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Abstract. Due to significantly improved spatial and spectral resolution,
hyperspectral sensors can now detect many substances that cannot be
resolved by multispectral sensors. However, this comes at the price that
many unknown and unidentified signal sources, referred to as interfer-
ers, may also be extracted unexpectedly. Such interferers generally pro-
duce additional noise effects on target detection and must therefore be
taken into account. The problem associated with this interference is chal-
lenging because its nature is generally unknown and it cannot be iden-
tified from an image scene. This paper presents an approach, called the
target-constrained interference-minimized filter (TCIMF), which does not
require one to identify interferers, but can minimize the effects caused by
interference. It designs a finite-impulse-response filter that specifies tar-
gets of interest in such a way that the desired targets and undesired
targets will be passed through and rejected by the filter, respectively; the
filter output energy resulting from unknown signal sources is also mini-
mized. More precisely, the TCIMF accomplishes three tasks simulta-
neously: detection of the desired targets, elimination of the undesired
targets, and minimization of interfering effects. A recently developed
technique, constrained energy minimization (CEM), can be considered
as a suboptimal version of the TCIMF. Computer simulations and hyper-
spectral image experiments are conducted to demonstrate advantages
of the TCIMF over the CEM. © 2000 Society of Photo-Optical Instrumentation
Engineers. [S0091-3286(00)02912-3]

Subject terms: classification; constrained energy minimization (CEM); target-
constrained interference-minimized filter (TCIMF); subpixel detection.
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1 Introduction

Hyperspectral image analysis has increased its role
remote-sensing image processing because hyperspe
image sensors are now capable of detecting many su
substances that usually cannot be resolved by multispe
sensors.1 For example, two current airborne hyperspect
sensors, the 224-band AVIRIS~Airborne Visible/Infrared
Imaging Spectrometer! developed by NASA’s Jet Propul
sion Laboratory and the 210-band HYDICE~Hyperspectral
Digital Imagery Collection Experiment! developed by the
Naval Research Laboratory~NRL!, use 10-nm spectra
resolution, as opposed to the tens of nanometers use
multispectral sensors such as SPOT and LANDSAT. Ho
ever, because of their very high spectral resolution, m
unknown and unidentified signal sources~referred to asin-
terferersin this paper! may also be extracted unexpected
These interferers generally introduce additional noise
fects on target detection that must be taken into acco
Such phenomena have been demonstrated.2–4 A challeng-
ing problem associated with interference is that the in
ferers are generally unknown in nature and cannot be id
tified from an image scene.

Many algorithms have been developed for hyperspec
image analysis. In particular, linear mixture analysis h
3138 Opt. Eng. 39(12) 3138–3145 (December 2000) 0091-3286/2000/
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been widely used for multispectral and hyperspectral im
classification5–15 as well as for subpixel targe
detection.16,17 It requires a complete knowledge of the ta
gets present in an image scene. However, in many prac
applications, the nature of the interference is not knowa
priori and it must be determined directly from the scene.
Refs. 2–4 an unsupervised vector-quantization-based
proach was used to find these interferers. One drawbac
this approach is that it needs to know how many interfer
to generate.

In order to resolve this dilemma, an alternative a
proach, called constrained energy minimization~CEM!,
was proposed,18,19which does not require knowledge of th
interference. Instead, it only needs to know the target to
detected. By using a specific constraint, the CEM desig
a finite impulse response~FIR! filter to pass the desired
target while minimizing the output energy resulting fro
all other signal sources. The success of the CEM in hyp
spectral image processing was also demonstrated.20 One
disadvantage of the CEM is that if we had known the
were undesired targets in an image scene~such as back-
ground signatures or other known targets!, these targets
could have been eliminated prior to detection rather th
their energies being minimized. The CEM still consider
$15.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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Ren and Chang: Target-constrained interference-minimized approach . . .
undesired targets along with interferers as a group of
known signal sources; thus, instead of eliminating th
undesired targets, it minimized their energies.

