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Abstract. Texture is one of many important features to capture in image
characteristics. A recent texture unit-based texture spectrum approach,
referred to as texture unit coding (TUC) developed by Wang and He has
shown promise in texture classification. We present a new texture fea-
ture extraction coding, called gradient texture unit coding (GTUC) that is
based on Wang and He’s texture unit to capture gradient changes in a
texture unit. Since the GTUC also generates an 8-D ternary texture fea-
ture vector in the same way that the TUC does, a GTUC-generated
feature vector can be further represented by a number in the same range
generated by the TUC. As a result, the GTUC-generated numbers also
form a texture spectrum similar to that formed by the TUC-generated
numbers. By normalizing a texture spectrum as a probability distribution,
this work further develops an information divergence (ID)-based discrimi-
nation criterion to measure the discrepancy between two texture spectra,
a concept yet to be explored in texture analysis. To compare the GTUC
to the TUC in texture classification, several criteria used in hyperspectral
image analysis are also introduced for performance analysis. © 2004
Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1768183]

Subject terms: gradient texture unit coding; gradient texture unit number; infor-
mation divergence; relative discriminatory probability; relative discriminatory
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1 Introduction

Texture is one of the fundamental features used to desc
image characteristics. One commonly used approach is
gray-level co-occurrence matrix that provides gray-le
transition information between two gray levels.1 Using a
rather different approach, Wang and He2 considered a 333
window as a texture unit~TU! along with its eight-neighbor
connectivity3 to generate an 8-D texture feature vector
each pixel that represents the gray-level changes betw
the pixel at the center of the texture unit, referred to a
seed pixel, and its eight neighboring pixels specified
eight orientations 0, 45, 90, 135, 180, 225, 270, and 3
deg, shown in Fig. 1. As a result, each pixel can produce
8-D texture feature vector that describes gray-level chan
in a texture unit along with these eight orientations. Su
an 8-D texture feature vector can be further converted
texture unit number~TUN! in a ternary representation tha
specifies a particular texture pattern. Because each pix
an image generates its own TUN via a TU, these TUNs
be used to form a texture spectrum in the same way
gray-level values of image pixels form an image histogra
The only difference is that thex axis of the texture spec
trum is specified by TUNs instead of the gray levels in t
image histogram. By virtue of the texture spectrum, Wa
and He have investigated various applications.4–6

We explore the concept of Wang and He’s texture u
and further develop a new texture feature extraction cod
method, called gradient texture unit coding~GTUC! that
encodes gradient changes in gray levels between the
pixel in a texture unit and its two neighboring pixels in
TU, along with two different orientations. In other word
Opt. Eng. 43(8) 1891–1903 (August 2004) 0091-3286/2004/$15.00
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the GTUC extends the Wang and He method, referred to
texture unit coding~TUC! in this work, in the sense that th
GTUC captures the gray-level changes among three pi
rather than two pixels considered in the TUC. More sp
cifically, unlike the TUC that encodes a change in gr
level along a particular orientation specified by the se
pixel and one of its eight neighboring pixels in a textu
unit, the GTUC dictates texture patterns that describe g
dient changes in two orientations specified by the s
pixel and two of its eight neighboring pixels in the textu
unit. Consequently, the GTUC can be interpreted as a
dient method of Wang and He’s TUC, since it calculates
gray-level changes in two TUNs generated by Wang a
He’s TUC.

One of the unique features resulting from the TUC
that an 8-D ternary texture feature vector generated by
TUC can be represented by a numerical number, the tex
unit number~TUN!, ranging from 0 to 382156560. In
analogy with gray levels that create an image histogram
an image, these TUC-generated TUNs can also be use
form a texture spectrum for a texture image. Similarly, t
proposed GTUC also produces an 8-D ternary gradient
ture feature vector that generates a numerical value in
same range$0,1,̄ ,6560%, referred to as the gradient textur
unit number~GTUN! in the same fashion that the TUN i
generated by the TUC. As a result, a texture spectrum
also be produced from such GTUNs for a texture ima
More interestingly, the relationship between the TUC a
the GTUC seems to suggest that what the texture spec
of TUNs is to the texture spectrum of the GTUNs is simil
1891© 2004 Society of Photo-Optical Instrumentation Engineers
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Chang and Chen: Gradient texture unit coding . . .
to what the gray-level image histogram is to spatial gr
level co-occurrence matrix~SGLCM!.

