
SID(p; ,p))=D(pillp)) = Z pi Iog—+2 pji log pJ
il
(19

To conduct a comparative analysis, two other popular
similarity measures, ED and SANiefined next are used
for the experiments in Section 5 to evaluate performance of
HMMID and SID.

L 1/2

D(si ) =s~ 51”_{2(% Sj1) } , (20

B S.S

SAM(s ,s)=coS 1( ! )

(59) BIE]
=cos ! Sio1%Sy (in radiang
(Ell_zlsﬁ)UZ(ElL:lSjZI)l/Z .
(21)

Note that if boths and s; are normalized to unity, the
relationship between the ER(s;) and the SAM§ ,s;) can
be established as follows.
ED(s,§)=(2-2(5 ,5))"?

=(2{1-cog SAM(s ,§)IH"?

_2[1—co$sAM(si ,q)]]lf?

oufiss)

SAM(s ,s)
2
where(s ,sj>=2{=lsi,sj| . When the SAM§ ,s;) is small,
2 sifSAM(s ,5)/2]~SAM(s ,s). In this case, the
SAM(s,s) is nearly the same as the E(s)). This is
demonstrated in the AVIRIS experiments.

(22

4 Spectral Discriminatory Criteria

In the previous section, the ED, the SAM, the SID and the
HMMID, given by Egs.(16) and (19)—(21), were devel-
oped to measure the similarity between the spectra of two
pixels. However, it seems that there is no criteria available
in the literature to evaluate two given spectral similarity
measures. In this section, we describe two spectral dis-
criminatory criteria that may be useful for performance
analysis®

4.1 Relative Spectral Discriminatory Probability

In many applications, it is often the case that we are re-
quired to identify a target pixel of interest, sayfrom an
unknown image scene using an existing spectral library or
database\. Under such a circumstance, it is interesting to
calculate the likelihood df to be identified by signatures in
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blackbru
creosote
drygrass
redsoil

sagebrus

Reflectance

50 100 150
Band

Fig. 1 Spectra of the five AVIRIS signatures: blackbrush, creosote
leaves, dry grass, red soil and sagebrush.

theA. Specifically, Iet{sj}f:l beJ spectral signatures in the
A. We first calculate the spectral discriminatory probabili-
ties of alls’s in A relative tot as follows.

tl
pra(i)= EJm( 3) for i=1,2,...), (23
i

:1m(t!sj)

WhereEf:lm(t,sj) is a normalization constant determined

by t and A. The resulting probability vectorp{f‘A
=[pa(1),p{5(2), . .. .p{"a(I)]" is defined to be relative
spectral discriminatory probabilittRSDPB of A with re-
spect tot usingm(-,-) or spectral discriminatory probabil-
ity vector of A with respect tat usingm(-,-). Using Eq.
(23) we can identifyt via A by selecting the one with the
smallest relative spectral discriminability probability.

4.2 Relative Spectral Discriminatory Entropy

Sincep{y=[pra(1).pa(2). - .. pra(I)]T, given by Eq.
(23), is the relative spectral discriminability probability
vector oft using a designated set of spectral signatufes,
={q}f:1, we can further define the relative spectral dis-
criminatory entropy(RSDE) of A with respect to the spec-
tral signaturet using m(-,-) denoted byHRsp(t;A) as
follows.

J
HRsoe t:4) =~ 2 P(1)log PLa()- (24

Equation(24) provides an uncertainty measure of identify-

ing t using any spectral signature from a data base or li-

brary A ={sj}f:1 . The smaller thd Rsp(t;A), the less the
uncertainty of identifying usingA.