In this paper, we present an approach, to be called
target-constrained interference-minimized filter~TCIMF!,
which includes the CEM as a suboptimal special case
major distinction of the TCIMF from the CEM is that th
targets of interest considered in the TCIMF are divided i
two classes, desired targets and undesired targets, so
the TCIMF can detect the former while eliminating the la
ter. This task cannot be achieved by the CEM. Furtherm
the TCIMF has the same strength as the CEM has. It d
not need to identify interferers, but is still able to minimiz
interfering effects as does the CEM. It is derived from t
concept of linearly constrained minimum variance~LCMV !
proposed by Frost,21 which includes as a special case t
minimum-variance distortionless response~MVDR!, on
which the CEM is based.22,23 Unlike the CEM, which uses
a scalar constraintto pass only a single desired target, t
TCIMF makes use of a specificconstraint vectorto pass
the desired target and simultaneously annihilate the un
ired targets. This idea can be traced back to oblique s
space projection24,25 which projects the desired signals in
its range space while rejecting unwanted signals by m
ping them into its null space. At the same time, the TCIM
also possesses the same strength as the CEM in minim
the energy resulting from interference. As a result,
TCIMF accomplishes three tasks simultaneously: detec
of a desired target, annihilation of the undesired targ
and minimization of interfering effects, whereas the CE
can only achieve the first and third. Accordingly, th
TCIMF performs better than the CEM. From this point
view, the CEM can be viewed as a suboptimal version
the TCIMF. Experimental results show that it is indeed t
case.

The remainder of this paper is organized as follow
Section 2 reviews the CEM. Section 3 presents the TCI
approach. Section 4 conducts a comparison between
TCIMF and the CEM using a series of computer simu
tions and real hyperspectral data experiments. A brief c
clusion is given in Sec. 5.

2 Constrained Energy Minimization

The CEM was first proposed to deal with the case tha
only requires knowledge of the desired target.18 The idea
arose in the MVDR beamforming approach.23,24 It used a
linearly constrained FIR filter to pass the target to be
tected through the filter while minimizing the filter outp
energy.

Assume that we are given a finite set of observatio
$r1 ,r2 , . . . ,rN%, where r i5(r i1 ,r i2 , . . . ,r iL)T for 1< i
<N is anL-dimensional sample pixel vector. Suppose th
d is the spectral signature of a target to be detected, wh
is assumed to be knowna priori. The objective of the CEM
is to design an FIR linear filter withL filter coefficients
$w1 ,w2 , . . . ,wL%, denoted by anL-dimensional vectorw
5(w1 ,w2 , . . . ,wL)T, that minimizes the filter output en
ergy subject to the following unity constraint:

dTw5(
l 51

L

dlwl51. ~1!
at

,
s

-
-

-

g

,

e

Now, let yi denote the output of the designed FIR filt
resulting from the inputr i . Thenyi can be expressed by

yi5(
l 51

L

wlr il 5wTr i5r i
Tw. ~2!

The average output energy produced by the observat
$r1 ,r2 , . . . ,rN% using the above FIR filter specified by th
coefficient vectorw5(w1 ,w2 , . . . ,wL)T is given by

1

N (
i 51

N

yi
25

1

N (
l 51

L

~r i
Tw!Tr i

Tw

5wTS 1

N (
i 51

N

r ir i
TDw5wTRL3Lw, ~3!

whereRL3L5(1/N)( i 51
N r ir i

T is the L3L sample autocor-
relation matrix of$r1 ,r2 , . . . ,rN%. Minimizing Eq.~3! sub-
ject to the filter output response constraintdTw
5( l 51

L dlwl51 yields

min
w

H 1

N (
i 51

N

yi
2J 5min

w
$wTRL3Lw% subject to dTw51.

~4!

The solutionw* to Eq.~4! has been shown to be given by18

w* 5
RL3L

21 d

dTRL3L
21 d

. ~5!

The approach to solving Eq.~4! for the solution given by
Eq. ~5! was called constrained energy minimization~CEM!
in Ref. 18.