In this work, the two texture feature extraction codin
methods, TUC and GTUC, are investigated and compa
for performance evaluation. Since it is generally difficult
compare two texture spectra by visual inspection, a tex
spectrum is further normalized to unity to form a probab
ity distribution so that the information divergence~ID!,7,8

also known as Kullback-Leibler information distance, c
be used to measure the discrepancy between two tex
spectra. To compare the effectiveness of the TUC and
GTUC, several criteria previously developed in Refs. 8 a
9, along with the commonly used minimum distance in R
5, are used to perform comparative analysis.

The remainder of this work is organized as follows. Se
tion 2 describes the concept of texture spectrum~TS! and
the texture unit coding~TUC! developed by Wang and He
Section 3 develops a new texture feature extraction cod
called gradient texture unit coding~GTUC!. Section 4 in-
troduces the information divergence and several crite
that can be used to measure the effectiveness of the T
and the GTUC. Section 5 conducts experiments for per
mance comparison. As a concluding section, Sec. 6 is
cluded to summarize the results and contributions acc
plished in this work.

2 Texture Unit Coding

The spatial gray-level co-occurrence matrix~SGLCM! has
been widely used in texture classification due to its abi
in capturing transitions between all pairs of two gray lev
~not necessarily distinct!.1 More specifically, it is a matrix
W whose elements are specified by frequencies of tra
tions from one gray to another in a certain way. Ma
SGLCM-based methods have been developed and repo
in the literature. Recently, an alternative approach has b
developed by Wang and He.2,4,5 It considers a 333 window
as a texture unit and uses gray-level changes between
center pixel in the texture unit and one of its eight neig
boring pixels as texture features, from which a texture sp
trum could be generated for texture classification. The c
cept of using the texture spectrum has shown promise
various applications and can be described as follows.

2.1 Texture Unit

A texture unit~TU!, described in Fig. 2, has the pixelX0 as
the center pixel, which is the pixel currently being pr

Fig. 1 Eight orientations.
1892 Optical Engineering, Vol. 43 No. 8, August 2004
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cessed, referred to as the seed pixel, and eight surroun
pixels labeled byX1 , X2 , X3 , X4 , X5 , X6 , X7 , and X8

considered to be neighboring pixels ofX0 . According to
Ref. 3, the four pixelsX1 , X3 , X5 , and X7 are the first-
order neighboring pixels ofV0 , which form the first-order
four-neighbor connectivity, whileX2 , X4 , X6 , andX8 are
the second-order neighboring pixels ofX0 to constitute the
second-order four-neighbor connectivity. If we assume t
V0 , V1 , V2 , V3 , V4 , V5 , V6 , V7 , and V8 are the gray
levels corresponding toX0 , X1 , X2 , X3 , X4 , X5 , X6 , X7 ,
andX8 respectively, Wang and He defined a texture feat
number~TFN! Ei associated with a neighboring pixelXi as
follows,

Ei5H 0; if Vi,V02D

1; if uVi2V0u<D

2; if Vi.V01D

for i 51,2,̄ ,8, ~1!

whereD is a gray-level tolerance to be determined.

2.2 Texture Spectrum

Since there are three values that anEi in Eq. ~1! can take,
there are 3856561 combinations to cover all the possib
values of (E1 ,E2 ,E3 ,E4 ,E5 ,E6 ,E7 ,E8), each of which
can be specified by a numberN(E1 ,E2 ,E3 ,E4 ,
E5 ,E6 ,E7 ,E8), referred to as a texture unit number~TUN!
of X0 , using the following ternary representation.

N~E1 ,E2 ,¯,E8!5(
i 51

8

Ei33i 21

5E13301E23311¯1E8337. ~2!

By virtue of a TU, each image pixel can generate an 8
texture feature vector (E1 ,E2 ,E3 ,E4 ,E5 ,E6 ,E7 ,E8) from
which a TUN can be produced using Eq.~2!. By treating
such a TUN as a gray level, we can generate a tex
spectrum for an image in a manner similar to a gray-le
image histogram generated for an image. Since each
eight orientations in Fig. 1 can be used to start off as
first neighboring pixelX1 , eight different texture spectra

Fig. 2 A texture unit.
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Fig. 3 Representation of eight different degrees, 0 deg (X12X02X1), 45 deg (X12X02X2), 90 deg
(X12X02X3), 135 deg (X12X02X4), 180 deg (X12X02X5), 225 deg (X12X02X6), 270 deg
(X12X02X7), and 315 deg (X12X02X8).
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can be generated for each image. Using Eq.~2!, we can
further convert the TU-based texture spectrum to a pr
ability distribution,pTUN by

pTUN~ i !5
NTUN~ i !

N
for i 50,1,̄ ,6560, ~3!

where NTUN( i ) is the number of pixels whose TUN i
N(E1 ,E2 ,¯,E8)5 i , defined by Eq.~2!, andN is the total
number of pixels in the image.

