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Abstract. Subpixel detection in multispectral imagery presents a chal-
lenging problem due to relatively low spatial and spectral resolution. We
present a generalized constrained energy minimization (GCEM) ap-
proach to detecting targets in multispectral imagery at subpixel level.
GCEM is a hybrid technique that combines a constrained energy mini-
mization (CEM) method developed for hyperspectral image classification
with a dimensionality expansion (DE) approach resulting from a gener-
alized orthogonal subspace projection (GOSP) developed for multispec-
tral image classification. DE enables us to generate additional bands
from original multispectral images nonlinearly so that CEM can be used
for subpixel detection to extract targets embedded in multispectral im-
ages. CEM has been successfully applied to hyperspectral target detec-
tion and image classification. Its applicability to multispectral imagery is
yet to be investigated. A potential limitation of CEM on multispectral
imagery is the effectiveness of interference elimination due to the lack of
sufficient dimensionality. DE is introduced to mitigate this problem by
expanding the original data dimensionality. Experiments show that the
proposed GCEM detects targets more effectively than GOSP and CEM
without dimensionality expansion. © 2000 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(00)01205-8]
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orthogonal subspace projectid@®OSP approach, which
developed a band generation process to produce additional
images so that the original multispectral imagery can be
expanded. These newly generated images are produced by
making use of various nonlinear correlations among a given
set of original multispectral images. Combining these extra
generated images with the original images results in suffi-
. L : : cient dimensions that can be used to accommodate more
spectral Imagery. Intl_Jltlver, If there ane matenal; or material substances that must be classified. However, there
endmembers, it requires at leastspectral bands withn is also a trade-off due to such image data expansion. Some
>m to produce satisfactory classification results. This phe- ynwanted signatures may be also generated and mix with
nomenon was demonstrated in Ref. 1 and is referred to thethe material signatures of interest. These undesired signa-
band number constraifBNC). More precisely, it requires  tures are usually not knowa priori. Therefore, many ex-

at least more tham spectral bands to classify endmem- isting mixed pixel classification methods such as orthogo-
bers so that each endmember can be diagnosed by a sepaal subspace projectiofOSP-based classifiéf and

rate spectral band. This fact is similar to the well-known maximum likelihood classifiet® may not be appropriate
pigeon-hole principle in discrete mathematicEo resolve because they require a complete knowledge of material sig-
this issue, Ren and Chahrecently proposed a generalized natures present in images.

1 Introduction

Multispectral images differ from hyperspectral images in
the sense that the former is acquired by tens of spectral
bands (channels compared to the latter by hundreds of
spectral bands. Such low spectral resolution resulting from
a small number of spectral bands presents a challenging
problem for subpixel detection and classification in multi-
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To alleviate the requirement of prior knowledge about that the number of spectral band images that can be used
material signatures, a recent approach, called constrainedor data analysis is increased. With taking advantage of this
energy minimizatiofCEM) was proposed:® The idea of new augmented set of images CEM can effectively elimi-
CEM arises in Frost's linearly constrained adaptive beam- nate unknown interference and undesired signal sources.
forming approach developed for array processthi.first This will be demonstrated by experiments conducted in this
selects a material signature as a target signature to be depaper using a three-band SPOlLe Systeme Pour
tected and classified. Since the target signature is the onlyl'Observation de la TerraEarth Observation Systgnim-
signature we are interested in, we could design an adaptiveage scene. The experimental results show that GCEM
filter to pass the desired target with a specific gain while the greatly improves CEM with no data dimensionality expan-
filter output resulting from unknown signal sources can be sion. In order to further evaluate the performance of
minimized. To accomplish this task, CEM interpreted the GCEM, GCEM is also comparédo GOSP. The experi-
target signature of interest as the signal arrived from a de-mental results also show that GCEM performs better than
sired direction in the context of a linearly constrained mini- GOSP. _ _ _ _
mum variancgLCMV) beamforming probled?~*?so that The remalnd_er of this paper is organized as f0||OWS.
finding a CEM filter is equivalent to seeking an adaptive Section 2 descrlbgs an ap_proach,_referred to as DE dérived
beamformer, which locks on the desired direction of signal from GOSP. Section 3 briefly reviews the CEM approach,
arrival with a specific constraint. The weights chosen for then we present GCEM in Sec. 4. Section 5 reports a set of
the desired adaptive beamformer minimizes its output vari- €XPeriments conducted to evaluate the effectiveness of
ance(or energy subject to this specific response constraint. SCEM in classification performance using SPOT images
As a consequence, the effects of signals from directions fOr @nalysis. Section 6 presents some concluding com-
other than the desired one is minimized. When the specific MeNts-
gain is chosen to be unity, the LCMV beamformer becomes
the minimum variance distortionless respon$éVDR)
beamformer, which is the precise model on which CEM is 2 DE
based. Using the same approach carried out by the MVDR
beamformer, a CEM-based detector was designed by a fi-

