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1 Introduction been widely used for multispectral and hyperspectral image

Hyperspectral image analysis has increased its role in cIaSS|f_|catéolrj ™ as well as for subpixel target
remote-sensing image processing because hyperspectrdf€tection’” "It requires a complete knowledge of the tar-
image sensors are now capable of detecting many subtleJ€tS presentin an image scene. However, in many practical
substances that usually cannot be resolved by multispectra@PPlications, the nature of the interference is not knawn
sensors. For example, two current airborne hyperspectral Priori and it must be determined directly from the scene. In
sensors, the 224-band AVIRIQirborne Visible/Infrared ~ Refs. 2—4 an unsupervised vector-quantization-based ap-
Imaging Spectrometgrdeveloped by NASA’s Jet Propul-  Proach was used to find these interferers. One drawback of
sion Laboratory and the 210-band HYDIGHyperspectral  this approach is that it needs to know how many interferers
Digital Imagery Collection Experimendeveloped by the 0 generate. o _
Naval Research LaboratorNRL), use 10-nm spectral In order to resolve this dilemma, an alternative ap-
resolution, as opposed to the tens of nanometers used irProach, called lcons;tralned energy minimizatitBEM),
multispectral sensors such as SPOT and LANDSAT. How- Was proposed}*®which does not require knowledge of the
ever, because of their very h|gh Spectra| resolution, many interference. Instead, it onIy needs to know the target to be
unknown and unidentified signal sourdesferred to asn- detected. By using a specific constraint, the CEM designed
terferersin this paper may also be extracted unexpectedly. @ finite impulse responséIR) filter to pass the desired
These interferers generally introduce additional noise ef- target while minimizing the output energy resulting from
fects on target detection that must be taken into account.all other signal sources. The success of the CEM in hyper-
Such phenomena have been demonstratéd challeng- spectral image processing was also demonstritéhe
ing problem associated with interference is that the inter- disadvantage of the CEM is that if we had known there
ferers are generally unknown in nature and cannot be iden-were undesired targets in an image scésich as back-
tified from an image scene. ground signatures or other known targetthese targets
Many algorithms have been developed for hyperspectral could have been eliminated prior to detection rather than
image analysis. In particular, linear mixture analysis has their energies being minimized. The CEM still considered
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undesired targets along with interferers as a group of un-  Now, lety; denote the output of the designed FIR filter
known signal sources; thus, instead of eliminating these resulting from the input;. Theny; can be expressed by
undesired targets, it minimized their energies.

In this paper, we present an approach, to be called the L
target-constrained interference-minimized filt&rCIMF), yi= > wiry=w'r=rlw. 2
which includes the CEM as a suboptimal special case. A =1
major distinction of the TCIMF from the CEM is that the )
targets of interest considered in the TCIMF are divided into The average output energy produced by the observations
two classes, desired targets and undesired targets, so thdt'1.r2, - .- Fn} using the above FIR filter specified by the
the TCIMF can detect the former while eliminating the lat- coefficient vectow= (w;,w,, ... w,)" is given by
ter. This task cannot be achieved by the CEM. Furthermore,
the TCIMF has the same strength as the CEM has. It does1 N , 1 L Tt
not need to identify interferers, but is still able to minimize Nzl Yi :NI:E:L (riw) ryw
interfering effects as does the CEM. It is derived from the
concept of linearly constrained minimum variaft€MV) 1 N
proposed by Frogt which includes as a special case the =WT(—2 ririT)w=wTRLXLw, 3
minimum-variance distortionless respong&lVDR), on Ni=1
which the CEM is basetf? Unlike the CEM, which uses N1
a scalar constrainto pass only a single desired target, the WhereRi, = (1/N)ZZ,riry is theL XL sample autocor-
TCIMF makes use of a specifitonstraint vectorto pass  relation matrix of{ry,ro, ... ry}. Minimizing Eq.(3) sub-
the desired target and simultaneously annihilate the undesject to the filter output response constraird™w
ired targets. This idea can be traced back to oblique SUb-ZE,L:1d|W|=1 yields
space projectioff>>which projects the desired signals into
its range space while rejecting unwanted signals by map- 1 N
ping them into its null space. At the same time, the TCIMF min[—z ylz] =mif{w'R, , W} subject to d'w=1.
also possesses the same strength as the CEM in minimizing w =1 w
the energy resulting from interference. As a result, the (4)
TCIMF accomplishes three tasks simultaneously: detection
of a desired target, annihilation of the undesired targets, The solutionw* to Eqg.(4) has been shown to be given'By
and minimization of interfering effects, whereas the CEM
can only achieve the first and third. Accordingly, the R+ d
TCIMF performs better than the CEM. From this point of W' = qTR-1 5- 5
view, the CEM can be viewed as a suboptimal version of LxL

the TCIMF. Experimental results show that it is indeed the e approach to solving Eq4) for the solution given by

case. ; P
Eq. (5) was called constrained energy minimizati@EM
The remainder of this paper is organized as follows. ian(ef). 18. 9y ( )

