Gradient texture unit coding for texture analysis
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Abstract. Texture is one of many important features to capture in image
characteristics. A recent texture unit-based texture spectrum approach,
referred to as texture unit coding (TUC) developed by Wang and He has
shown promise in texture classification. We present a new texture fea-
ture extraction coding, called gradient texture unit coding (GTUC) that is
based on Wang and He's texture unit to capture gradient changes in a
texture unit. Since the GTUC also generates an 8-D ternary texture fea-
ture vector in the same way that the TUC does, a GTUC-generated

21250 feature vector can be further represented by a number in the same range
generated by the TUC. As a result, the GTUC-generated numbers also
form a texture spectrum similar to that formed by the TUC-generated
numbers. By normalizing a texture spectrum as a probability distribution,
this work further develops an information divergence (ID)-based discrimi-
nation criterion to measure the discrepancy between two texture spectra,
a concept yet to be explored in texture analysis. To compare the GTUC
to the TUC in texture classification, several criteria used in hyperspectral
image analysis are also introduced for performance analysis. © 2004
Society of Photo-Optical Instrumentation Engineers. [DOIl: 10.1117/1.1768183]
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1 Introduction the GTUC extends the Wang and He method, referred to as

Texture is one of the fundamental features used to describegl€Xture unit codingTUC) in this work, in the sense that the
image characteristics. One commonly used approach is theGTUC captures the gray-level changes among three pixels
gray-level co-occurrence matrix that provides gray-level rather than two pixels considered in the TUC. More spe-
transition information between two gray levéldJsing a  cifically, unlike the TUC that encodes a change in gray
rather different approach, Wang and nsidered a 83 level along a particular orientation specified by the seed
window as a texture unifTU) along with its eight-neighbor ~ pixel and one of its eight neighboring pixels in a texture
connectivity’ to generate an 8-D texture feature vector for unit, the GTUC dictates texture patterns that describe gra-
each pixel that represents the gray-level changes betweerdient changes in two orientations specified by the seed
the pixel at the center of the texture unit, referred to as a pixel and two of its eight neighboring pixels in the texture
seed pixel, and its eight neighboring pixels specified by unit. Consequently, the GTUC can be interpreted as a gra-
eight orientations 0, 45, 90, 135, 180, 225, 270, and 315 dient method of Wang and He’s TUC, since it calculates the
deg, shown in Fig. 1. As a result, each pixel can produce angray-level changes in two TUNs generated by Wang and
8-D texture feature vector that describes gray-level changesHe's TUC.
in a texture unit along with these eight orientations. Such  one of the unique features resulting from the TUC is
an 8-D texture feature vector can be further converted 10 ahat an 8-D ternary texture feature vector generated by the
texture unit numbe(TUN) in a ternary representation that ¢ can be represented by a numerical number, the texture
spe_cmes a partlcular_ texture pattern. Because each pixel N nit number(TUN), ranging from 0 to 8—1=6560. In
an image generates its own TUN via a TU, these TUNs can . . .

analogy with gray levels that create an image histogram for

be used to form a texture spectrum in the same way that~ .
gray-level values of image pixels form an image histogram. an image, these TUC-generated TUN.S can als_o _be used to
form a texture spectrum for a texture image. Similarly, the

The only difference is that thg axis of the texture spec- .
trum is specified by TUNs instead of the gray levels in the Proposed GTUC also produces an 8-D ternary gradient tex-

image histogram. By virtue of the texture spectrum, Wang Ure feature vector that generates a numerical value in the
and He have investigated various applicatiors. same rang@,l,-~,65_6q, referred to as_the gradient texture
We exp|ore the concept of Wang and He's texture unit unit number(GTUN) in the same fashion that the TUN is
and further develop a new texture feature extraction coding generated by the TUC. As a result, a texture spectrum can
method, called gradient texture unit codil@TUC) that  also be produced from such GTUNSs for a texture image.
encodes gradient changes in gray levels between the seedlore interestingly, the relationship between the TUC and
pixel in a texture unit and its two neighboring pixels in a the GTUC seems to suggest that what the texture spectrum
TU, along with two different orientations. In other words, of TUNSs is to the texture spectrum of the GTUNS is similar
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Fig. 1 Eight orientations. Fig. 2 A texture unit.