3 Gradient Texture Unit Coding

The texture spectrum produced by Eq.~2! is based on the
correlation between the seed pixelX0 and one of its eight
neighboring pixels,X1 , X2 , X3 , X4 , X5 , X6 , X7 , andX8
in Fig. 2. It does not take into account the spatial corre
tion of X0 with two pixels in its eight-neighbor connectiv
ity. In this section, we develop a new concept of gradi
texture unit matrix, which captures the gray-level gradie
changes betweenV0 andVi and betweenV0 andVj . More
specifically, for the seed pixelX0 in a TU, we define a
gradient texture feature number~GTFN! with respect to any
pair of its two neighboring pixelsXi andXj as follows.

¹Vi j 55
0; if uVi2V0u<D and uVj2V0u<D

1; if uVi2V0u<D and uVj2V0u.D

or uVi2V0u.D and uVj2V0u<D

2; if uVi2V0u.D and uVj2V0u.D

for i , j 51,2,̄ ,8.

~4!

In analogy with the 8-D texture feature vector defined
(E1 ,E2 ,E3 ,E4 ,E5 ,E6 ,E7 ,E8) for the seed pixelX0 , we
can generate an 838 gradient texture feature matri
~GTFM! for X0 by,
¹MTU5 b¹Vi j c838 , ~5!

whose (i , j ) entry ¹Vi j is given by Eq.~4!. It should be
noted that the GTFM is symmetric and the diagonal e
ments of¹MTU can only take values of either 0 or 2. S
we can convert the GTFM to a 36-D gradient texture fe
ture vector where each of the 36 dimensions in the fea
vector specifies a gradient change between a particular
of two pixels Xi and Xj in Fig. 2. As a result, there are
total of 281328 gradient texture feature vectors. That is, f
each fixedXi in Fig. 2, there are eight pixels in the eigh
neighbor connectivity ofX0 , including itself~i.e.,Xi!, can be
chosen to beXj where each of these pixels represents o
particular orientation specified in Fig. 1. Figure 3 shows
example whereXi is chosen to beX1 and theXj runs from
X1 , X2 through X8 , which represents eight different de
grees, 0, 45, 90, 135, 180, 225, 270, and 315, with 45
apart, namely, 0 deg (X12X02X1), 45 deg (X12X0

2X2), 90 deg (X12X02X3), 135 deg (X12X02X4), 180
deg (X12X02X5), 225 deg (X12X02X6), 270 deg (X1

2X02X7), and 315 deg (X12X02X8). Similarly, we can
also chooseXi to be X2 and the Xj to run from X2 ,
X3 ,¯,X8 throughX1 , as shown in Fig. 4 to also represe
eight degrees, 0 deg (X22X02X2), 45 deg (X22X0

2X3), 90 deg (X22X02X4), 135 deg (X22X02X5), 180
deg (X22X02X6), 225 deg (X22X02X7), 270 deg (X2

2X02X8), and 315 deg (X22X02X1). Comparing Fig. 4
to Fig. 3, we note that the only thing that matters is t
degree formed byXi and Xj regardless of what is chose
for Xi . In other words, the degree of the angle formed
Xi andXj only depends on the difference of subscript, i.
u i 2 j u. In this case, the eight orientations in Fig. 1 al
correspond to the eight degrees specified by 0 degXi

2X02Xi 11), 45 deg (Xi2X02Xi 12), 90 deg (Xi2X0

2Xi 13), 135 deg (Xi2X02Xi 14), 180 deg (Xi2X0
1893Optical Engineering, Vol. 43 No. 8, August 2004
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Fig. 4 Representation of eight different degrees, 0 deg (X22X02X2), 45 deg (X22X02X3), 90 deg
(X22X02X4), 135 deg (X22X02X5), 180 deg (X22X02X6), 225 deg (X22X02X7), 270 deg
(X22X02X8), and 315 deg (X22X02X1).
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2Xi15), 225 deg (Xi2X02Xi 16), 270 deg (Xi2X0

2Xi 17), and 315 deg (Xi2X02Xi 18) for i 52,3,̄ ,8.
Therefore, we can always fixXi at X1 and let theXj run
from X1 , X2 through X8 and generate a gradient textu
unit number ~GTUN! for each image pixel, denoted b
N(¹V1,1,¹V1,2,¯,¹V1,8) in the same way that the TUN
is generated by Eq.~2! using the following ternary repre
sentation,

N~¹V1,1,¹V1,2,¯,¹V1,8!

5(
j 51

8

¹V1,j33i 21

5¹V1,13301¹V1,23311¯1¹V1,8337. ~6!