3 Target-Constrained Interference-Minimized
Filter

It has been demonstrated that interference plays a sig
cant role in hyperspectral image analysis.2–4 This is prima-
rily because hyperspectral imaging sensors can now re
subtle materials by very fine spatial and spectral resolut
Unfortunately, this also results in extraction of unknow
signal sources. In this section, an alternative approa
called the TCIMF, is developed. It assumes that an im
pixel is made up of three separate signal sources:D ~de-
sired targets!, U ~undesired targets!, and I ~interference!.
The idea to separate interference from a signal model a
independent source was considered in Refs. 2, 3. The C
takes care of the interference problem by making use o
unity gain to constrain the target to be detected while m
mizing the energies resulting from all other signal sourc
One drawback of the CEM is that if in some cases there
some information available aboutU, the CEM simply ig-
nores it and treatsU as a part ofI . Obviously, this is not the
best way to use information. The TCIMF resolves th
problem by utilizing a constraint vector to simultaneous
constrainD and U in such a way that it can detect th
desired targets inD while eliminating the undesired targe
in U. A similar LCMV-based approach has also been p
posed to extend the CEM to detect multiple desired targ
3139Optical Engineering, Vol. 39 No. 12, December 2000
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Ren and Chang: Target-constrained interference-minimized approach . . .
through a constraint vector.26 However, the constraint vec
tor was used only for multiple-target detection and not
annihilation of undesired targetsU as done in the TCIMF to
enhance the target detectability.

The idea of the TCIMF can be described as follows. L
D5@d1 d2, . . . ,dp# and U5@u1 u2, . . . ,uq# denote the
desired-target signature matrix and the undesired-target
nature matrix, respectively. A constraint vector can be
rived from Eq. ~1! by replacing the vectord with the
desired–undesired target signature matrix@D U# and the
scalar constraint 1 with the desired–undesired target sig
ture constraint vector@1p31

T ,0q31
T # as follows:

@D U#Tw5F1p31

0q31
G , ~6!

where1p31 is a p31 column vector with ones in all com
ponents, and0q31 is a q31 column constraint vector with
all zeros in its components. It should be noted that in
~6!, 1p31 is used to constrain the desired targets inD as was
done by CEM in Eq.~4!, whereas0q31 is included to sup-
press the undesired targetsu1 ,u2 , . . . ,uq as was done by
the oblique subspace projection.25,26 By taking advantage
of Eq. ~6!, Eq. ~4! can be extended to the following linear
constrained optimization problem:

min
w

$wTRL3Lw% subject to @D U#Tw5F1p31

0q31
G ~7!

with the optimal weight vectorw* given by

w* 5RL3L
21 @D U#~@D U#TRL3L

21 @D U# !21F1p31

0q31
G . ~8!

The FIR filter coefficient specified byw* given above is
called the TCIMF.

4 Experimental Results

In this section, we conduct a comparison between the C
and the TCIMF, using a series of computer simulations a
real hyperspectral data experiments, to demonstrate the
perior performance of the TCIMF.

4.1 Computer Simulations

A laboratory AVIRIS data set considered in Ref. 27 w
used for performance evaluation. The data set contained
five field reflectance spectra—blackbrush, creosote lea
dry grass, red soil, and sagebrush—shown in Fig. 1 w
spectral coverage from 0.4 to 2.5mm. There were 158
bands after water bands and bands with low signal-to-n
ratio ~SNR! were removed.

In this example, the three signatures, blackbrush, cr
sote leaves, and sagebrush, were used as targets of int
red soil as a background signature, and dry grass a
interferer. A set of 300 mixed pixels were simulated. Ea
simulated pixel contained one background signature, wh
is red soil with abundance fixed at 5%, and one interfe
which is dry grass with abundance fixed at 5%. In additi
each pixel also contained two undesired target signatu
creosote leaves and sagebrush, with evenly split abunda
3140 Optical Engineering, Vol. 39 No. 12, December 2000
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45%. Now at pixels 50, 100, 150, 200, 250, 300 we add
the desired target signature, blackbrush with abunda
5%, 10%, 20%, 40%, 60%, 80%, respectively, while eve
reducing the abundance fractions of the two undesired
get signatures, creosote leaves and sagebrush. For exa
pixel 50 contained 5% blackbrush as the desired target
nature, 42.5% creosote leaves and 42.5% sagebrush a
desired target signatures, 5% dry grass as an interferer,
5% red soil as a background signature. The abundance
tions of five signatures in these 300 simulated mixed pix
are shown in Fig. 2. In addition, a white Gaussian no
was added to each pixel to achieve 30 : 1 SNR, which w
defined as 50% reflectance divided by the standard de
tion of the noise.18 Using blackbrush as the desired sign
ture d, three variants of the TCIMF were implemente
depending upon how the undesired-signature matrixU was
selected. One variant used the two undesired signatu
creosote leaves and sagebrush, to make up the undes

Fig. 1 Spectral signatures of five AVIRIS lab data: blackbrush,
creosote leaves, dry grass, red soil, and sagebrush.