Table 1 Spectral similarity produced by ED among the five AVIRIS
data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 0.1765 0.2568 0.4031  0.0681
Creosote 0 0.4182 0.5637 0.1288
Drygrass 0 0.2175  0.2957
Redsoil 0 0.4477
Sagebrush 0

5.1 Example 1: AVIRIS Data

The data used in the following example are the same
AVIRIS reflectance data considered in Refs. 11 and 12.
They were five field reflectance spectra, blackbr(ishli-

cated by an open circlecreosote leaveéndicated by an
asterisk, dry grass(indicated by a diamongdred soil (in-
dicated by a dash-dotted lihand sagebrustindicated by a
dashed ling shown in Fig. 1 with spectral coverage from
0.4 to 2.5um. There were 158 bands after water bands
were removed and all spectra were normalized to unity.
From Fig. 1, we can see that the spectra among blackbrush,
creosote leaves and sagebrush are very similar. However, a
rigorous measure of closeness between five signatures is
very difficult to estimate by visual inspection. Tables 1-4
tabulate the spectral similarity among these five signatures
using the ED, the SAM, the SID and the HMMID, respec-
tively. The smaller the value is between two signatures, the
more similar are the two signatures. The results produced
by the ED and the SAM were nearly the same as shown by
Eq. (22). According to these tables, blackbrush is closest to
sagebrush, while the creosote leaves are closest to sage-
brush. If we examine the last column under sagebrush in
Tables 1-4, we find that sagebrush is closer to blackbrush
than to creosote leaves. The similarity values produced by
the ED and the SAM between blackbrush and sagebrush
were about twice as much as between creosote leaves and
sagebrush. The similarity values produced by the SID be-
tween blackbrush and sagebrush were about five times as
much as between creosote leaves and sagebrush. The simi-
larity values produced by the HMMID between blackbrush
and sagebrush were about six times as much as between
creosote leaves and sagebrush. For signatures whose spec-
tra are dissimilar, the HMMID produced even much greater
values than did other three measures. For example, the
similarity values between red soil and blackbrush, between
red soil and creosote leaves, and between red soil and sage-
brush were 3.9182, 6.7333 and 3.4166, respectively, com-

Table 2 Spectral similarity produced by SAM among the five AVIRIS
data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

. Blackbrush 0 0.1767 0.2575 0.4058  0.0681
S Experiments Creosote 0 04213 05714  0.1289
Two data sets were used for experiments to evaluate thebDrygrass 0 0.2179  0.2968
performance of the HMMID. The first data set was a set of Redsoil 0 0.4515
AVIRIS laboratory data and the second data set was ob- sagebrush 0

tained from a HYDICE image scene.
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Table 3 Spectral similarity produced by SID among the five AVIRIS
data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 0.0497 0.0766 0.1861  0.0063
Creosote 0 0.2298 0.4154 0.0303
Drygrass 0 0.0640  0.0973
Redsoil 0 0.2340
Sagebrush 0

Table 4 Spectral similarity produced by HMMID among the five
AVIRIS data in Fig. 1.

Blackbrush Creosote Drygrass Redsoil Sagebrush

Blackbrush 0 1.5390 3.6717 3.9182  0.2263
Creosote 0 6.2549 6.7333 1.4102
Drygrass 0 1.1302 4.0073
Redsoil 0 3.4166
Sagebrush 0

Table 5 RSDPBs produced by ED, SAM, SID, and HMMID with t
chosen to be a mixture of 0.1055 blackbrush, 0.0292 creosote
leaves, 0.0272 dry grass, 0.7588 red soil and 0.0974 sagebrush.

Blackbrush Creosote Drygrass Redsoil Sagebrush

ED 0.2215 0.3417 0.1049 0.0773 0.2547
SAM 0.2212 0.3430  0.1044 0.0769 0.2546
SID 0.1897 0.4933 0.0588 0.0112 0.2500
HMMID 0.2395 0.4911 0.0511 0.0036 0.2147

Table 6 RSDEs of Table 5 produced by ED, SAM, SID, and
HMMID.