to what the gray-level image histogram is to spatial gray-

level co-occurrence matrilSGLCM). cessed, referred to as the seed pixel, and eight surrounding
In this work, the two texture feature extraction coding pixels labeled byX;, X,, X3, X4, X5, Xg, X7, and Xg

methods, TUC and GTUC, are investigated and comparedconsidered to be neighboring pixels ¥f. According to

for performance evaluation. Since it is generally difficult to  Ref. 3. the four pixelsX;, X3, X5, and X, are the first-

compare two texiure spectra by wsu_al Inspection, a texture e, neighboring pixels 0¥y, which form the first-order

spectrum is further normalized to unity to form a probabil- four-neighbor connectivity, whilé&,, X4, Xg, andXg are

ity distribution so that the information divergenc®), the second-order neighboring pixelsX§ to constitute the

also known as Kullback-Leibler information distance, can > 2
be used to measure the discrepancy between two texture€cond-order four-neighbor connectivity. If we assume that

spectra. To compare the effectiveness of the TUC and theVo: V1, V2, Vs, Va4, Vs, Vs, V7, and Vg are the gray

GTUC, several criteria previously developed in Refs. 8 and levels corresponding o, X1, X5, X3, X4, X5, X, X7,

9, along with the commonly used minimum distance in Ref. andXg respectively, Wang and He defined a texture feature

5, are used to perform comparative analysis. number(TFN) E; associated with a neighboring pix€| as
The remainder of this work is organized as follows. Sec- follows,

tion 2 describes the concept of texture spect(di8) and

the texture unit codingTUC) developed by Wang and He. 0;

Section 3 develops a new texture feature extraction coding, o .

called gradient texture unit codingTUC). Section 4 in-  Ei=) 1i ff IVi—Vo|<A for i=1,2;:--8, (1)

troduces the information divergence and several criteria 2; if Vi>Vy+A

that can be used to measure the effectiveness of the TUC

and the GTUC. Section 5 conducts experiments for perfor- whereA is a gray-level tolerance to be determined.

mance comparison. As a concluding section, Sec. 6 is in-

cluded to summarize the results and contributions accom-

plished in this work. 2.2 Texture Spectrum

2 Texture Unit Coding Since there are three values thatgnin Eq. (1) can take,

Th tial level LCM) h there are 8=6561 combinations to cover all the possible
€ spatial gray-level co-occurrence matSG as values of €,,E,,E3,E4,E5,Eq,E;,Eg), each of which

H H H H H HA 1,2-2,-3,~4,-5,-6,-7,-8/>
been widely used in texture classification due to its ability can be specified by a numbeN(E; E, Es.E,,

in capturing transitions between all pairs of two gray levels .

(not necessarily distingt More specifically, it is a matrix ~ E5:E6:E7,Es), referred to as a texture unit numb@uN)

W whose elements are specified by frequencies of transi-Of Xo. using the following ternary representation.

tions from one gray to another in a certain way. Many 8

SGLCM-based methods have been developed and reported _—

in the literature. Recently, an alternative approach has beenN(El'Ezl"',Es)=Z Eix3

developed by Wang and Hé® It considers a 33 window =t

as a texture unit and uses gray-level changes between the =E;X3%°+E,x3M+--+Egx3". (2
center pixel in the texture unit and one of its eight neigh-

boring pixels as texture features, from which a texture spec- By virtue of a TU, each image pixel can generate an 8-D
trum could be generated for texture classification. The con- texture feature vectorH; ,E,,E3,E4,Es,Eq,E7,Eg) from

cept of using the texture spectrum has shown promise in\yhich a TUN can be produced using E®). By treating
various applications and can be described as follows. such a TUN as a gray level, we can generate a texture
. spectrum for an image in a manner similar to a gray-level
2.1 Texture Unit image histogram generated for an image. Since each of
A texture unit(TU), described in Fig. 2, has the pixg}, as eight orientations in Fig. 1 can be used to start off as the
the center pixel, which is the pixel currently being pro- first neighboring pixelX,, eight different texture spectra

if V,<Vy—A
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Fig. 3 Representation of eight different degrees, 0 deg (X;— Xp— X1), 45 deg (X;— Xp— X5), 90 deg

(X1—Xo—X3), 135 deg (X1—Xo—X,), 180 deg (X;—Xo—Xs), 225 deg (Xi—Xo— Xs), 270 deg

(X1~ Xo—X7), and 315 deg (X, — Xo— Xg).

can be generated for each image. Using &), we can
further convert the TU-based texture spectrum to a prob-
ability distribution, pryyn by

Nrun(i)
N

pron(i)= for i=0,1;--,6560, )

where Nyyn(i) is the number of pixels whose TUN is
N(E;,E,, --,Eg)=i, defined by Eq(2), andN is the total
number of pixels in the image.

3 Gradient Texture Unit Coding

The texture spectrum produced by Ef) is based on the
correlation between the seed pix€e} and one of its eight
neighboring pixelsXq, X5, X3, X4, X5, Xg, X7, andXg

in Fig. 2. It does not take into account the spatial correla-
tion of X, with two pixels in its eight-neighbor connectiv-
ity. In this section, we develop a new concept of gradient
texture unit matrix, which captures the gray-level gradient
changes betweewi, andV; and betweerv, andV;. More
specifically, for the seed pixeK, in a TU, we define a
gradient texture feature numb@ TFN) with respect to any
pair of its two neighboring pixel¥X; andX; as follows.