Interestingly, there are also 3856561 combinations in Eq
~6! to generate GTUNs. Like Wang and He’s TUNs, the
GTUNs also form a gradient texture spectrum that can
used for texture analysis. In particular, we can further c
vert the GTU-based texture spectrum to a probability d
tribution, pGTUN by

pGTUN~ i !5
NGTUN~ i !

N
for i 50,1,̄ ,6560, ~7!

whereNGTUN( i ) is the number of pixels whose GTUN i
N(¹V1,1,¹V1,2,¯,¹V1,8)5 i , defined by Eq.~6!, andN is
the total number of pixels in the image.

4 Texture Discrimination Measures

As described in Secs. 2 and 3, Wang and He’s texture s
trum and our proposed gradient texture spectrum can
considered as a probability distribution defined on a pr
ability space (V,S,P) with the sample space
ical Engineering, Vol. 43 No. 8, August 2004
-

V5$0,1,...,6560%, the power set ofV as the even spaceS,
and the probability measureP specified by eitherpTUN via
Eq. ~3! or pGTUN via Eq. ~7!. This interpretation allows us
to take advantage of the well-established informat
theory to analyze the texture spectrum. In this section,
present three texture spectrum discrimination measures
were previously derived from hyperspectral imagery8,9 and
can be used to measure similarity between two texture
ages. Letm denote a probability measure specified by a
texture feature extraction method such aspTUN , pGTUN.
Assume that am5(am,0 ,am,1 ,¯,am,6560)

T and bm

5(bm,0 ,bm,1 ,¯,bm,6560)
T are texture spectra or gradien

texture spectra of two texture images denoted byA andB.

4.1 Information Divergence

For a given imageA, the self-information provided byam

for TUN or GTUN5 j is defined by

I j~am!52 logam, j . ~8!

Similarly, for another imageB, the self-information pro-
vided bybm for TUN or GTUN5 j is defined by

I j~bm!52 logbm, j . ~9!

Using Eqs.~8! and ~9!, we can further defineD j (amibm),
the discrepancy in the self-information ofj in bm relative to
the self-information ofj in am by

D j~amibm!5I j~bm!2I j~am!5 log~am, j /bm, j !. ~10!

AveragingD j (amibm) in Eq. ~10! over all j’s with respect
to am results in
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Chang and Chen: Gradient texture unit coding . . .
D~amibm!5 (
j 50

6560

D j~amibm!am, j

5 (
j 50

6560

am, j log~am, j /bm, j !, ~11!

where D(amibm) is the average discrepancy in the se
information ofbm relative to the self-information ofam . In
the context of information theory,D(amibm) in Eq. ~11! is
called the relative entropy ofbm with respect toam , which
is also known as the Kullback-Leibler information measu
directed divergence, or cross entropy.7 Similarly, we can
also define the average discrepancy in the self-informa
of am relative to the self-information ofbm by

D~bmiam!5(
j 51

L

D j~bmiam!bm, j

5 (
j 50

6560

bm, j log~bm, j /am, j !. ~12!

Summing Eqs.~11! and~12! yields information divergence
~ID! defined by

ID~am ,bm!5D~amibm!1D~bmiam!, ~13!

which can be used to measure the similarity of texture p
terns between two texture imagesA and B. It should be
noted that while ID(am ,bm) is symmetric,D(amibm) is
not. This is because ID(am ,bm)5ID( bm ,am), and
D(amibm)ÞD(bmiam).

4.2 Relative Discriminatory Probability

Let $sk%k51
K beK texture images in the setD, which can be

considered as a database, andt be any specific target tex
ture image to be identified usingD. We define the discrimi-
natory probabilities of allsk’s in D relative tot as follows.

pt,D
m ~k!5m~ t,sk!/(

i 51

K

m~ t,si ! for k51,2,̄ ,K, ~14!

whereS i 51
K m(t,si) is a normalization constant determine

by t and D. The resulting probability vectorpt,D
m

5@pt,D
m (1),pt,D

m (2),¯,pt,D
m (K)#T is called the relative dis-

criminatory probability~RDPB! of D with respect tot or
the spectral discriminatory probability vector ofD relative
to t. Then, using Eq.~14! we can identifyt via D by select-
ing the one with the smallest relative spectral discrimina
ity probability. If there is a tie, either one can be used
identify t.

4.3 Relative Discriminatory Entropy

Since pt,D
m 5@pt,D

m (1),pt,D
m (2),¯,pt,D

m (K)#T given by Eq.
~14! is the relative discriminability probability vector oft
using a selective set of texture imagesD5$sk%k51

K , we can
further define the relative discriminatory entropy~RSDE!
of the spectral signaturet with respect to the setD, denoted
by HRSDE

m (t,D) by
HRSDE
m ~ t,D!52 (

k51

K

pt,D
m ~k!log2 pt,D

m ~k!. ~15!