ED SAM SID HMMID

RSDE 1.4835 1.4822 1.2274 1.1940

Pla, Plb, Plc
P2a, P2b, P2c
P3a, P3b, P3c

Pda, P4b, P4c

P5a, P5b, P5c

Fig. 2 (a) HYDICE image scene that contains 15 panels and (b)
spatial locations of 15 panels provided by ground truth.

pared to their counterparts produced by the ED, the SAM
and the SID. However, inspecting the values in Tables 1-4,
it may be difficult to compare the discriminatory power of
the four measures.

To evaluate which measure is more effective in terms of
spectral discriminability, a mixed spectral signature is ran-
domly generated to be used as a target signatuoebe
identified, which is composed of 0.1055 blackbrush, 0.0292
creosote leaves, 0.0272 dry grass, 0.7588 red soil and
0.0974 sagebrush. Note that thevas generated randomly,
not for a particular preference. From Tables 1-4, the spec-
trum of red soil is very similar to that of dry grass. Using
Eq. (23) Table 5 tabulates the RSDPB of the ED, the SAM,
the SID and the HMMID. The ratio of using the ED and the
SAM to identify t as red soil to identifying it as dry grass
was 0.1049:0.077/30.1044:0.0769-1.36. Compared to
the ED and the SAM, the SID and the HMMID yielded
0.0588:0.01125.25 and 0.0511:0.003614.19, respec-
tively. This experiment shows that the HMMID was more
effective than other three measures in identifyings red
soil. Table 6 shows the RSDE of the ED, the SAM, the SID
and the HMMID using Table 5 where the HMMID pro-
duced the least entropy. Table 7 tabulates the RSDE results
of the HMMID using different numbers of states. We found
that the RSDE decreased slightly as the number of states
increased. However, a high number of states generally sig-
nificantly increases the computational complexity of the pa-
rameter estimation process. Thus, according to our experi-
ments, a reasonable number of states ranges from 4 to 6,
which enables us to achieve a good compromise.

5.2 Example 2: HYDICE Data

Unlike the AVIRIS data studied in the previous section, the
HYDICE data used in the following experiments were di-
rectly extracted from a HYDICE image scene of size 64
X 64 shown in Fig. 2a), which has a large grass field on the
right and a tree line on the left where low signal/high noise
bands: bands 1 to 3 and bands 202 to 210; and water vapor
absorption bands: bands 101 to 112 and bands 137 to 153
were removed. The spatial resolution is 1.5 m and spectral
resolution is 10 nm. There are 15 panels located on the field
and are arranged in @83 matrix, as shown in Fig.(B).

Table 7 RSDE of HMMID resulting from different numbers of states.

Number of States 3 4 5

6 7 8 9 10

RSDE 1.1940 1.1939

1.1938

11936 1.1932 1.1943 1.1941 1.1941
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7000 T T T T r T r T Table 8 Spectral similarity produced by ED among the five HYDICE

panel signatures in Fig. 3.

6000 |-

5000 |

4000

Radiance

[+
o
o
o

P1 P2 P3 P4 P5
P1 0 1301.6 2033.3 4107.3 4831.6
P2 0 1340.4 5064.1 5733.0
P3 0 5434.1 5968.7
P4 0 1125.4
P5 0

2000 |

1000

Fig. 3 Spectra of P1, P2, P3, P4 and P5.

Table 9 Spectral similarity produced by SAM among the five HY-
DICE panel signatures in Fig. 3.