nrite irr?pulse_ responsgFIR) filter in a similakr] fﬁshfi%)n Soh'l specified by its first-order and second-order statistics. If we
that the desired target was passed through the filter while ;o the original spectral band images as the first-order
energies caused by the unknown signal sources were;

AR AN images, we can generate a set of second-order statistics
minimized: For the purpose of simplicity, the term of  gneciral hand images by capturing nonlinear correlations
CEM Is referred throughout this paper to e|ther_ a CEM- petween these spectral band images. These correlated im-
based detector or the CEM approach, depending on the,ges generated by second-order statistics provide useful
context. _ _ . nonlinear correlation information about spectral band im-

To use CEM for target detection, the data dimensionality gges that is missing in the set of the original spectral band
must be sufficiently large. For a multispectral image its data jmages. The desired second-order statistics used for DE
dimensionality is generally too small to make CEM effec- jhciude autocorrelation, cross-correlation, and nonlinear
tive. In this paper, we combine CEM with a dimensionality o rrelations. The concept of producing second-order corre-

expansion(DE) approach that was developeid GOSP to  |ated spectral band images coincides that used to generate
derive a generalized CEMGCEM) that can extend the  gyariance function for a random process.

target capability of CEM to multispectral images. The pro-
cess of GCEM can be briefly described as follows. It first
uses DE to produce a new set of nonlinearly correlated
images from the original multispectral images to expand
data dimensionality. It is important to note that images gen-
erated by linear correlation do not provide any new infor-
mation for CEM since CEM is a linear FIR filter. The con-

The idea of the DE approach presented in this section arises
from a fact that a second-order random process is generally

Let {B;}|_, be the set of all original spectral band im-
ages. The first set of second-order statistics spectral band
images is generated based on autocorrelation. They are
constructed by multiplying each individual spectral band
image itself, i.e.{B?};_,. A second set of second-order
statistics spectral band images are made up of all cross-
cept of creating nonlinearly correlated images can be tracedco.rre“”‘ted spgctral band Images that are produped by corre-
back to multivariate analysis where a data correlation ma- lating ?ny arbitrary two different spectral band images, i.e.,
trix is generally used to capture the second-order statistics{ BiBj}i,j=1;+ - Adding these two slets of second order-
of the data. Recently, this idea was also applied to createstatistics spectral band images{®;};_, produces a total
new samples for target detection and classification in hy- of I+1+(1/2)=(12+31)/2 spectral band images. In the
perspectral image's,where only very few training samples case where more images are required, nonlinear functions
were available for each target of interest and the data di- can be used to generate so called nonlinear correlated spec-
mensionality was relatively large compared to the number tral band images. For example, we may use the square-root
of samples that could be used for training. In this case, theor logarithm, i.e.,{\B;}_; or {logB}l_; to stretch out
data sample correlation matrix was generally not of full |ower gray-level values. In the following, we describe sev-
rank. To resolve this problem, a new set of correlated eral ways to generate second-order correlated and nonlinear
samples was generated by the training samples using noncorrelated spectral band images.
linear correlation functions, e.g., autocorrelation and cross- _ . | .
correlation. Thus, by incorporating these newly generated 1 first-order spectral band imade; }; _, = set of origi-
nonlinear-correlated images into the original image data, nal spectral band images
the original data dimensionality is augmented in the sense 2. second-order correlated spectral band images
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a. {B?}Ll:set of auto-correlated spectral band im- where R,X,=(1/N)(2i'\‘=lririT) turns out to be thd XI
ages sample autocorrelation matrix &
b. {BiBj}!,jzl,i;tjzset of cross-correlated spectral TM|n|rT1|zmg Eq. (3)_ with the filter response constraint
band images d'w=2, _ dw=1 yields
3. Nonlinear correlated spectral band images
a. {\/B;}|_,=set of spectral band images stretched min[i
out by the square-root w [N