Equation~15! provides an uncertainty measure of identif
ing t resulting from using D5$sk%k51

K . A higher
HRSDE

m (t,D) may have less chance to identifyt.

4.4 Relative Discriminatory Power

Let d be a texture image. Assume thats ands8 are a pair of
two texture images to be compared using thed as a refer-
ence texture image. The RDPW ofm(,), denoted by
RDPWm(s,s8;d) is defined by

RDPWm~s,s8;d!5maxH m~s,d!

m~s8,d!
,
m~s8,d!

m~s,d! J . ~16!

More precisely, RDPWm(s,s8;d) selects as the discrimina
tory power ofm(,) the maximum of two ratios, the ratio o
m(s,s8;d) to m(s8,s;d), and the ratio ofm(s8,s;d) to
m(s,s8;d). The RDPWm(s,s8;d) defined by Eq.~16! pro-
vides a quantitative index of discrimination capability of
specific texture feature coding methodm(,) between two
texture imagess ands8 relative tod. Obviously, the higher
the RDPWm(s,s8;d) is, the better discriminatory powe
m(,) is. In addition, RDPWm(s,s8;d) is symmetric and
bounded below by one, i.e., RDPWm(s,s8;d)>1 with
equality if and only ifs5s8.

5 Experiments

In this section, the same four texture images of size 6
3640 pixels labeled in Fig. 5~a! that were used in Refs. 2
4, 5, and 6 were also used for experiments to conduc
comparative study between Wang and He’s TUC and
proposed GTUC for performance evaluation using
minimum distance~MD! and the information divergenc
~ID! as performance measures. The toleranceD was set to
3, which was an empirical choice. It should also be no
that both MD and ID were performed on the probabili
distributions produced by Eqs.~3! and~7!. The images are
selected from Brodatz’s natural texture images,10 image A
~beach sand!, image B~water!, image C~pressed cork!, and
image D~fur hide of an unborn calf!. To make our analysis
simple and more effective, the upper left corner of s
64364 pixels cropped from each of the four images in F
5 was used for our experiments. They are enlarged
shown right beneath each of the four images labeled by
5~b!. Figures 6 and 7 show examples of eight texture sp
tra of the TUNs and GTUNs generated for the four textu
images in Fig. 5, respectively, with eight different startin
positions fromX1 , X2 ,¯,X8 . As we can see from Figs. 6
and 7, the TUC-generated and the GTUC-generated tex
spectra were quite different, thus provide different levels
texture information for analysis. In particular, compared
TUC-generated texture spectra for four images, which
looked very similar from visual inspection, the GTUC
generated texture spectrum of image A was quite differ
from those of images B, C, and D. So, it could be sing
out immediately without difficulty. If we further examine
more closely the GTUC-generated texture spectrum of
1895Optical Engineering, Vol. 43 No. 8, August 2004
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Fig. 5 Four texture images: (a) original image; and (b) a subimage of 64364 cropped from the upper
left corner of each original image.
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age B, it was also distinct from images C and D. As
images C and D, their corresponding GTUC-generated
ture spectra were very similar and difficult to discern o
from another. Based on this observation, we could concl
that the four texture images could be grouped into th
different classes, image A, image B, and a class compr
of images C and D. However, such categorization canno
made easily by visually examining the TUC-generated t
ture spectra in Fig. 6.

To avoid subjective visual inspection, Tables 1 and
tabulate the results of applying the TUC and GTUC to
the four texture images in Fig. 5~b! using the MD and ID as
neering, Vol. 43 No. 8, August 2004
-
distance measures, respectively. To simplify analysis,
notations TUC/MD(X,Y), TUC/ID(X,Y),
GTUC/MD(X,Y), and GTUC/ID(X,Y) are introduced to
represent the distance between imagesX and Y measured
by the TUC using MD and ID, the GTUC using MD an
ID, respectively. Using these four definitions, Table
shows that TUC/MD~A,D!50.0023, TUC/MD~B,A!
50.0026, and TUC/MD~C,D!5TUC/MD~D,C!50.0028,
all of which were the smallest values yielded by TUC/M
for each of the four texture images in Fig. 5~b!. It implied
that image A was more similar to image D than to images
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Fig. 6 Eight texture spectra of the TUNs generated for the four texture images in Fig. 5, respectively,
with eight different starting positions from X1 , X2 ,...,X7 , X8 .
1897Optical Engineering, Vol. 43 No. 8, August 2004
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Fig. 7 Eight texture spectra of the GTUNs generated for the four texture images in Fig. 5, respectively,
with eight different starting positions from X1 , X2 ,...,X7 , X8 .
ical Engineering, Vol. 43 No. 8, August 2004
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Chang and Chen: Gradient texture unit coding . . .
and C, image B was more similar to image A than to i
ages C and D, and images C and D were similar to e
other compared to images A and B.