Each element in this matrix is a square panel and denoted i P2 i P4 s
by pi; with row indexed byi=1,...,5 andcolumn in- P1 0 0.0435 0.0673 0.1144 0.1240
dexed by_] =a,b,C. For eaCh I’OWi = 1, P ,5, thethree P2 0 0.0430 0.1479 0.1567
panelspia, Pib, Pic were made by the same material but 4 0 0.1652 01710
have three different sizes. For each columnna,b,c,_ the pa 0 0.0248
five panelspy;, pyj, Psj, Paj, Psj have the same size but s 0

were made by five different materials. Note that the panels

in rows 2 and 3 are made by the same material with differ-
ent paints, so did the panels in rows 4 and 5. Nevertheless,
they were still considered as different materials. The sizes
of the panels in the first, second and third columns are
3mX3m, 2mx2m and ImX1m, respectively. Thus, the

15 panels have five different materials and three different
sizes. The ground truth of the image scene provides the
precise spatial locations of these 15 panels. As shown in

Table 10 Spectral similarity produced by SID among the five HY-
DICE panel signatures in Fig. 3.

Fig. 2(b), black pixels are the panel pixels and the pixels in

the white masks are either panel boundary pixels mixed
with background pixels or background pixels close to pan-

els. The 1.5-m spatial resolution of the image scene sug-
gests that all of these panels are only 1 pixel wide except
thatpsa, P3as Paas Psa Which are 2-pixel panels. Figure 3
plots the five panel spectral signatures in Fi¢h)2where

the i’th panel signature, denoted i was obtained by
averaging the black panel center pixels in rowhe spec-

P1 P2 P3 P4 P5
P1 0 00039 00086 00233 00313
P2 0 00033 00385  0.0484
P3 0 00476  0.0570
P4 0 0.0025
P5 0

tra of P1, P2, P3, P4 andP5 were shown in Fig. 3 and
formed the data sek={P1,P2,P3,P4,P5} that would be
used for panel identification. Tables 8—11 tabulate the simi-
larity values resulting from the ED, the SAM, the SID and
the HMMID. Unlike Tables 1 and 2, the ED and the SAM
generated different values in Tables 8 and 9. However, if

the five panel signatures were normalized, the results pr_O'TabIe 11 Spectral similarity produced by HMMID among the five
duced by the ED and the SAM were close as shown in HypiCE panel signatures in Fig. 3.

Tables 1 and 2. These two experiments showed that the ED

and the SAM performed very similarly. From Tables 8—11,

we can see that the signaturePt is close to that oP2,
while P2 is even closer to the signature BB. Similarly,
both P4 andP5 have very close signatures, which are very
distinct from those o1, P2 andP3. This was confirmed
by Fig. 4, which shows the detection results of the panels in
each row using the constrained energy minimization
(CEM) approach proposed in Ref. 11. The CEM-derived

P1 P2 P3 P4 P5
P1 0 0.0255 0.0291 0.2935 0.4798
P2 0 0.0215 0.2891 0.4483
P3 0 0.3590 0.5483
P4 0 0.0186
P5 0
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P4

P5

Fig. 4 Detection results of the 15 panels by CEM.

Table 13 RSDEs of Table 12 produced by ED, SAM, SID, and
HMMID.

ED SAM SID HMMID
1.5586 1.5344 1.3230 1.3190
piMP (P3): pf'YMP (P2)=0.0939:0.0419-2.24,  (28)

the HMMID was about twice as effective as the ED, the
SAM, and SID to identifyt asP2. Table 13 tabulates their
respective RSDEs. Once again, the HMMID produced the
least entropy.

6 Conclusion

filter was developed based on the concept that it would pass!NiS Paper presents a new application of the HMM in hy-

the desired target through the filter while minimizing in-
terfering effects resulting from sources other than the de-
sired targett. In doing so, it designs a finite impulse re-
sponse (FIR) filter that constrains the desired target
signaturet such asP1 to P5 in our experiments using a
specific filter gain while minimizing the filter output energy
caused by other signal sources including unknown interfer-
ence. Its success in target detection for hyperspectral imag
ery has been demonstrated in Refs. 13—16. As we can se
from Fig. 4, when panels in row 2 were detected, some
panel pixels in row 3 were also detected as well and vice
versa. Similarly, it was also true for panels in rows 4 and 5.
To see the performance of the proposed HMMID in
terms of RSDPB, a target pixel randomly extracted from
the white mask op,. was used as for identification since
P2 is very close to bott?1 andP3, but closer td?3. This
pixel t was a panel edge pixel mixed with the background
grass signature. Table 12 shows the discriminatory prob-
abilities against five panel signatures using the ED, the
SAM, the SID and the HMMID. As we can see from Table
12, the RSDPBs amonB1, P2 andP3 using the ED and