0; if [Vi—Vol<A and|V;—Vo<A
1; if [Vi—Vo/<A and|V;=Vy|>A
VVi= for i,j=1,2;--,8.
! or [Vi=Vg/>A and |V,~Vo|<A b
2; if [Vi=Vo/>A and|V;=Vo[>A
(4)

In analogy with the 8-D texture feature vector defined by
(Eq,E,,E3,E4,E5,Eg,E; Eg) for the seed pixeXy, we
can generate an >8 gradient texture feature matrix
(GTFEM) for X, by,

VM1y=[VVijjlsxs. 5
whose (,j) entry VV;; is given by Eq.(4). It should be
noted that the GTFM is symmetric and the diagonal ele-
ments of VM, can only take values of either O or 2. So,
we can convert the GTFM to a 36-D gradient texture fea-
ture vector where each of the 36 dimensions in the feature
vector specifies a gradient change between a particular pair
of two pixels X; and X; in Fig. 2. As a result, there are a
total of 22+ 3% gradient texture feature vectors. That is, for
each fixedX; in Fig. 2, there are eight pixels in the eight-
neighbor connectivity oK, including itself(i.e., X;), can be
chosen to beX; where each of these pixels represents one
particular orientation specified in Fig. 1. Figure 3 shows an
example where; is chosen to b&; and theX; runs from

X1, X, through Xg, which represents eight different de-
grees, 0, 45, 90, 135, 180, 225, 270, and 315, with 45 deg
apart, namely, 0 degX;—Xo—X;), 45 deg ¥;—Xp
—X5), 90 deg ¥;— Xo— X3), 135 deg K;— Xp—X,4), 180
deg X1—Xp—X5), 225 deg K;—Xg—Xg), 270 deg K,
—Xo—X5), and 315 degX;— Xp— Xg). Similarly, we can
also chooseX; to be X, and theX; to run from Xj,

X3, -+, Xg throughX;, as shown in Fig. 4 to also represent
eight degrees, 0 degXe—Xp—X,), 45 deg ¥K,—Xg
—X3), 90 deg K,— Xo—X,4), 135 deg K,— Xp— Xs), 180
deg X,—Xp—Xg), 225 deg K,—Xg—X7), 270 deg K,
—Xo—Xg), and 315 degX,— Xy— X;). Comparing Fig. 4

to Fig. 3, we note that the only thing that matters is the
degree formed by; and X; regardless of what is chosen
for X;. In other words, the degree of the angle formed by
X; andX; only depends on the difference of subscript, i.e.,
li—j|. In this case, the eight orientations in Fig. 1 also
correspond to the eight degrees specified by 0 d¢g (
—Xo=Xj+1), 45 deg Ki—Xo—Xi;2), 90 deg &Ki—Xo
—Xj+3), 135 deg Ki—Xo—Xj;+4), 180 deg Ki—Xo
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Fig. 4 Representation of eight different degrees, 0 deg (X, — Xy— X5), 45 deg (X>— Xp— X3), 90 deg
(Xo—=Xo—X4), 135 deg (X,— Xo— Xs5), 180 deg (Xo— Xo— Xg), 225 deg (X,— Xo— X7), 270 deg
(Xo—Xp— Xg), and 315 deg (X, — Xo— X1).

—Xiy5), 225 deg Ki—Xp—Xiig), 270 deg K—X, 0={0,1,...,6560, the power set of) as the even spacg,
—Xijt+7), and 315 deg X;—Xo—Xj;+g) for i=2,3;--,8. and the probability measut specified by eithepyyy via
Therefore, we can always fiX; at X; and let theX; run Eq. (3) or pgrun Via Eg. (7). This interpretation allows us
from X;, X, throughXg and generate a gradient texture t0 take advantage of the well-established information
unit number (GTUN) for each image pixel, denoted by theory to analyze the texture spectrum. In this section, we
N(VV;1,VV; 0+, VV; o in the same way that the TUN  Present three texture spectrum discrimination measures that
is genérated ’by Eq2) hsing the following ternary repre-  Were previously derived from hyperspectral imadérgnd

sentation, can be used to measure similarity between two texture im-
ages. Letm denote a probability measure specified by any
N(VV11,VVi5, V'V, g texture feature extraction method such @s;n, PoTun-

Assume that apn=(amo,m1," " mesed ' and B
=(,8m,0,,8m,1,---,ﬁm'655c)T are texture spectra or gradient
texture spectra of two texture images denoteddgnd B.