Section 2 reviews the CEM. Section 3 presents the TCIMF
approach. Section 4 conducts a comparison between the; Target-Constrained Interference-Minimized

TCIMF and the CEM using a series of computer simula- Filter
tions and real hyperspectral data experiments. A brief con- . o
clusion is given in Sec. 5. It has been demonstrated that interference plays a signifi-

cant role in hyperspectral image analysi$This is prima-
) U rily because hyperspectral imaging sensors can now reveal
2 Constrained Energy Minimization subtle materials by very fine spatial and spectral resolution.
The CEM was first proposed to deal with the case that it Unfortunately, this also results in extraction of unknown
only requires knowledge of the desired targethe idea signal sources. In this section, an alternative approach,
arose in the MVDR beamforming approacit’ It used a called the TCIMF, is developed. It assumes that an image
linearly constrained FIR filter to pass the target to be de- pixel is made up of three separate signal sourEegde-
tected through the filter while minimizing the filter output sired targets U (undesired targetsand| (interference

energy. The idea to separate interference from a signal model as an
Assume that we are given a finite set of observations independent source was considered in Refs. 2, 3. The CEM
{ri,ro, ... Ny, where ri=(riy,rio, ... riL)" for 1<i takes care of the interference problem by making use of a

<N is anL-dimensional Samp|e pixe| vector. Suppose that unity gain to constrain the target to be detected while mini-
d is the spectral signature of a target to be detected, whichMizing the energies resulting from all other signal sources.
is assumed to be knowanpriori. The objective of the CEM ~ One drawback of the CEM is that if in some cases there is
is to design an FIR linear filter with filter coefficients ~ Some information available abolt, the CEM simply ig-
{Wy,W,, ... w,.}, denoted by ar-dimensional vectow nores it and treats as a part of. Obviously, this is not the
= (W W, w,)T, that minimizes the filter output en- best way to use information. The TCIMF resolves this
R, : ; : C problem by utilizing a constraint vector to simultaneously
ergy subject to the following unity constraint constrainD and U in such a way that it can detect the
L desired targets iD while eliminating the undesired targets
dTWZE dw,=1. (1) in U. A similar LCMV-based approach has also been pro-
=1 posed to extend the CEM to detect multiple desired targets
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through a constraint vectd?.However, the constraint vec- 0.7
tor was used only for multiple-target detection and not for .
annihilation of undesired targetsas done in the TCIMF to 081 Creosote leaves '.]

enhance the target detectability.

The idea of the TCIMF can be described as follows. Let
D=[d;d,, ... d,] and U=[u;uy, ... ,uq] denote the
desired-target signature matrix and the undesired-target sig-
nature matrix, respectively. A constraint vector can be de-
rived from Eq. (1) by replacing the vectod with the
desired—undesired target signature mafixU] and the
scalar constraint 1 with the desired—undesired target signa-
ture constraint vectofr1} . ,,0x,] as follows:
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Fig. 1 Spectral signatures of five AVIRIS lab data: blackbrush,
wherelel is apXx1 column vector with ones in all com-  creosote leaves, dry grass, red soil, and sagebrush.
ponents, an@,, is agx1 column constraint vector with
all zeros in its components. It should be noted that in Eq. _
(6), 1,1 is used to constrain the desired targetDias was ~ 45%. Now at pixels 50, 100, 150, 200, 250, 300 we added

done by CEM in Eq(4), wheread,, is included to sup-  the desired target signature, blackbrush with abundance
oress the undesired targats, u; .q. g as was done by 5%, 10%, 20%, 40%, 60%, 80%, respectively, while evenly

the oblique subspace projectiBi?® By taking advantage reduqing the abundance fractions of the two undesired tar-
of Eq. (6), Eq. (4) can be extended to the following linearly ~9Et Signatures, creosote leaves and sagebrush. For example,
constrain,ed optimization problem: pixel 50 contained 5% blackbrush as the desired target sig-

nature, 42.5% creosote leaves and 42.5% sagebrush as un-
desired target signatures, 5% dry grass as an interferer, and
(7) 5% red soil as a background signature. The abundance frac-
tions of five signatures in these 300 simulated mixed pixels
are shown in Fig. 2. In addition, a white Gaussian noise
with the optimal weight vectow* given by was added to each pixel to achieve 30:1 SNR, which was
defined as 50% reflectance divided by the standard devia-
tion of the noisé?® Using blackbrush as the desired signa-
. (®) ture d, three variants of the TCIMF were implemented,
depending upon how the undesired-signature métrixas
The FIR filter coefficient specified by* given above is selected. One variant used the two undesired signatures,
called the TCIME. creosote leaves and sagebrush, to make up the undesired-