Fig. 2 Abundance allocation of 300 simulated pixels. The abscissa
gives the pixel number.
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Ren and Chang: Target-constrained interference-minimized approach . . .
signature matrixU, with the constraint vector chosen to b
(1,0,0)T, while the other two used only one undesired s
nature to formU, with the constraint vector given b
(1,0)T. Figures 3~a!–3~c! show the respective detection r
sults, and Fig. 3~d! shows the detection results of the CE
with blackbrush as the desired signatured while discarding
creosote leaves and sagebrush. As we can see from
3~a!, the TCIMF detected target pixels 150~barely de-
tected!, 200, 250, 300, but missed target pixels 50, 1
Then the performance of the TCIMF was slightly degrad
as shown in Figs. 3~b! and 3~c!, where only one signature
used forU. The performance of CEM in Fig. 3~d! was the
worst: it missed all of the six target pixels. This experime
demonstrates the significance of constraining the undes
target-signature matrixU to zero in addition to minimizing
the energy contributed fromU.

Similar computer simulations to those done for Fig.
were also conducted with using creosote leaves as the
sired target signature andU5@blackbrush, sagebrush# as
the undesired targets. The detection results are show
Fig. 4. Interestingly, in this case the detection performa
of the full TCIMF was only slightly better than that of th
CEM and of the TCIMF withU using only one undesired
target signature, while the detection performance in the
ter three cases was nearly the same, as shown in Figs.~b!
to 4~d!, where the CEM detected creosote leaves at pix
200, 250, and 300. However, when the same simulati
were conducted using sagebrush as the desired ta
signature andU5@blackbrush, creosote leaves# as the
undesired target signatures, the detection results, show
Fig. 5, are very different from those in Figs. 3 and 4. In th
case, the full TCIMF and the TCIMF usingU
5@creosote leaves# performed nearly the same by extrac
ing sagebrush at pixels 200, 250, and 300, and significa
better than the CEM and the TCIMF using only blackbru
as the undesired target signature. The detection pe
mance of the TCIMF withU5@blackbrush# was close to
that of the CEM and they all missed the first five targets
pixels 50, 100, 150, 200, and 250. However, compar
Fig. 5~b! to Fig. 5~d!, the former performed slightly bette

Fig. 3 Results in detecting blackbrush: (a) TCIMF with U
5@croesote leaves,sagebrush#; (b) TCIMF with U
5@croesote leaves#; (c) TCIMF with U5@sagebrush#; (d) CEM.
.
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than the latter~i.e. the CEM! in detection of sagebrush
where the sagebrush pixel 3000 was barely detected.

All these phenomena can be explained by examining
spectral signatures of the five targets in Fig. 1 and mea
ing their spectral similarity by spectral information dive
gence~SID!,4,28–31 which can be defined as follows. As
sume that two pixel vectors are given byr1

5(r 11,r 12, . . . ,r 1L)T and r25(r 21,r 22, . . . ,r 2L)T with
r i j >0. Normalizingr1 andr2 to unity yields two probabil-
ity vectors p15(p11,p12, . . . ,p1L)T and p25(p21,
p22, . . . ,p2L)T, respectively, wherepi j 5r i j /( j 51

L r i j for i
51,2 andj 51,2, . . . ,L. Then the SID betweenr1 and r2
is defined as the Kullback-Leibler information divergence32

betweenp1 andp2 ,

SID~r1 ,r2!5(
j 51

L

p1 j log
p1 j

p2 j
1(

j 51

L

p2 j log
p2 j

p1 j
. ~9!

Fig. 4 Results in detecting creosote leaves: (a) TCIMF with U
5@blackbrush,sagebrush#; (b) TCIMF with U5@blackbrush#; (c)
TCIMF with U5@sagebrush#; (d) CEM.