b. {log Bi}::1=set of spectral band images stretched
out by the logarithmic function

N
; y?” = min{w'Ryw} 4)

subject tod™w=1. Solving for Eq.(4) is called CEM
approach® with the weight vectow* given by

As noted in DE, all the images generated as just listed .

are produced nonlinearly. These images should offer useful , Rixid

information for target detection and classification because W™ ~ d'R2d’ (5)

the classifier to be used for target detection and classifica-

tion is linear and linearly generated spectral band images

will not provide extra new information to help the classifier 4 GCEM

improve performance. OSP and CEM have shown success in hyperspectral image
classificatiorf-"® However, when they are applied to mul-
tispectral images, both suffer from their small data dimen-

3 CEM Approach sionality. To expand data dimensions, DE was introduced

The CEM approach® was previously developed for the in GOSP to generate extra spectral band images for the

case that the only required knowledge is the signature of purpose of orthogonal subspace projection. In analogy with

the target to be detected. It used an FIR filter to constrain GOSP, GCEM also makes use of DE to expand the original

the desired target signature by a specific gain while mini- multispectral image data to accommodate unknown signal

mizing the filter output energy. It was derived from MVDR sources such as interferers. Therefore, GCEM is a two-

in sensor array processitfig**with the desired signature  stage process with the first stage carried out by DE, then

interpreted as the desired direction of signal arrival and canfollowed by the second stage, which uses CEM to detect

be derived as follows. desired targets. A brief description of the procedure imple-

Assume that we are given a finite set of observati®ns menting GCEM is given as follows.

={riry--ry} wherer;=(riyrio---ry)" for 1<i<N is a

sample pixel vector. Suppose that the desired signatise 4.1 GCEM Algorithm

also knowna priori. The objective of CEM is to design an

FIR linear filter with| filter coefficients{w,w,---w,}, de- 1. Apply'DE to generate nonlinearly correlated spectral
noted by anl-dimensional vectomw=(w;w,---w;)" that band images.
minimizes the filter output energy subject to the following 2. Ildentify a desired target signature to be detected
unity constraint: 3. Apply CEM to detect the desired targkt
[
d'w=> dw,=1. (1) 5 Experimental Results
k=1

The data used for the following experiments are the SPOT
] ) image with three bands, two of which are from the visible
Note that the constraint constant 1 in EQ) can be  region of electromagnetic spectrum referred to as band 1

replaced™'?by any scalac. _ _ (0.5 to 0.59um) and band 20.61 to 0.68um), and the
Lety; denote the output of the designed FIR filter result- third band is from the near IR region of electromagnetic
ing from the output;. Theny; can be expressed by spectrum referred to as band(8.79 to 0.89um). The

ground sampling distance is 20 m. These three bands are

' shown in Fig. 1. They are registered and combined into an

Vi= D Wil =W'r,= riw. (2 image cube where each pixel is represented byd Zol-

k=1 umn vector with each component corresponding to one
band of the SPOT data. In the scene, there is a river at the

