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Abstract. Subpixel detection in multispectral imagery presents a chal-
lenging problem due to relatively low spatial and spectral resolution. We
present a generalized constrained energy minimization (GCEM) ap-
proach to detecting targets in multispectral imagery at subpixel level.
GCEM is a hybrid technique that combines a constrained energy mini-
mization (CEM) method developed for hyperspectral image classification
with a dimensionality expansion (DE) approach resulting from a gener-
alized orthogonal subspace projection (GOSP) developed for multispec-
tral image classification. DE enables us to generate additional bands
from original multispectral images nonlinearly so that CEM can be used
for subpixel detection to extract targets embedded in multispectral im-
ages. CEM has been successfully applied to hyperspectral target detec-
tion and image classification. Its applicability to multispectral imagery is
yet to be investigated. A potential limitation of CEM on multispectral
imagery is the effectiveness of interference elimination due to the lack of
sufficient dimensionality. DE is introduced to mitigate this problem by
expanding the original data dimensionality. Experiments show that the
proposed GCEM detects targets more effectively than GOSP and CEM
without dimensionality expansion. © 2000 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(00)01205-8]

Subject terms: classification; constrained energy minimization; dimensionality ex-
pansion; generalized constrained energy minimization; generalized orthogonal
subspace projection; hyperspectral image; multispectral image; subpixel detec-
tion.
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1 Introduction

Multispectral images differ from hyperspectral images
the sense that the former is acquired by tens of spec
bands ~channels! compared to the latter by hundreds
spectral bands. Such low spectral resolution resulting fr
a small number of spectral bands presents a challen
problem for subpixel detection and classification in mu
spectral imagery. Intuitively, if there arem materials or
endmembers, it requires at leastn spectral bands withn
.m to produce satisfactory classification results. This p
nomenon was demonstrated in Ref. 1 and is referred to
band number constraint~BNC!. More precisely, it requires
at least more thanm spectral bands to classifym endmem-
bers so that each endmember can be diagnosed by a
rate spectral band. This fact is similar to the well-know
pigeon-hole principle in discrete mathematics.2 To resolve
this issue, Ren and Chang3 recently proposed a generalize
Opt. Eng. 39(5) 1275–1281 (May 2000) 0091-3286/2000/$15.00
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orthogonal subspace projection~GOSP! approach, which
developed a band generation process to produce additi
images so that the original multispectral imagery can
expanded. These newly generated images are produce
making use of various nonlinear correlations among a gi
set of original multispectral images. Combining these ex
generated images with the original images results in su
cient dimensions that can be used to accommodate m
material substances that must be classified. However, t
is also a trade-off due to such image data expansion. S
unwanted signatures may be also generated and mix
the material signatures of interest. These undesired sig
tures are usually not knowna priori. Therefore, many ex-
isting mixed pixel classification methods such as ortho
nal subspace projection~OSP!-based classifier3,4 and
maximum likelihood classifier,5,6 may not be appropriate
because they require a complete knowledge of material
natures present in images.
1275© 2000 Society of Photo-Optical Instrumentation Engineers
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To alleviate the requirement of prior knowledge abo
material signatures, a recent approach, called constra
energy minimization~CEM! was proposed.7–9 The idea of
CEM arises in Frost’s linearly constrained adaptive bea
forming approach developed for array processing.10 It first
selects a material signature as a target signature to be
tected and classified. Since the target signature is the
signature we are interested in, we could design an adap
filter to pass the desired target with a specific gain while
filter output resulting from unknown signal sources can
minimized. To accomplish this task, CEM interpreted t
target signature of interest as the signal arrived from a
sired direction in the context of a linearly constrained mi
mum variance~LCMV ! beamforming problem10–12 so that
finding a CEM filter is equivalent to seeking an adapti
beamformer, which locks on the desired direction of sig
arrival with a specific constraint. The weights chosen
the desired adaptive beamformer minimizes its output v
ance~or energy! subject to this specific response constrai
As a consequence, the effects of signals from directi
other than the desired one is minimized. When the spec
gain is chosen to be unity, the LCMV beamformer becom
the minimum variance distortionless response~MVDR!
beamformer, which is the precise model on which CEM
based. Using the same approach carried out by the MV
beamformer, a CEM-based detector was designed by
nite impulse response~FIR! filter in a similar fashion so
that the desired target was passed through the filter w
energies caused by the unknown signal sources w
minimized.7 For the purpose of simplicity, the term o
CEM is referred throughout this paper to either a CE
based detector or the CEM approach, depending on
context.