Fig. 5 Results in detecting sagebrush: (a) TCIMF with U
5@creosote leaves,sagebrush#; (b) TCIMF with U5@blackbrush#;
(c) TCIMF with U5@creosote leaves#; (d) CEM.
3141Optical Engineering, Vol. 39 No. 12, December 2000
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Ren and Chang: Target-constrained interference-minimized approach . . .
For more details, we refer to Ref. 31.
Table 1 tabulates the SID-generated spectral simila

values reproduced from Refs. 30, 31; the smaller the va
the more similar the two signatures. It shows that bla
brush and sagebrush had the most similar spectral si
tures, with the spectral similarity value as small as 0.00
compared to the spectral similarity values 0.0497 betw
blackbrush and creosote leaves, and 0.0303 between
sote leaves and sagebrush.30,31Because the spectral simila
ity value between blackbrush and sagebrush is so sma
was very difficult to differentiate one from the other. Ther
fore, if one was used as the desired target signature and
other as the undesired target signature, most of the spe
abundance of the desired target signature was eliminate
the TCIMF or minimized by CEM. As a result, the dete
tion performance was significantly reduced, as shown
Figs. 3~c! and 3~d! as well as Figs. 5~b! and 5~d!.

4.2 Hyperspectral Image Experiments

The data used in this example were HYDICE data a
geometric correction. The low-signal, high-noise ban
~bands 1 to 3 and bands 202 to 210! and the water-vapo
absorption bands~bands 101 to 112 and bands 137 to 15!
have been removed. Figure 6~a! shows a HYDICE image
scene of size 64364 ~band 30!, and Fig. 6~b! provides the
exact locations of 15 targets of interest in the scene, wh
the black pixels indicate the target center pixels and
pixels in the white masks are considered to be target pi
mixed with background pixels. These 15 target panels
located on the right field and arranged in a 533 matrix.
Each element in this matrix is a square panel and den
by pi j with row indexed byi 51, . . . ,5 andcolumn in-
dexed by j 5a,b,c. For each rowi 51, . . . ,5, thethree
panelspia , pib , pic were made by the same material b
have three different sizes. For each columnj 5a,b,c, the
five panelsp1 j , p2 j , p3 j , p4 j , p5 j have the same size bu
were made from five different materials. The sizes of
panels in the first, second, and third columns are 3
33 m, 2 m32 m, and 1 m31 m, respectively. So the 1
panels have five different materials and three differ
sizes. The ground truth of the image scene provides
precise spatial coordinates of these 15 panels. The 1
spatial resolution of the image scene suggests that ex
for p1a , p2a , p3a , p4a , p5a , which are two-pixel panels
all the panels are only one pixel wide. From Fig. 6~a!, none
of these panels is visible. Apparently, without ground tru

Table 1 Spectral similarity values measured by SID among the five
signatures in Fig. 1.

Black
brush

Creosote
leaves Dry grass Red soil Sage brush

Black
brush

0 0.0497 0.0766 0.1861 0.0063

Creosote
leaves

0 0.2298 0.4154 0.0303

Dry grass 0 0.0640 0.0973

Red soil 0 0.2340

Sage brush 0
3142 Optical Engineering, Vol. 39 No. 12, December 2000
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provided by Fig. 6~b! there is no way to locate these pane
in the scene. Figure 7 plots the five panel spectral sig
tures in Fig. 6~b!, where thei th panel signaturePi was
obtained by averaging the panel center pixels in rowi.
Table 2 tabulates the SID similarity values of the five pa

Fig. 6 (a) A band-30 HYDICE image scene. (b) Spatial locations of
15 panels in (a).