Thus, the average output energy produced by the observahottom left corner. At the center is a large lake and at the
tion setS using the FIR filter with coefficient vectow right edge are also some small lakes. Between the large
=(w,w, --w, )T specified by Eq(2) is given by lake and many small lakes is a railroad crossing from north
to south. Shown at the left of the image scene is an urban

1[N 1[N area, which has roads and buildings. In addition, there is
=12 V== 2 (rfw)Trlw also a road running on the right edge of the scene. Accord-
N|=1 N|i=1 ing to the ground truth, there are two large major factories,

N referred to as “site a'(two very bright spotsand “site b”
Z ririT W=WTR, 5 W, (3) (not'visible Iocated at the center of the area. Thus, a t_otal
i=1 of six target signatures are of interest, two factory sites,
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Band 1

Band 3

Fig. 1 Three-band SPOT image.

250

200
150
100 |

50

Fig. 2 Six signatures extracted from the image.

“site a” and “site b,” lakes, river, roads, and vegetation
and the spectra are shown in Fig. 2. As we can see from
Fig. 2, factory “site @” has a very distinct spectrum from
all the others. Thus, we can expect that it can be easily
detected. Figure 3 shows nine images resulting from the DE
described in Sec. 2, where the images of Figa) & 3(c),

3(d) to 3(f), and 3g) to 3(i) were obtained by autocorrela-
tion, cross-correlation, and the square root, respectively.
Thus combining the 3 original spectral band images in Fig.
1 with those in Fig. 3 results in a total of 12 spectral band
images that can be used for GCEM and GOSP. Figures 4
and 5 show the results of GCEM and GOSP, respectively,
where the images as labeled as Fig@) 40 4(f) are the
detection and classification results of six targets: factory

(®

()

®

Fig. 3 Nine images resulting from DE where the images (a) to (c), (d) to (f), and (g) to (i) were
obtained by autocorrelation, cross-correlation, and the square root, respectively.
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(a) factory “site a” (b) factory “site b” (c) lakes

(d) river (e) roads (f) vegetation

Fig. 4 Classification results of GCEM.

“site a,” and factory “site b,” lakes, river, roads, and veg- trouble with classifying lakes, river, and roads in Fig&)6
etation, respectively. Comparing the results in Figs. 4 and 5to 6(e). This was because their spectra in Fig. 2 were very
GCEM clearly outperformed GOSP in all the cases, par- similar. In addition, from Figs. 5 and 6, it is easy to see that
ticularly for detection and classification of factory “site b,” GOSP performed better than CEM in classifying all targets
river, and roads. To further demonstrate advantages ofexcept roads with which GOSP also had trouble. All the
GCEM over CEM without using DE, we applied CEM to preceding experiments demonstrated that to apply hyper-
three original spectral band images in Fig. 1. The detection spectral image processing techniques such as @8R 4

and classification results are shown in Fig. 6 where the and CEM(Refs. 7, 8 to multispectral imagery data DE is
images labeled as Figs(& to 6(f) are the detection and an effective means to extended their applicability and ca-
classification results of factory “site a,” factory “site b,”  pability. It was noted in Refs. 1 and 3 that OSP performed
lakes, river, roads, and vegetation, respectively. Obviously, poorly for SPOT data, which was also the case for the data
GCEM performed significantly better than CEM. For ex- in Fig. 1. Therefore, the experiments using OSP were not
ample, CEM failed to detect the factory “site b” and had included for comparison.

(a) factory “site a” (b) factory “site b”

(d) river (e) roads (f) vegetation

Fig. 5 Classification results of GOSP.

Optical Engineering, Vol. 39 No. 5, May 2000 1279
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(a) factory “site a”

(d) river

(e) roads

(f) vegetation

Fig. 6 Classification results of CEM.

6 Conclusion

Despite that CEM has been successfully applied to hyper-

spectral image classificatidn? its applicability to multi-

spectral imagery is yet to be investigated because it has
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