Now, if the GTUC was used and their results are tab
lated in Table 1, where GTUC/MD~A,B!5GTUC/
MD~A,B!50.0140, GTUC/MD~C,D!5GTUC/MD~D,C!
50.00025 were the smallest values produced by
GTUC/MD for each of the four texture images. The GTU
results suggested that images A and B were in one gro
while images C and D were in another group.

Next, if the ID was implemented in place of the MD i
Table 1, the results of the TUC/ID and GTUC/ID are tab
lated in Table 2, where for each of the four texture imag
their smallest values in Table 2 produced by TUC/ID a
GTUC/ID, were TUC/ID~A,C!50.6868, TUC/ID~B,A!
51.1000, TUC/ID~C,D!5TUC/ID~D,C!50.6615, and
GTUC/ID~A,C!50.3529, GTUC/ID~B,A!50.6833, GTUC/
ID~C,D!5GTUC/ID~D,C!50.0172. Interestingly, in this
case, the TUC/MD and GTUC/ID produced consistent
sults. Both suggested that image A was more similar
image C than to images B and D, image B was more si
lar to image A than to images C and D, and images C
D were similar to each other compared to images A and
Furthermore, if we take a close look at the ID values p
duced by GTUC in Table 2, we could conclude imme
ately that images C and D were in the same texture im
class with similar texture patterns, because the value
GTUC/ID~C,D!5GTUC/ID~D,C!, 0.0172 was very small
while images A and B could be considered as two sepa
texture image classes, since GTUC/ID~A,C!50.3529,
GTUC/ID~B,A!50.6833 were almost 20 and 40 times
the value 0.0172. The results in Tables 1 and 2 demons
that the ID was more reliable than the MD in terms
texture discrimination, and the GTUC performed more
fectively than did the TUC.

To further substantiate our conclusions drawn fro
Tables 1 and 2, the RDPB, entropy, and RDPW were u

Table 1 Results of TUC and GTUC for the four texture images in
Fig. 5(b) measured by MD.

TUC

GTUC A B C D

A N/A 0.0026 0.0029 0.0023

B 0.0130 N/A 0.0059 0.0058

C 0.0153 0.0524 N/A 0.0028

D 0.0235 0.0663 0.0032 N/A
,

f

e

to evaluate the performance of TUC/MD, GTUC/MD
TUC/ID, and GTUC/ID for comparative analysis. Table
3–6 tabulate their results with images A, B, C, and D us
as a reference image, respectively, where the sma
RDPB values and the largest RDPW values are highligh
and shaded for each of four reference images. As note
smaller value of RDPB yielded by one image indicates l
discrimination between the image and the reference ima
On the contrary, a larger value of RDPW between two i
ages represents a more discriminatory power to discri
nate the two images with respect to the reference image
shown in Tables 3–6, when the ID was used, the TUC a
GTUC produced consistent results with the GTUC hav
better discriminatory powers~i.e., higher RDPW values!
and less entropies. On the other hand, when MD was u
the GTUC generally performed better than the TUC w
significant reduction of entropies and substantially be
discriminatory powers~see RDPW values in Tables 3–6!. It
should be noted that with image D as the reference ima
the TUC/MD produced the smallest RDPB for image
This contradicted with the results produced by the GTU
MD, TUC/ID, and GTUC/ID, all of which yielded the
smallest RDPB values for image D. If the results in Tab
3–6 are further taken into account, the TUC/MD perform
the worst among the TUC/MD, GTUC/MD, TUC/ID, an
GTUC/ID.

It is also interesting to revisit image A. According t
Tables 1 and 2, both TUC and GTUC had difficulty wi
discriminating image A from images B, C, and D. This
because image A has quite different texture patterns fr
images B, C, and D, as shown in Fig. 7. So, in this ca
image A can be discriminated easily and should be remo
from comparison with other images. If it was used as
reference image, the RDPB and RSPW values among
ages B, C, and D were not consistent, as reflected in Ta
3. The results in Table 3 show that TUC/MD~A,D!
50.2949, GTUC/MD~A,B!50.2510, TUC/ID~A,C!

Table 2 Results of TUC and GTUC for the four texture images in
Fig. 5(b) measured by ID.