8
=> VVy;x31
=1

=VVy X324 VVy X34+ YV, gx 37 (6)

4.1 Information Divergence
Interestingly, there are alsd®3 6561 combinations in Eq.
(6) to generate GTUNSs. Like Wang and He's TUNSs, these
GTUNSs also form a gradient texture spectrum that can be
used for texture analysis. In particular, we can further con-
vert the GTU-based texture spectrum to a probability dis- 'i(@m)=—l0gam,;. ®)
tribution, pgTun bY

For a given imagé), the self-information provided b,
for TUN or GTUN=] is defined by

Similarly, for another imag®, the self-information pro-
~ Ngrun(i) _ vided by B, for TUN or GTUN=] is defined by

pGTUN(|)=T for i=0,1;--,6560, )

Ij(ﬁm): —log Bm,j . )
whereNgryn(i) is the number of pixels whose GTUN is
N(VVy1,VVi,,--,VVy 9 =i, defined by Eq(6), andN is Using Eqgs.(8) and(9), we can further defin®;(all Bm),
the total number of pixels in the image. the discrepancy in the self-informationjah B, relative to

the self-information of in a,, by
4 Texture Discrimination Measures
As described in Secs. 2 and 3, Wang and He’s texture specD;(a@mllBm) =1;(Bn) —1j(am) =109(am /B ;). (10
trum and our proposed gradient texture spectrum can be
considered as a probability distribution defined on a prob- AveragingD;(ayllBy) in Eqg. (10) over allj's with respect
ability space (2,X%,P) with the sample space to ay,resultsin
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6560

D(aam\lﬂm) = jZO Dj(am”Bm) X,

6560

ZJZO amjlog(am;/Bm,;), (12)

where D(a,l By) is the average discrepancy in the self-
information of B, relative to the self-information ak,,. In

the context of information theorf (el B) in Eq. (11) is
called the relative entropy @8, with respect taa,,, which

is also known as the Kullback-Leibler information measure,
directed divergence, or cross entrdp@imilarly, we can
also define the average discrepancy in the self-information
of a,, relative to the self-information oB,,, by

L
D(Bnllam) = J_Zl D (Bl m) Brm,j

6560

=2, B, 100(Bm, am,)- (12

Summing Eqgs(11) and(12) yields information divergence
(ID) defined by

ID(am . Bm) =D (anll Bm) + D(Brllam),

which can be used to measure the similarity of texture pat-
terns between two texture imagésand B. It should be
noted that while ID@,,B,,) is symmetric,D(alBy) is
not. This is because I,,By,) =ID(Bm,®n), and

D ()l Brm) # D (Bl ayy) -

4.2 Relative Discriminatory Probability

13

Let {s}f_, beK texture images in the sét, which can be
considered as a database, drtok any specific target tex-
ture image to be identified usingy We define the discrimi-
natory probabilities of alk’s in A relative tot as follows.

K

p{f‘A(k)=m(t,sK)lzl m(t,s) for k=1,2;-- K, (14)

whereEiK:lm(t,si) is a normalization constant determined
by t and A. The resulting probability vectorp{
=[pla(1),p"\(2),-,pA(K)]" is called the relative dis-
criminatory probability(RDPB) of A with respect tot or
the spectral discriminatory probability vector afrelative

to t. Then, using Eq(14) we can identifyt via A by select-
ing the one with the smallest relative spectral discriminabil-
ity probability. If there is a tie, either one can be used to
identify t.

4.3 Relative Discriminatory Entropy

Since p{y=[P{a(1),p7a(2), -+ Pra(K)]™ given by Eq.
(14) is the relative discriminability probability vector af
using a selective set of texture images:{s}k_,, we can
further define the relative discriminatory entrofigSDE)
of the spectral signaturtewith respect to the set, denoted

by HRspe(t,A) by

K

HRsoe(1,4) = = 2, P{a(K)log; pTs(K). (19

Equation(15) provides an uncertainty measure of identify-
ing t resulting from using A={s}i_,. A higher
HRspe(t,A) may have less chance to identify

4.4 Relative Discriminatory Power

Letd be a texture image. Assume tlsdnds’ are a pair of
two texture images to be compared using thas a refer-
ence texture image. The RDPW anh(,), denoted by
RDPW"(s,s';d) is defined by

More precisely, RDPW(s,s';d) selects as the discrimina-
tory power ofm(,) the maximum of two ratios, the ratio of
m(s,s’;d) to m(s',s;d), and the ratio ofm(s’,s;d) to
m(s,s’;d). The RDPW'(s,s";d) defined by Eq(16) pro-
vides a quantitative index of discrimination capability of a
specific texture feature coding method(,) between two
texture images ands’ relative tod. Obviously, the higher
the RDPW(s,s';d) is, the better discriminatory power
m(,) is. In addition, RDPW/\(s,s’;d) is symmetric and
bounded below by one, i.e., RDPY§,s';d)=1 with
equality if and only ifs=s'.