1
minf{w'R_ w} subject to [D U]Tw=|>**

w
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4 Experimental Results

—_
—

In this section, we conduct a comparison between the CEM ®
and the TCIMF, using a series of computer simulations and § §
real hyperspectral data experiments, to demonstrate the su- 2 05 = 05 1] ‘
perior performance of the TCIMF. e o l ] .
0 100 200 300 a 100 200 300
4.1 Computer Simulations Black brush Creosote leaves
A laboratory AVIRIS data set considered in Ref. 27 was 1 1
used for performance evaluation. The data set contained the 8 §
five field reflectance spectra—blackbrush, creosote leaves, §05f |05
dry grass, red soil, and sagebrush—shown in Fig. 1 with 3 ] 5
spectral coverage from 0.4 to 2/&m. There were 158 0 0
bands after water bands and bands with low signal-to-noise 0 100 =200 300 0 100 200 300
Sage brush Red soil

ratio (SNR) were removed.

In this example, the three signatures, blackbrush, creo- 1
sote leaves, and sagebrush, were used as targets of interest,
red soil as a background signature, and dry grass as an
interferer. A set of 300 mixed pixels were simulated. Each
simulated pixel contained one background signature, which 0
is red soil with abundance fixed at 5%, and one interferer, 0 100 200 300
which is dry grass with abundance fixed at 5%. In addition, Dry grass
each pixel also contained two undesired target signatures:rig. 2 Abundance allocation of 300 simulated pixels. The abscissa
creosote leaves and sagebrush, with evenly split abundancegives the pixel number.

0.5

abunclance

3140 Optical Engineering, Vol. 39 No. 12, December 2000



Ren and Chang: Target-constrained interference-minimized approach . . .

05 0.5 05 0.5
UWMWW U*’WWM“’W D»MMW nmwwww
-05 -05 -0.5 -05
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
(a) (b) (a) (b
1 1 1 1
0.5 0.5 05 05
0 MWMM 0 MWWWM 0 WMWW 0 HMrWW-LWJ
-0.5 -05 -05 -0.5
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
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Fig. 3 Results in detecting blackbrush: (a) TCIMF with U Fig. 4 Results in detecting creosote leaves: (a) TCIMF with U
=[croesote leaves,sagebrush]; (b) TCIMF with U =[blackbrush,sagebrush]; (b) TCIMF with U=[blackbrush]; (c)
=[croesote leaves]; (c) TCIMF with U=[sagebrush]; (d) CEM. TCIMF with U=[sagebrush]; (d) CEM.

signature matrixJ, with the constraint vector chosen to be than the latter(i.e. the CEM in detection of sagebrush,
(1,0,0), while the other two used only one undesired sig- Where the sagebrush pixel 3000 was barely detected.
nature to formU, with the constraint vector given by All these phenomena can be explained by examining the
(1,0)". Figures 8a)—3(c) show the respective detection re- SPectral signatures of the five targets in Fig. 1 and measur-
sults, and Fig. @) shows the detection results of the CEM "9 their Sp%%tgg'ls'm."a“ty by spectral information diver-
with blackbrush as the desired signatdrehile discarding ~ 9€NCe(SID),™**“which can be defined as follows. As-
creosote leaves and sagebrush. As we can see from FigSume that two Tp|xel vectors  are given by,
3(a), the TCIMF detected target pixels 15@arely de-  =(F11:F12, ---Fa)  and rp=(rpg,rp0, ... rp)" with
tected, 200, 250, 300, but missed target pixels 50, 100. i;=0. Normalizingr, andr to unity yields two probabil-
Then the performance of the TCIMF was slightly degraded ity vectors p;=(P11,P12, -.-.P1)" and p,=(Ps1,

as shown in Figs. ®) and 3c), where only one signature p,,, ... ,p,. )", respectively, where;; =r;; /E'L=1rij for i

used forU. The performance of CEM in Fig.(8) was the =1,2 andj=1,2,... L. Then the SID betwéenl andr,

worst: it missed all of the six target pixels. This experiment js defined as the Kullback-Leibler information divergetice
demonstrates the significance of constraining the ””des'red‘betweenpl andp,

target-signature matril to zero in addition to minimizing
the energy contributed frord. L L