To use CEM for target detection, the data dimensiona
must be sufficiently large. For a multispectral image its d
dimensionality is generally too small to make CEM effe
tive. In this paper, we combine CEM with a dimensional
expansion~DE! approach that was developed3 in GOSP to
derive a generalized CEM~GCEM! that can extend the
target capability of CEM to multispectral images. The pr
cess of GCEM can be briefly described as follows. It fi
uses DE to produce a new set of nonlinearly correla
images from the original multispectral images to expa
data dimensionality. It is important to note that images g
erated by linear correlation do not provide any new inf
mation for CEM since CEM is a linear FIR filter. The con
cept of creating nonlinearly correlated images can be tra
back to multivariate analysis where a data correlation m
trix is generally used to capture the second-order statis
of the data. Recently, this idea was also applied to cre
new samples for target detection and classification in
perspectral images,13 where only very few training sample
were available for each target of interest and the data
mensionality was relatively large compared to the num
of samples that could be used for training. In this case,
data sample correlation matrix was generally not of f
rank. To resolve this problem, a new set of correla
samples was generated by the training samples using
linear correlation functions, e.g., autocorrelation and cro
correlation. Thus, by incorporating these newly genera
nonlinear-correlated images into the original image da
the original data dimensionality is augmented in the se
1276 Optical Engineering, Vol. 39 No. 5, May 2000
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that the number of spectral band images that can be u
for data analysis is increased. With taking advantage of
new augmented set of images CEM can effectively elim
nate unknown interference and undesired signal sour
This will be demonstrated by experiments conducted in t
paper using a three-band SPOT~Le Systeme Pou
l’Observation de la TerraEarth Observation System! im-
age scene. The experimental results show that GC
greatly improves CEM with no data dimensionality expa
sion. In order to further evaluate the performance
GCEM, GCEM is also compared3 to GOSP. The experi-
mental results also show that GCEM performs better th
GOSP.

The remainder of this paper is organized as follow
Section 2 describes an approach, referred to as DE deri2

from GOSP. Section 3 briefly reviews the CEM approa
then we present GCEM in Sec. 4. Section 5 reports a se
experiments conducted to evaluate the effectiveness
GCEM in classification performance using SPOT imag
for analysis. Section 6 presents some concluding co
ments.

2 DE

The idea of the DE approach presented in this section ar
from a fact that a second-order random process is gene
specified by its first-order and second-order statistics. If
view the original spectral band images as the first-or
images, we can generate a set of second-order stati
spectral band images by capturing nonlinear correlati
between these spectral band images. These correlated
ages generated by second-order statistics provide us
nonlinear correlation information about spectral band i
ages that is missing in the set of the original spectral b
images. The desired second-order statistics used for
include autocorrelation, cross-correlation, and nonlin
correlations. The concept of producing second-order co
lated spectral band images coincides that used to gene
covariance function for a random process.

Let $Bi% i 51
l be the set of all original spectral band im

ages. The first set of second-order statistics spectral b
images is generated based on autocorrelation. They
constructed by multiplying each individual spectral ba
image itself, i.e.,$Bi

2% i 51 . A second set of second-orde
statistics spectral band images are made up of all cr
correlated spectral band images that are produced by co
lating any arbitrary two different spectral band images, i
$BiBj% i , j 51,iÞ j

l . Adding these two sets of second orde
statistics spectral band images to$Bi% i 51

l produces a total
of l 1 l 1( l /2)5( l 213l )/2 spectral band images. In th
case where more images are required, nonlinear funct
can be used to generate so called nonlinear correlated s
tral band images. For example, we may use the square-
or logarithm, i.e.,$ABi% i 51

l or $ logBi%i51
l to stretch out

lower gray-level values. In the following, we describe se
eral ways to generate second-order correlated and nonli
correlated spectral band images.

1. first-order spectral band image:$Bi% i 51
l 5set of origi-

nal spectral band images

2. second-order correlated spectral band images



-

al

ed

ed

ted
efu
use
ca

ges
er

e
o

ain
ini-
R

can

s

n

g

lt-

rva

t

age
l-
n-
ed
the
ith

inal
nal

wo-
hen
ect
le-

ral

OT
le
d 1

tic

are
an

ne
the

the
rge
rth
ban

is
rd-

es,

tal
es,

Chang et al.: Generalized constrained energy minimization approach . . .
a. $Bi
2% i 51

l 5set of auto-correlated spectral band im
ages

b. $BiBj% i , j 51,iÞ j
l 5set of cross-correlated spectr

band images

3. Nonlinear correlated spectral band images

a. $ABi% i 51
l 5set of spectral band images stretch

out by the square-root

b. $ logBi%i51
l 5set of spectral band images stretch

out by the logarithmic function

As noted in DE, all the images generated as just lis
are produced nonlinearly. These images should offer us
information for target detection and classification beca
the classifier to be used for target detection and classifi
tion is linear and linearly generated spectral band ima
will not provide extra new information to help the classifi
improve performance.