m(s,d) m(s’,d)
m(s’,d)’ m(s,d)

RDPW"(s,s";d)= max( (16)

5 Experiments

In this section, the same four texture images of size 640
X640 pixels labeled in Fig.(8) that were used in Refs. 2,

4, 5, and 6 were also used for experiments to conduct a
comparative study between Wang and He's TUC and our
proposed GTUC for performance evaluation using the
minimum distance(MD) and the information divergence
(ID) as performance measures. The toleraiogas set to

3, which was an empirical choice. It should also be noted
that both MD and ID were performed on the probability
distributions produced by Eq§3) and(7). The images are
selected from Brodatz’s natural texture imad®snage A
(beach sanklimage B(watel, image C(pressed cork and
image D(fur hide of an unborn calf To make our analysis
simple and more effective, the upper left corner of size
64X 64 pixels cropped from each of the four images in Fig.
5 was used for our experiments. They are enlarged and
shown right beneath each of the four images labeled by Fig.
5(b). Figures 6 and 7 show examples of eight texture spec-
tra of the TUNs and GTUNSs generated for the four texture
images in Fig. 5, respectively, with eight different starting
positions fromX;, X,,--+,Xg. As we can see from Figs. 6
and 7, the TUC-generated and the GTUC-generated texture
spectra were quite different, thus provide different levels of
texture information for analysis. In particular, compared to
TUC-generated texture spectra for four images, which all
looked very similar from visual inspection, the GTUC-
generated texture spectrum of image A was quite different
from those of images B, C, and D. So, it could be singled
out immediately without difficulty. If we further examined
more closely the GTUC-generated texture spectrum of im-
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Fig. 5 Four texture images: (a) original image; and (b) a subimage of 6464 cropped from the upper
left corner of each original image.

age B, it was also distinct from images C and D. As for distance measures, respectively. To simplify analysis, the
images C and D, their corresponding GTUC-generated tex- notations TUC/MDK,Y), TUC/ID(X,Y),

ture spectra were very similar and difficult to discern one GTUC/MD(X,Y), and GTUC/IDK,Y) are introduced to
from another. Based on this observation, we could ConCIUderepresent the distance between imadeand Y measured

that the four texture images could be grouped into three : .

different classes, image A, image B, and a class comprised:)g the TUC; usilngUMp antcri] ID, t?e G-(I;Uf(.: .E[J-SIng I\#Dblandl

of images C and D. However, such categorization cannot be'”» f€SPECUVElY. UsIng these four definitions, lable
that TUC/MDA,D)=0.0023, TUC/MOB,A)

made easily by visually examining the TUC-generated tex- SOWS
ture Spectra in F|g 6. =00026, and TUC/MEI:,D)ZTUC/MD(D,C)ZO0028,

To avoid subjective visual inspection, Tables 1 and 2 all of which were the smallest values yielded by TUC/MD

tabulate the results of applying the TUC and GTUC to all for each of the four texture images in Figbh It implied
the four texture images in Fig(y using the MD and ID as  that image A was more similar to image D than to images B

1896 Optical Engineering, Vol. 43 No. 8, August 2004
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Image A

Image B

Image C

Image D

Fig. 6 Eight texture spectra of the TUNs generated for the four texture images in Fig. 5, respectively,
with eight different starting positions from X;, X,,...,X7, Xg.
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Fig. 7 Eight texture spectra of the GTUNs generated for the four texture images in Fig. 5, respectively,
with eight different starting positions from X;, X,,...,X7, Xg.
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Table 1 Results of TUC and GTUC for the four texture images in Table 2 Results of TUC and GTUC for the four texture images in
Fig. 5(b) measured by MD. Fig. 5(b) measured by ID.
TUC TUC
GTUC A B C D GTUC A B C D