&hannels grows, more subtle material substances will be

perspectral image analysis. It uses the HMM to model the
spectral properties of a hyperspectral pixel vector. A HMM-
based hyperspectral measure, called HMMID is developed.
One of the chief advantages of HMMID is that, as shown,
success in speech recognition to capture sophisticated
speech patterns, the HMM is also able to specify compli-
cated hidden spectral properties that cannot be observed in
the spectrum of pixel vectors. As the number of spectral

extracted. These create more difficulty for spectral charac-
terization. Under this circumstance, the HMMID has better
ability than do ED, SAM and SID in characterizing spectral
properties. This was demonstrated in the experiments. The
disadvantage of HMMID is the complexity in the imple-
mentation of the HMM where the parameter triplet
=(A,B, ) used in the HMM must be estimated. However,
this problem is not a major issue since the number of states
required is generally small.

Acknowledgments
The authors would like to thank Bechtel Nevada Corpora-

the SAM were very close, and the HMMID was clearly the tion under Contract No. DE-AC08-96NV11718 through the
best. If we calculated the ratio of the second smallest Department of Energy, Remote Sensing Laboratory, for
RSDPB to the smallest RSDPB for the ED, SAM, SID and their support and Dr. J. C. Harsanyi for providing the
the HMMID, respectively, AVIRIS data. They also would like to thank an anonymous
reviewer, whose comments significantly improved the pre-

pra(P3):pia(P2)=0.1530:0.1339-1.14, (25) sentation and quality of this paper.
peAM(P3):pAM(P2)=0.1482:0.1108 1.34, (26) References

SID SID 1. G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscofRe*
pra(P3):pya(P2)=0.0813:0.0526-1.56, (27 mote Sens. Enviror24, 1-29(1988.

2. R. A. SchowengerdRemote Sensing: Models and Methods for Image

Processing2nd ed., Academic Pre$3997).

. C.-l. Chang, “An information theoretic-based approach to spectral
variability, similarity and discriminability for hyperspectral image

Table 12 RSDPBs produced by ED, SAM, SID, and HMMID with t analysis,”|IEEE Trans. Inf. Theoryt6, 1927-19322000.

chosen from the white mask surrounding the panel of the second 4. R. O. Duda and P. E. HaRattern Classification and Scene Analysis
row and third column. John Wiley & Sons, New York1973. -
5. L. Rabiner and B.-H. Juamgrundamentals of Speech Recognition
Prentice-Hall, Englewood Cliffs, N@L993.
P1 P2 P3 P4 P5 6. L. Rabiner and B.-H. Juamg, “Introduction to hidden Markov mod-
els,” IEEE ASSH\/Iag.|4—}’]6C(|%J|986. ) del 4 el g |
7. L. Rabiner, “A tutorial on hidden Markov models and selected appli-
ED 0.1530 0.1339 0.1578 0.2631 0.2922 cations in speech recognitionProc. IEEE77, 257-286(1989.
SAM 0.1544  0.1108  0.1482  0.2837  0.3028 8. C.-I. Chang and C. Brumbley, “A Kalman filtering approach to mul-
tispectral image classification and detection of changes in signature
SID 0.1029 0.0520 0.0813 0.3419 04218 abundance,IEEE Trans. Geosci. Remote Se@g, 257—-268(1999.
HMMID 0.0994  0.0419 0.0939 0.3680  0.3968 9. C.-l. Chang and C. Brumbley, “Linear unmixing Kalman filtering

approach to signature abundance detection, signature estimation and

Optical Engineering, Vol. 40 No. 10, October 2001 2283



10.
11.