3 CEM Approach

The CEM approach7–9 was previously developed for th
case that the only required knowledge is the signature
the target to be detected. It used an FIR filter to constr
the desired target signature by a specific gain while m
mizing the filter output energy. It was derived from MVD
in sensor array processing10,11,14with the desired signature
interpreted as the desired direction of signal arrival and
be derived as follows.

Assume that we are given a finite set of observationS
5$r1r2¯rN% where r i5(r i1r i2¯r il )

T for 1< i<N is a
sample pixel vector. Suppose that the desired signatured is
also knowna priori. The objective of CEM is to design a
FIR linear filter with l filter coefficients$w1w2¯wl%, de-
noted by anl-dimensional vectorw5(w1w2¯wl)

T that
minimizes the filter output energy subject to the followin
unity constraint:

dTw5 (
k51

l

dkwk51. ~1!

Note that the constraint constant 1 in Eq.~1! can be
replaced11,12 by any scalarc.

Let yi denote the output of the designed FIR filter resu
ing from the outputr i . Thenyi can be expressed by

yi5 (
k51

l

wkr ik5wTr i5r i
Tw. ~2!

Thus, the average output energy produced by the obse
tion set S using the FIR filter with coefficient vectorw
5(w1w2¯wL)T specified by Eq.~2! is given by

1

N F(
i 51

N

yi
2G5

1

N F(
i 51

N

~r i
Tw!Tr i

TwG
5wTS 1

N F(
i 51

N

r ir i
TG Dw5wTRL3Lw, ~3!
l

-

f

-

where Rl 3 l5(1/N)(( i 51
N r ir i

T) turns out to be thel 3 l
sample autocorrelation matrix ofS.

Minimizing Eq. ~3! with the filter response constrain
dTw5(

k51
l dkwk51 yields

min
w

H 1

N F(
i 51

N

yi
2G J 5min

w
$wTRl 3 lw% ~4!

subject to dTw51. Solving for Eq. ~4! is called CEM
approach7,8 with the weight vectorw* given by

w* 5
Rl 3 l

21d

dTRl 3 l
21d

. ~5!

4 GCEM

OSP and CEM have shown success in hyperspectral im
classification.4,7,8 However, when they are applied to mu
tispectral images, both suffer from their small data dime
sionality. To expand data dimensions, DE was introduc
in GOSP to generate extra spectral band images for
purpose of orthogonal subspace projection. In analogy w
GOSP, GCEM also makes use of DE to expand the orig
multispectral image data to accommodate unknown sig
sources such as interferers. Therefore, GCEM is a t
stage process with the first stage carried out by DE, t
followed by the second stage, which uses CEM to det
desired targets. A brief description of the procedure imp
menting GCEM is given as follows.

4.1 GCEM Algorithm

1. Apply DE to generate nonlinearly correlated spect
band images.

2. Identify a desired target signature to be detectedd.

3. Apply CEM to detect the desired targetd.

5 Experimental Results

The data used for the following experiments are the SP
image with three bands, two of which are from the visib
region of electromagnetic spectrum referred to as ban
~0.5 to 0.59mm! and band 2~0.61 to 0.68mm!, and the
third band is from the near IR region of electromagne
spectrum referred to as band 3~0.79 to 0.89mm!. The
ground sampling distance is 20 m. These three bands
shown in Fig. 1. They are registered and combined into
image cube where each pixel is represented by a 331 col-
umn vector with each component corresponding to o
band of the SPOT data. In the scene, there is a river at
bottom left corner. At the center is a large lake and at
right edge are also some small lakes. Between the la
lake and many small lakes is a railroad crossing from no
to south. Shown at the left of the image scene is an ur
area, which has roads and buildings. In addition, there
also a road running on the right edge of the scene. Acco
ing to the ground truth, there are two large major factori
referred to as ‘‘site a’’~two very bright spots! and ‘‘site b’’
~not visible! located at the center of the area. Thus, a to
of six target signatures are of interest, two factory sit
1277Optical Engineering, Vol. 39 No. 5, May 2000
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Fig. 1 Three-band SPOT image.
1278 Optical Engineering, Vol. 39 No. 5, May 2000
‘‘site a’’ and ‘‘site b,’’ lakes, river, roads, and vegetatio
and the spectra are shown in Fig. 2. As we can see f
Fig. 2, factory ‘‘site a’’ has a very distinct spectrum from
all the others. Thus, we can expect that it can be ea
detected. Figure 3 shows nine images resulting from the
described in Sec. 2, where the images of Figs. 3~a! to 3~c!,
3~d! to 3~f!, and 3~g! to 3~i! were obtained by autocorrela
tion, cross-correlation, and the square root, respectiv
Thus combining the 3 original spectral band images in F
1 with those in Fig. 3 results in a total of 12 spectral ba
images that can be used for GCEM and GOSP. Figure
and 5 show the results of GCEM and GOSP, respectiv
where the images as labeled as Figs. 4~a! to 4~f! are the
detection and classification results of six targets: fact