A N/A 0.0026 0.0029 0.0023 A N/A 1.1002 0.6868 0.7341

B 0.0130 N/A 0.0059 0.0058 B 0.7316 N/A 1.7370 1.5775

c 0.0153 0.0524 N/A 0.0028 C 0.3613 1.3013 N/A 0.6615

D 0.0235 0.0663 0.0032 N/A D 0.4989 1.6178 0.2018 N/A

and C, image B was more similar to image A than to im- to evaluate the performance of TUC/MD, GTUC/MD,
ages C and D, and images C and D were similar to eachTUC/ID, and GTUC/ID for comparative analysis. Tables
other compared to images A and B. 3-6 tabulate their results with images A, B, C, and D used
Now, if the GTUC was used and their results are tabu- as a reference image, respectively, where the smallest
lated in Table 1, where GTUC/M®,B)=GTUC/ RDPB values and the largest RDPW values are highlighted
MD(A,B)=0.0140, GTUC/MDC,D)=GTUC/MD(D,C) and shaded for each of four reference images. As noted, a
=0.00025 were the smallest values produced by the smaller value of RDPB yielded by one image indicates less
GTUC/MD for each of the four texture images. The GTUC discrimination between the image and the reference image.
results suggested that images A and B were in one group,On the contrary, a larger value of RDPW between two im-
while images C and D were in another group. ages represents a more discriminatory power to discrimi-
Next, if the ID was implemented in place of the MD in nate the two images with respect to the reference image. As
Table 1, the results of the TUC/ID and GTUC/ID are tabu- shown in Tables 3—6, when the ID was used, the TUC and
lated in Table 2, where for each of the four texture images, GTUC produced consistent results with the GTUC having
their smallest values in Table 2 produced by TUC/ID and better discriminatory power§.e., higher RDPW valugs
GTUC/ID, were TUC/IOA,C)=0.6868, TUC/IOB,A) and less entropies. On the other hand, when MD was used,
=1.1000, TUC/IDC,D)=TUC/ID(D,C)=0.6615, and the GTUC generally performed better than the TUC with
GTUCI/ID(A,C)=0.3529, GTUC/IDB,A)=0.6833, GTUC/ significant reduction of entropies and substantially better
ID(C,D)=GTUC/ID(D,C)=0.0172. Interestingly, in this discriminatory powergsee RDPW values in Tables 3)- &
case, the TUC/MD and GTUC/ID produced consistent re- should be noted that with image D as the reference image,
sults. Both suggested that image A was more similar to the TUC/MD produced the smallest RDPB for image A.
image C than to images B and D, image B was more simi- This contradicted with the results produced by the GTUC/
lar to image A than to images C and D, and images C and MD, TUC/ID, and GTUC/ID, all of which yielded the
D were similar to each other compared to images A and B. smallest RDPB values for image D. If the results in Tables
Furthermore, if we take a close look at the ID values pro- 3-6 are further taken into account, the TUC/MD performed
duced by GTUC in Table 2, we could conclude immedi- the worst among the TUC/MD, GTUC/MD, TUC/ID, and
ately that images C and D were in the same texture imageGTUC/ID.
class with similar texture patterns, because the value of It is also interesting to revisit image A. According to
GTUC/ID(C,D)=GTUC/ID(D,C), 0.0172 was very small, Tables 1 and 2, both TUC and GTUC had difficulty with
while images A and B could be considered as two separatediscriminating image A from images B, C, and D. This is
texture image classes, since GTUQMXC)=0.3529, because image A has quite different texture patterns from
GTUC/ID(B,A)=0.6833 were almost 20 and 40 times of images B, C, and D, as shown in Fig. 7. So, in this case,
the value 0.0172. The results in Tables 1 and 2 demonstrateéimage A can be discriminated easily and should be removed
that the ID was more reliable than the MD in terms of from comparison with other images. If it was used as a
texture discrimination, and the GTUC performed more ef- reference image, the RDPB and RSPW values among im-
fectively than did the TUC. ages B, C, and D were not consistent, as reflected in Table
To further substantiate our conclusions drawn from 3. The results in Table 3 show that TUC/NW®D)
Tables 1 and 2, the RDPB, entropy, and RDPW were used =0.2949, GTUC/MDA,B)=0.2510, TUC/IDA,C)

Table 3 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image A as the reference image.

RDPB RDPW
Ref. image
A B C D Entropy B, C B, D
TUC/MD 0.3333 0.3718 [ 1.5785 1.1155 1.1302
GTUC/MD 0.2954 0.4537 1.1769 1.5359
TUC/ID 0.4364 0.2912 1.5514 1.4986 1.0690
GTUC/ID 0.4596 0.3134 1.5257 1.4665 1.3806
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Table 4 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image B as the reference image.

RDPB RDPW
Ref. image
B A o} D Entropy A C A D C,D
Tucmp  [0H8180 04126  0.4056 15022  [22698] 22310  1.0173
GTuc/MD  [000987] 03979 05034  [006689] 40314  [BH003]  1.2651
TUC/ID [024920 03935 03573 15595  [#6791]1 14338  1.1013
GTUC/D  [02004 03565  0.4431 1.5155 17780  [2211 12429

Table 5 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image C as the reference image.

RDPB RDPW
Ref. image
C A B D Entropy A B A D B, D
TUC/MD 02500 05086  [02414 14911 20344 10356  [21069
GTUC/MD 02158 07391 [00451] [0847 34249 47840  [16/3880
TUC/D 02226 05630 02144  1.4254 25292 10382  [2:6259
GTUC/D 01938 06980  [0:082] 1.1680 36017 17911  [64510

Table 6 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image D as the reference image.