TUC

GTUC A B C D

A N/A 1.1002 0.6868 0.7341

B 0.7316 N/A 1.7370 1.5775

C 0.3613 1.3013 N/A 0.6615

D 0.4989 1.6178 0.2018 N/A
Table 3 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image A as the reference image.
1899Optical Engineering, Vol. 43 No. 8, August 2004
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1900 Optical Engi
Fig. 8 Additional 11 texture images used for experiments.

Table 4 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image B as the reference image.

Table 5 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image C as the reference image.

Table 6 RDPB, RDPW, and entropy values of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using
image D as the reference image.
neering, Vol. 43 No. 8, August 2004
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Table 7 Results of TUC and GTUC for the 11 texture images measured by MD.

TUC

GTUC A B C D E F G H I J K

A N/A 0.0034 0.0102 0.0034 0.0029 0.0026 0.0033 0.0050 0.0025 0.0023 0.0035

B 0.0069 N/A 0.0053 0.0019 0.0026 0.0018 0.0026 0.0046 0.0030 0.0022 0.0045

C 0.0288 0.0139 N/A 0.0083 0.0120 0.0094 0.0113 0.0129 0.0105 0.0094 0.0135

D 0.0174 0.0045 0.0240 N/A 0.0025 0.0026 0.0024 0.0037 0.0018 0.0016 0.0021

E 0.0134 0.0104 0.0457 0.0067 N/A 0.0013 0.0014 0.0031 0.0024 0.0020 0.0026

F 0.0147 0.0173 0.0599 0.0143 0.0020 N/A 0.0019 0.0023 0.0022 0.0021 0.0032

G 0.0101 0.0034 0.0272 0.0020 0.0031 0.0079 N/A 0.0039 0.0024 0.0022 0.0025

H 0.0558 0.0524 0.1134 0.0357 0.0176 0.0141 0.0313 N/A 0.0027 0.0033 0.0039

I 0.0141 0.0098 0.0434 0.0054 0.0013 0.0031 0.0024 0.0185 N/A 0.0012 0.0016

J 0.0130 0.0048 0.0299 0.0018 0.0031 0.0078 0.0007 0.0284 0.0019 N/A 0.0024

K 0.0131 0.0066 0.0358 0.0030 0.0027 0.0065 0.0015 0.0250 0.0013 0.0014 N/A

Table 8 Results of TUC and GTUC for the 11 texture images measured by ID.

TUC

GTUC A B C D E F G H I J K

A N/A 0.6190 1.0211 0.5868 0.6124 0.5415 0.5972 1.0271 0.5740 0.5407 0.6728

B 0.1518 N/A 0.6988 0.4143 0.5038 0.4086 0.4847 0.9532 0.6184 0.4942 0.7481

C 0.2262 0.1420 N/A 0.9479 1.1632 0.9018 1.1686 1.0210 1.2155 1.0977 1.2725

D 0.2437 0.0951 0.2544 N/A 0.5085 0.5111 0.4868 0.6748 0.3780 0.3436 0.3485

E 0.2475 0.2529 0.3502 0.2260 N/A 0.3652 0.3922 0.7532 0.5780 0.4870 0.5982

F 0.2518 0.3091 0.4101 0.2903 0.1865 N/A 0.4255 0.6689 0.5447 0.5052 0.6618

G 0.1798 0.1329 0.3064 0.1461 0.1759 0.2251 N/A 0.7993 0.5065 0.4729 0.5275

H 0.8834 0.8116 0.8830 0.5934 0.4897 0.4673 0.6440 N/A 0.6417 0.6713 0.8145

I 0.2235 0.2087 0.3684 0.1801 0.2479 0.2048 0.1599 0.5417 N/A 0.3232 0.3596

J 0.2144 0.1230 0.2833 0.1154 0.2358 0.2531 0.1238 0.5225 0.1193 N/A 0.4471

K 0.2194 0.1617 0.3823 0.1319 0.2578 0.2988 0.1378 0.6847 0.1499 0.1504 N/A

Table 9 RDPB of TUC/MD, GTUC/MD, TUC/ID, and GTUC/ID using image K as the reference image.

Table 10 Comparison of computational complexity between TUC and GTUC.