Fig. 2 Six signatures extracted from the image.
Fig. 3 Nine images resulting from DE where the images (a) to (c), (d) to (f), and (g) to (i) were
obtained by autocorrelation, cross-correlation, and the square root, respectively.
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Fig. 4 Classification results of GCEM.
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‘‘site a,’’ and factory ‘‘site b,’’ lakes, river, roads, and veg
etation, respectively. Comparing the results in Figs. 4 an
GCEM clearly outperformed GOSP in all the cases, p
ticularly for detection and classification of factory ‘‘site b,
river, and roads. To further demonstrate advantages
GCEM over CEM without using DE, we applied CEM t
three original spectral band images in Fig. 1. The detec
and classification results are shown in Fig. 6 where
images labeled as Figs. 6~a! to 6~f! are the detection and
classification results of factory ‘‘site a,’’ factory ‘‘site b,’
lakes, river, roads, and vegetation, respectively. Obviou
GCEM performed significantly better than CEM. For e
ample, CEM failed to detect the factory ‘‘site b’’ and ha
f

,

trouble with classifying lakes, river, and roads in Figs. 6~c!
to 6~e!. This was because their spectra in Fig. 2 were v
similar. In addition, from Figs. 5 and 6, it is easy to see th
GOSP performed better than CEM in classifying all targ
except roads with which GOSP also had trouble. All t
preceding experiments demonstrated that to apply hy
spectral image processing techniques such as OSP~Ref. 4!
and CEM~Refs. 7, 8! to multispectral imagery data DE i
an effective means to extended their applicability and
pability. It was noted in Refs. 1 and 3 that OSP perform
poorly for SPOT data, which was also the case for the d
in Fig. 1. Therefore, the experiments using OSP were
included for comparison.
Fig. 5 Classification results of GOSP.
1279Optical Engineering, Vol. 39 No. 5, May 2000
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Fig. 6 Classification results of CEM.
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6 Conclusion

Despite that CEM has been successfully applied to hyp
spectral image classification,7–9 its applicability to multi-
spectral imagery is yet to be investigated because it
been taken for granted by assuming that CEM will perfo
as well as it does for hyperspectral imagery. This pa
shows that this is not the case. This is so largely due to
fact that CEM suffers from the same problem encounte
in the OSP approach,3,4 that is, data dimensions are insu
ficient. For CEM to work for multispectral imagery,
GCEM is presented in this paper and can be viewed a
multispectral version of CEM. GCEM incorporates an a
proach proposed in the GOSP~Ref. 3!, DE to expand the
original image data so that there are enough spectral b
images to make CEM effective. Specifically, GCEM is
two-stage process with the first stage implemented by
to expand image data, then followed by using CEM in t
second stage. The experiments show that GCEM o
comes the inherent limitation of CEM on data dimensio
ality and performs significantly better than CEM witho
using DE. This is so because the spectral band images
erated by DE are nonlinearly correlated images that prov
useful information to improve CEM performance. Add
tional experiments also show that GCEM outperfor
GOSP since GCEM requires only the knowledge of
desired target signature rather than the complete knowle
of target signatures in the image scene required for GO
a situation that is rarely satisfied in many real applicatio
However, like CEM, GCEM is very sensitive to noise a
the used desired target signature. Recently, this proble
alleviated by an approach proposed in Ref. 12, called
LCMV method, which constrains multiple target signatur
instead of a single desired target signature. As a res
LCMV performs more robustly than CEM. By taking ad
vantage of LCMV, GCEM can be further extended
GLCMV.
1280 Optical Engineering, Vol. 39 No. 5, May 2000
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