RDPB RDPW

Ref. image

D B C Entropy A B A C B, C

A
Tuc/Mp  [021100 05321 0.2569 14617  [2B218] 1.2175
GTUC/MD 02527  0.7129 [04132] 28211 7.3459
TUC/D 02470 05305 14659 21478  1.1101
GTUC/D 02152 06978 11457 32426  2.4736

Fig. 8 Additional 11 texture images used for experiments.
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Table 7 Results of TUC and GTUC for the 11 texture images measured by MD.

TUC
GTUC A B C D E F G H [ J K
A N/A 0.0034  0.0102  0.0034  0.0029  0.0026  0.0033  0.0050  0.0025  0.0023  0.0035
B 0.0069 N/A 0.0053  0.0019  0.0026  0.0018  0.0026  0.0046  0.0030  0.0022  0.0045
C 0.0288  0.0139 N/A 0.0083  0.0120  0.0094 00113  0.0129  0.0105  0.0094  0.0135
D 0.0174  0.0045  0.0240 N/A 0.0025  0.0026  0.0024  0.0037  0.018  0.0016  0.0021
E 0.0134  0.0104  0.0457  0.0067 N/A 0.0013  0.0014  0.0031  0.0024  0.0020  0.0026
F 0.0147  0.0173  0.0599  0.0143  0.0020 N/A 0.0019  0.0023  0.0022  0.0021  0.0032
G 0.0101  0.0034  0.0272  0.0020  0.0031  0.0079 N/A 0.0039  0.0024  0.0022  0.0025
H 0.0558  0.0524  0.1134  0.0357  0.0176  0.0141  0.0313 N/A 0.0027  0.0033  0.0039
[ 0.0141  0.0098  0.0434  0.0054  0.0013  0.0031  0.0024  0.0185 N/A 0.0012  0.0016
J 0.0130  0.0048  0.0299  0.0018  0.0031  0.0078  0.0007  0.0284  0.0019 N/A 0.0024
K 0.0131  0.0066  0.0358  0.0030  0.0027  0.0065  0.0015  0.0250  0.0013  0.0014 N/A
Table 8 Results of TUC and GTUC for the 11 texture images measured by ID.
TUC
GTUC A B C D E F G H [ J K
A N/A 0.6190 10211 05868  0.6124 05415  0.5972  1.0271  0.5740  0.5407  0.6728
B 0.1518 N/A 0.6988  0.4143 05038  0.4086 04847  0.9532  0.6184 04942  0.7481
C 0.2262  0.1420 N/A 0.9479 11632 09018  1.1686  1.0210  1.2155  1.0977  1.2725
D 0.2437  0.0951  0.2544 N/A 0.5085 05111  0.4868  0.6748  0.3780  0.3436  0.3485
E 0.2475  0.2529  0.3502  0.2260 N/A 0.3652  0.3922  0.7532  0.5780  0.4870  0.5982
F 0.2518 03091 04101  0.2903  0.1865 N/A 0.4255  0.6689  0.5447  0.5052  0.6618
G 0.1798  0.1329  0.3064  0.1461 01759  0.2251 N/A 0.7993 05065  0.4729  0.5275
H 0.8834 08116  0.8830  0.5934  0.4897  0.4673  0.6440 N/A 0.6417  0.6713  0.8145
[ 0.2235  0.2087  0.3684  0.1801  0.2479  0.2048  0.1599  0.5417 N/A 0.3232  0.3596
J 0.2144  0.1230  0.2833 01154 02358 02531  0.1238 05225  0.1193 N/A 0.4471
K 0.2194  0.617  0.3823  0.1319  0.2578  0.2988  0.1378  0.6847  0.1499  0.1504 N/A
Table 9 RDPB of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using image K as the reference image.
RDPB
Ref. image
K A B Cc D E F G H | J Entropy
TUC/MD 0.0879  0.1131  0.3392 00528 00653 00804 00628 00980 [0I0402] 00603 29764
GTUC/MD  0.1352  0.0681 03695 00310 00279 00671 00155 02580 [00134 00144 [25149
TUC/D 01043 01160 01973 [010540] 0.0927 01026 00818 01263 00557 00693 32165
GTUC/ID 0.0852 00628 0.1485 [00512] 01001 01161 00535 02659 00582 00584  3.0869
Table 10 Comparison of computational complexity between TUC and GTUC.
Computing time (seconds)
CPU
600 MHz A B c D E F G H [ J
TUC 1.6230 1.6630 1.6030 1.5520 1.5620 1.9220 1.6830 1.6520 1.5920 1.7730
GTUC 26.729 20.049 17.294 17.235 17.635 17.725 18.016 17.545 19.377 17.074
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=0.2724, GTUC/IDA,C)=0.2270 yielded the smallest 6 Conclusions