CPU
600 MHz

Computing time (seconds)

A B C D E F G H I J

TUC 1.6230 1.6630 1.6030 1.5520 1.5620 1.9220 1.6830 1.6520 1.5920 1.7730

GTUC 26.729 20.049 17.294 17.235 17.635 17.725 18.016 17.545 19.377 17.074
1901Optical Engineering, Vol. 43 No. 8, August 2004
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Chang and Chen: Gradient texture unit coding . . .
50.2724, GTUC/ID~A,C!50.2270 yielded the smalles
RDPB values. This fact implied that image A could be m
taken for any of the three images, images B, C, and D.
reason for this is because image A is so distinct from
other three images that using it as a reference image
not do any good in discrimination among images B, C, a
D. However, if a complete spectrum of the RDPB valu
was taken into consideration, the three RDPB values
images B, C, and D for TUC/MD, GTUC/MD, TUC/ID
and GTUC/ID were ~0.3333, 0.3718, 0.2949!,
~0.2510, 0.2954, 0.4537!, ~0.4364, 0.2724, 0.2912!, and
~0.4596, 0.2270, 0.3134!, respectively, where the TUC/MD
generated three very close RDPB values compared to
GTUC/ID that produced the most distinct RDPB value
From this aspect, the GTUC/ID performed the best, wh
the TUC/MD was the worst.

To have a fair comparison between Wang and He’s T
and our GTUC, the four texture images used for our pre
ous experiments were the same ones used in Wang
He’s work in Refs. 2, 4, 5, and 6. However, similar expe
ments can be also carried out for any texture image
doing so, 11 texture images labeled A through K in Fig
were randomly selected from Brodatz’s natural textu
images,10 where the image K was chosen as a refere
image to calculate the RDPB for comparison. Tables 7
8 tabulate the results of TUC and GTUC for these 11 t
ture images measured by the MD and the ID, respectiv
Since the image K was used as a reference image,
looked at the last rows and last columns of Tables 7 an
to compare the performance of the TUC and the GT
using the MD and the ID. Interestingly, the experimen
results provided evidence that the two distance meas
MD and ID performed differently, even though they we
implemented in conjunction with the same texture feat
coding method. According to Tables 7 and 8, the TUC a
GTUC identified the image I~highlighted values! as the
one closest to image K using the MD, compared to
image D~highlighted values! identified to be closest to th
image K by the TUC and the GTUC using the ID. To fu
ther evaluate their relative discriminatory probabilitie
Table 9 tabulates the RDPB of the TUC/MD, GTUC/MD
TUC/ID, and GTUC/ID using image K as a reference im
age, where their respective entropies were also calcula
As we can see from this table, the ID always yielded
smaller RDPB and entropy than the MD did when th
were implemented with the same texture coding meth
Since the tables for the RDPW are too large, their res
are not included in this work. Nevertheless, those who
interested in the RDPW can compute their values dire
from Tables 7 and 8.

To conclude this section, Table 10 provides a compa
tive analysis on the computational complexity of the TU
and GTUC calculated for the 11 texture images in Fig.
where a Pentium III PC with 600 MHz was used for pe
formance evaluation. As documented in Table 10,
GTUC required about 17 to 26 sec to generate each im
compared to about 1.5 to 2.0 sec required by the TU
which is about 15 times in seconds in computational co
plexity. This additional computing time is attributed by th
computation of the gradient texture feature matrix for t
GTUC.
1902 Optical Engineering, Vol. 43 No. 8, August 2004
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6 Conclusions

The concept of the texture spectrum recently proposed
Wang and He has found applications in pattern classifi
tion. It can be considered as a transform coding that ma
use of a 333 texture unit~TU! to convert texture pattern
of an image to various texture numbers that can be use
form a texture spectrum in the same way that an ima
gray-level histogram is created in histogram equalizat
for image enhancement. This work presents a new
proach, called gradient texture unit coding~GTUC! that is
derived from Wang and He’s texture unit approach. Unli
Wang and He’s texture unit coding~TUC! that encodes the
gray-level changes between the seed~center! pixel and one
of its adjacent pixels in a texture unit, the GTUC genera
gradient texture numbers~GTUNs! that dictate gray-level
changes between the seed pixel and its two adjacent p
in a texture unit. As a result, the GTUC can be interpre
as a gradient of Wang and He’s texture unit numb
~TUNs! because it captures the gray-level changes betw
two TUNs. Interestingly, both the Wang and He’s TUC a
the GTUC results in the same range of their correspond
texture unit numbers from 0 to 6560. Therefore, their sp
tra can be normalized to probability vectors and furth
measured by information divergence in conjunction w
other criteria recently developed in hyperspectral ima
analysis.8,9 The main contributions of this work focus o
the introduction of a new texture coding method, GTU
and exploration of the TUC and GTUC in texture analy
from an information theory’s point of view. The results pr
sented are only based on texture analysis. They can als
implemented in conjunction with classification techniqu
to perform texture classification and pattern recognition
various areas such as medical imaging, remote sensing
One such example using the concept of Wang and H
texture spectrum and TUC is mass detection in mamm
grams, where texture features provide crucial element
classification.11,12 A new application of our GTUC to this
area is currently under investigation.
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