12.

13.

14.

15.

16.

Du and Chang: Hidden Markov model approach . . .

subpixel classification for remotely sensed imagesEE Trans.
Aerosp. Electron. Sys87, 319-330(1999.

S. Kullback,Information Theory and StatisticSohn Wiley & Sons,
New York (1959, Dover (1968.

J. C. Harsanyi, “Detection and classification of subpixel spectral sig-
natures in hyperspectral image sequences,” PhD Dissertation, Depart-
ment of Electrical Engineering, University of Maryland Baltimore
County (1993.

J. Harsanyi and C.-l. Chang, “Hyperspectral image classification and
dlmenS|onaI|ty reduction: an orthogonal subspace projection ap-
proach,”|IEEE Trans. Geosci. Remote SeB8, 779—785(1994).

J. C. Harsanyi, W. Farrand and C.-I Chang, “Detection of subpixel
spectral signatures in hyperspectral image sequence®tan. Ann.
Meeting, Am. Soc. Photogrammetry & Remote Sensm@36-247,
Reno, NV(1994.

W. Farrand, W. , and J. C. Harsanyi, “Mapping the distribution of
mine tailing in the coeur d’Alene river valley, Idaho, through the use
of constrained energy minimization techniqu&&mote Sens. Envi-
ron. 59, 64-76(1997.

C.-l. Chang and D. Heinz, “Subpixel spectral detection for remotely
?ensgd images,/EEE Trans. Geosci. Remote Sef38, 1144-1159
2000.

H. Ren and C.-l. Chang, “Target-constrained interference-minimized
approach to subpixel target detection for hyperspectral imagémpt’
Eng. 39, 3138-31452000.

Qian Du received her PhD degree in elec-
trical engineering from the University of
Maryland, Baltimore County, in 2000. She
is currently an assistant professor with the
Department of Electrical Engineering and
Computer Science, Texas A&M University-
Kingsville. Dr. Du received her Dissertation
Grant Award from the Phi Kappa Phi Chap-
ter in the University of Maryland System in
2000. Her research interests include signal
and image processing, pattern recognition,

data compression and neural networks. Dr. Du is a member of IEEE,
SPIE and Phi Kappa Phi.

2284 Optical Engineering, Vol. 40 No. 10, October 2001

Chein-I Chang received his BS degree
from Soochow University, Taipei, Taiwan,
1973, his MS degree from the Institute of
Mathematics at National Tsing Hua Univer-
sity, Hsinchu, Taiwan, in 1975, and his MA
degree from the State University of New
York at Stony Brook, in 1977, all in math-
ematics. He also received MS and MSEE
degrees from the University of lllinois at
Urbana-Champaign in 1982 and his Ph.D.

: degree in electrical engineering from the
Unlversny of Maryland, College Park, in 1987. Dr. Chang has been
with the University of Maryland Baltimore County (UMBC) since
1987, as a visiting assistant professor from January 1987 to August
1987, an assistant professor from 1987 to 1993, and an associate
professor in the Department of Computer Science since 1993. He
was a visiting research specialist with the Institute of Information
Engineering at the National Cheng Kung University, Tainan, Taiwan,
from 1994 to 1995. He holds a patent on automatic pattern recog-
nition and has several pending patents on image processing tech-
niques for hyperspectral imaging and detection of microcalcifica-
tions. He is currently on the editorial board of Journal of High Speed
Networks and is the guest editor of a special issue of that journal on
telemedicine and applications. His research interests include auto-
matic target recognition, multispectral/hyperspectral image process-
ing, medical imaging, documentation and text analysis, information
theory and coding, signal detection and estimation, and neural net-
works. Dr. Chang is a senior member of IEEE and a member of
SPIE, INNS, Phi Kappa Phi and Eta Kappa Nu.