Similar computer simulations to those done for Fig. 2 gip(r,,r,)=> py; Iog@vtE Pai Iog%. (9)
were also conducted with using creosote leaves as the de- =Y P2j =1 ! Pij
sired target signature and={[blackbrush, sagebruklas
the undesired targets. The detection results are shown in
Fig. 4. Interestingly, in this case the detection performance
of the full TCIMF was only slightly better than that of the
CEM and of the TCIMF withU using only one undesired 05 05
target signature, while the detection performance in the lat-
ter three cases was nearly the same, as shown in Rigs. 4 0 ﬂMWMWJ 0 et Aol

to 4(d), where the CEM detected creosote leaves at pixels

200, 250, and 300. However, when the same simulations -gs -05

were conducted using sagebrush as the desired target 0 100 (aZ)DU 300 o 00 (5“0 300
signature andU=[blackbrush, creosote leajess the

undesired target signatures, the detection results, shown in 1 1

Fig. 5, are very different from those in Figs. 3 and 4. In this
case, the full TCIMF and the TCIMF usingU 05 05

= creosote leavgsperformed nearly the same by extract- g MMWWW 1] P
ing sagebrush at pixels 200, 250, and 300, and significantly
better than the CEM and the TCIMF using only blackbrush  -n5 -05
as the undesired target signature. The detection perfor- 0 100 (C%'UD 300 0 100 (dz)un 300
mance of the TCIMF withU=[blackbrush was close to

that of the CEM and they all missed the first five targets at rig. 5 Results in detecting sagebrush: (a) TCIMF with U

pixels 50, 100, 150, 200, and 250. However, comparing =[creosote leaves,sagebrush]: (b) TCIMF with U=[blackbrush];
Fig. 5(b) to Fig. 5d), the former performed slightly better  (c) TCIMF with U=[creosote leaves]; (d) CEM.
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Table 1 Spectral similarity values measured by SID among the five
signatures in Fig. 1.

Black Creosote
brush leaves Dry grass Red soil Sage brush

Black 0 0.0497 0.0766  0.1861 0.0063
brush

Creosote 0 0.2298 0.4154 0.0303
leaves

Dry grass 0 0.0640 0.0973
Red soil 0 0.2340
Sage brush 0

For more details, we refer to Ref. 31.

Table 1 tabulates the SID-generated spectral similarity
values reproduced from Refs. 30, 31; the smaller the value,
the more similar the two signatures. It shows that black-
brush and sagebrush had the most similar spectral signa-
tures, with the spectral similarity value as small as 0.0063,
compared to the spectral similarity values 0.0497 between
blackbrush and creosote leaves, and 0.0303 between creo-
sote leaves and sagebru8ii* Because the spectral similar-
ity value between blackbrush and sagebrush is so small, it
was very difficult to differentiate one from the other. There-
fore, if one was used as the desired target signature and the
other as the undesired target signature, most of the spectral
abundance of the desired target signature was eliminated by
the TCIMF or minimized by CEM. As a result, the detec-
tion performance was significantly reduced, as shown in
Figs. 3c) and 3d) as well as Figs. ®) and 5d).

. Fig. 6 (a) A band-30 HYDICE image scene. (b) Spatial locations of
4.2 Hyperspectral Image Experiments 15gpané|s) in (a). g (b) S

The data used in this example were HYDICE data after

geometric correction. The low-signal, high-noise bands

(bands 1 to 3 and bands 202 to 2&hd the water-vapor  provided by Fig. @) there is no way to locate these panels
absorption bandéands 101 to 112 and bands 137 to 153 in the scene. Figure 7 plots the five panel spectral signa-
have been removed. Figuréap shows a HYDICE image tures in Fig. 6b), where theith panel signaturd®;, was
scene of size 6464 (band 30, and Fig. &b) provides the obtained by averaging the panel center pixels in friow
exact locations of 15 targets of interest in the scene, whereTable 2 tabulates the SID similarity values of the five panel
the black pixels indicate the target center pixels and the

pixels in the white masks are considered to be target pixels

mixed with background pixels. These 15 target panels are 7000
located on the right field and arranged in x3 matrix.