Fig. 7 Plot of the five panel spectral signatures in Fig. 6(b).
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Ren and Chang: Target-constrained interference-minimized approach . . .
signatures,P1 , P2 , P3 , P4 , P5 , in Fig. 7. When the CEM
was implemented, the panel to be detected was design
as the desired target while discarding all the information
other target panels. By contrast, the TCIMF not only us
the knowledge of the target panels to be detected to p
the desired target panels, but also used the knowledg
undesired target panels to eliminate them. The detec
results of the TCIMF and CEM are shown in Figs. 8~a! and
8~b!, respectively. According to Fig. 7 and Table 2, t
spectral signatures of panels in rows 4 and 5 are very s
lar: their spectral similarity value measured by the SID w
0.0017. As expected, CEM detected the panels in one
and also picked up a few panel pixels in another row.
similar phenomenon was also observed in the detectio
panels in rows 2 and 3, because the spectral signature
panels in rows 2 and 3 are also very similar, with SI
measured spectral similarity value 0.0023. By contrast,
TCIMF performed better than CEM in nulling such unde
ired panel pixels. Although the SID-measured similar
value betweenP1 and P2 , 0.0027, is comparable to th
value 0.0023 betweenP2 andP3 , the SID-measured simi
larity value betweenP1 and P3 , 0.0060, is almost three
times the value betweenP1 andP2 . In addition, the spec-
tral shape ofP1 is not as close to the spectral shapes ofP2

and P3 as they are to each other. As a result, the TCIM
and the CEM performed equally well in detecting pan
pixels in row 1. This experiment demonstrates that the S
similarity values and the geometric shapes of spectral
natures have significant effects on target detection per
mance.

In order to see how the TCIMF performed using diffe
ent panels as undesired target signatures, Figs. 9~a! to 9~c!
show the results of detecting panels in row 5 withU made
up of panels in row 4, panels in rows 3 and 4, and panel
rows 2 to 4, respectively. The results shown in Figs. 9~a! to
9~c! are very close. The reason is that all theU used con-
tained the panels in row 4 and removed their interfer
effects to enhance the detection of the panels in row
Whether or not the panels in other rows were included inU
had very little effect on the detection performance, sin
their spectral signatures were different from those of
panels in row 5. However, if the panels in row 4 were n
included inU, the detectability for the panels in row 5 wa
reduced to that of the CEM, as shown in Figs. 10~a! to
10~c! usingU5@row 3#, U5@row 2, row 3#, andU5@row
1, row 2, row 3#, respectively, where the panels in row
are still barely visible, as in Fig. 8~b!, and could not be
nulled out as was done in Fig. 8~a! and Figs. 9~a! to 9~c! by
the TCIMF that included the panels in row 4 inU.

Table 2 Spectral similarity values measured by SID among the five
signatures in Fig. 6.

Panels
in row 1 2 3 4 5

1 0 0.0027 0.0060 0.0161 0.0217

2 0 0.0023 0.0267 0.0336

3 0 0.0330 0.0395

4 0 0.0017

5 0
d

s
f

-

f
f

-
-

5 Conclusion

A target-constrained interference-minimization approach
presented in this paper. It takes advantage of the stren
of the CEM while mitigating its disadvantages. It divide
targets of interest into a class of desired targets and ano
class of undesired targets, while considering interferenc
a separate signal source. With this three-component sig
source model, a target-constrained interference-minimi
filter ~TCIMF! can be designed to achieve detection of d
sired targets, annihilation of undesired targets, and mini

Fig. 8 Results in detecting the 15 panels: (a) TCIMF; (b) CEM.
3143Optical Engineering, Vol. 39 No. 12, December 2000
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Ren and Chang: Target-constrained interference-minimized approach . . .
zation of interfering effects in a single operation. It im
proves the CEM in that the effects of undesired targets
minimized by the TCIMF rather than being eliminated
the CEM.

It should be noted that in order to make a fair compa
son between the TCIMF and the CEM, only a single tar
was used for experiments, since the CEM could detect o
one target at a time. However, in order for the CEM to
used as a classifier, it must be implemented multiple tim
to classify different targets. In contrast with the CEM, t
TCIMF requires only one implementation to detect a
classify multiple different targets in the same manner as
LCMV proposed in Ref. 21.

As seen in Fig. 6~a!, without ground truth, obtaining
information on targets to be detected is extremely difficu
Under this circumstance, developing an unsupervised C
and TCIMF without appealing to ground truth is high
desirable. Several unsupervised learning methods curre

Fig. 9 Results on the TCIMF in detecting three panels in row 5: (a)
U5@row 4#; (b) U5@row 3,row 4#; (c) U5@row 2,row 3,row 4#.
3144 Optical Engineering, Vol. 39 No. 12, December 2000
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being investigated2,4,33,34can be used for this purpose.
It is also worth noting that the CEM and the TCIMF a

very sensitive to the target information used in th
implementation.34
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