RDPB values. This fact |m.pl|ed tha_t image A could be mis- ¢ concept of the texture spectrum recently proposed by
taken for any of the three images, images B, C, and D. The \wang and He has found applications in pattern classifica-
reason for this is because image A is so distinct from the tjon It can be considered as a transform coding that makes
other three images that using it as a reference image doegse of a %3 texture unit(TU) to convert texture patterns
not do any good in discrimination among images B, C, and of an image to various texture numbers that can be used to
D. However, if a complete spectrum of the RDPB values form a texture spectrum in the same way that an image
was taken into consideration, the three RDPB values of gray-level histogram is created in histogram equalization
images B, C, and D for TUC/MD, GTUC/MD, TUC/ID, for image enhancement. This work presents a new ap-
and GTUCI/ID were  (0.3333,0.3718,0.2949 proach, called gradient texture unit codif@TUC) that is
(0.2510,0.2954,0.4537 (0.4364,0.2724,0.29)2 and derived from Wang and He's texture unit approach. Unlike
(0.4596, 0.2270, 0.3134respectively, where the TUC/MD  Wang and He's texture unit codin@UC) that encodes the
generated three very close RDPB values compared to thegray-level changes between the séeehtej pixel and one
GTUC/ID that produced the most distinct RDPB values. of its adjacent pixels in a texture unit, the GTUC generates
From this aspect, the GTUC/ID performed the best, while gradient texture number&STUNS) that dictate gray-level
the TUC/MD was the worst. changes between the seed pixel and its two adjacent pixels
To have a fair comparison between Wang and He’s TUC in & texture unit. As a result, the GTUC can be.interpreted
and our GTUC, the four texture images used for our previ- @ a gradient of Wang and He’s texture unit numbers
ous experiments were the same ones used in Wang and TUNS) because it captures the gray-level changes between
He's work in Refs. 2, 4, 5, and 6. However, similar experi- W0 TUNS. Interestingly, both the Wang and He’s TUC and
ments can be also carried out for any texture image. In the GTUC results in the same range of their corresponding
doing so, 11 texture images labeled A through K in Fig. 8 texture unit numbers from O to 6560. Therefore, their spec-
were randomly selected from Brodatz's natural texture U@ can be normalized to probability vectors and further
images'® where the image K was chosen as a reference measure_d t_)y information d|vergence in conjunction with
image to calculate the RDPB for comparison. Tables 7 and Other criteria recently developed in hyperspectral image
8 tabulate the results of TUC and GTUC for these 11 tex- @nalysis>® The main contributions of this work focus on
ture images measured by the MD and the D, respectively, € introduction of a new texture coding method, GTUC,
Since the image K was used as a reference image, Weand exploration of the TUC and GTUC in texture analysis

from an information theory’s point of view. The results pre-
looked at the last rows and last columns of Tables 7 and 8 :
to compare the performance of the TUC and the GTUC sented are only based on texture analysis. They can also be

using the MD and the ID. Interestingly, the experimental implemented in conjunction with classification techniques

. . . to perform texture classification and pattern recognition in
results provided ewdenge that the two distance MEASUreS 4 rious areas such as medical imaging, remote sensing, etc.
MD and ID performed differently, even though they were X !

. X ; . : One such example using the concept of Wang and He's
implemented in conjunction with the same texture feature ;oyre spectrum and TUC is mass detection in mammo-

coding method. According to Tables 7 and 8, the TUC and grams where texture features provide crucial elements in

GTUC identified the image [highlighted valuesas the  (assificationt 12 A new application of our GTUC to this
one closest to image K using the MD, compared to the grea s currently under investigation.

image D(highlighted valuesidentified to be closest to the
image K by the TUC and the GTUC using the ID. To fur-
ther evaluate their relative discriminatory probabilities,
Table 9 tabulates the RD'_DB (?f the TUC/MD, GTUC/M_D' 1. R. M. Harlaick, K. Shanmugam, and I. Dinstein, “Textural features
TUC/ID, and GTUC/ID using image K as a reference im- gozr {r(q%%% classification,1EEE Trans. Syst. Man Cyber8(6), 610—
age, where their respective entropies were also_calculated. . L. Wang and D. C. He, “A new statistical approach to texture analy-
As we can see from this table, the ID always yielded the sis,” Photogramm. Eng. Remote SeB8, 61-65(1990. _
smaller RDPB and entropy than the MD did when they 3 Gonzalez and R. E. Wood®igital Image ProcessingAddison-

;i . . Wesley, Reading, MA2002.
were implemented with the same texture coding method.
Since the tables for the RDPW are too large, their results
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