Each element in this matrix is a square panel and denoted  gooo}
by pi; with row indexed byi=1,...,5 andcolumn in-
dexed byj=a,b,c. For each rowi=1,...,5, thethree 5000}
panelsp;,, Pip: Pic Wwere made by the same material but
have three different sizes. For each colujsna,b,c, the
five panelspy;, pyj, Psj, Paj, Psj have the same size but
were made from five different materials. The sizes of the
panels in the first, second, and third columns are 3m
X3m, 2mx2m, and 1 nx1m, respectively. So the 15 2000+
panels have five different materials and three different
sizes. The ground truth of the image scene provides the  1ooof FEN

precise spatial coordinates of these 15 panels. The 1.5-m ! |
spatial resolution of the image scene suggests that except 0 : i i V.
for Pra, P2a» Psas Paa» Psa, Which are two-pixel panels, : al e R e 150 e
all the panels are only one pixel wide. From Figa)é none

of these panels is visible. Apparently, without ground truth Fig. 7 Plot of the five panel spectral signatures in Fig. 6(b).

—-—-- Panelsinrow 1
- .- Panels inrow 2
-------- Panels in row 3
——— Panels in row 4

4000 Panels in row 5

3000

Radiance

A,
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Table 2 Spectral similarity values measured by SID among the five
signatures in Fig. 6.

Panels

in row 1 2 3 4 5
1 0 0.0027 0.0060 0.0161 0.0217
2 0 0.0023 0.0267 0.0336
3 0 0.0330 0.0395
4 0 0.0017
5 0

signaturesP,, P,, P3, P4, Ps, in Fig. 7. When the CEM

was implemented, the panel to be detected was designated

as the desired target while discarding all the information of
other target panels. By contrast, the TCIMF not only used

the knowledge of the target panels to be detected to pass
the desired target panels, but also used the knowledge of

undesired target panels to eliminate them. The detection
results of the TCIMF and CEM are shown in Figsa)8and
8(b), respectively. According to Fig. 7 and Table 2, the
spectral signatures of panels in rows 4 and 5 are very simi-
lar: their spectral similarity value measured by the SID was

0.0017. As expected, CEM detected the panels in one row

and also picked up a few panel pixels in another row. A

similar phenomenon was also observed in the detection of
panels in rows 2 and 3, because the spectral signatures of

panels in rows 2 and 3 are also very similar, with SID-
measured spectral similarity value 0.0023. By contrast, the
TCIMF performed better than CEM in nulling such undes-
ired panel pixels. Although the SID-measured similarity
value betweerP; and P,, 0.0027, is comparable to the
value 0.0023 betweeR, andP5, the SID-measured simi-
larity value betweerP; and P53, 0.0060, is almost three
times the value betweelR; andP,. In addition, the spec-
tral shape o, is not as close to the spectral shape®of
and P5 as they are to each other. As a result, the TCIMF
and the CEM performed equally well in detecting panel
pixels in row 1. This experiment demonstrates that the SID
similarity values and the geometric shapes of spectral sig-
natures have significant effects on target detection perfor-
mance.

In order to see how the TCIMF performed using differ-
ent panels as undesired target signatures, Figs.t® 9(c)
show the results of detecting panels in row 5 withmade
up of panels in row 4, panels in rows 3 and 4, and panels in
rows 2 to 4, respectively. The results shown in Figs) o
9(c) are very close. The reason is that all tHaused con-
tained the panels in row 4 and removed their interfering
effects to enhance the detection of the panels in row 5.
Whether or not the panels in other rows were included in
had very little effect on the detection performance, since
their spectral signatures were different from those of the
panels in row 5. However, if the panels in row 4 were not
included inU, the detectability for the panels in row 5 was
reduced to that of the CEM, as shown in Figs(a.(o
10(c) usingU=[row 3], U=[row 2, row 3, andU=[row
1, row 2, row 3, respectively, where the panels in row 4
are still barely visible, as in Fig.(B), and could not be
nulled out as was done in Fig(a88 and Figs. €a) to 9(c) by
the TCIMF that included the panels in row 4 lth

panels in row 1 panels in row 1

panels in row 2 panels in row 2

panels in row 3 panels in row 3

panels in row 4 panels in row 4

panels in row 5
(b) CEM

panels in row 5
(a) TCIMF

Fig. 8 Results in detecting the 15 panels: (a) TCIMF; (b) CEM.

5 Conclusion

A target-constrained interference-minimization approach is
presented in this paper. It takes advantage of the strengths
of the CEM while mitigating its disadvantages. It divides
targets of interest into a class of desired targets and another
class of undesired targets, while considering interference as
a separate signal source. With this three-component signal-
source model, a target-constrained interference-minimized
filter (TCIMF) can be designed to achieve detection of de-
sired targets, annihilation of undesired targets, and minimi-

Optical Engineering, Vol. 39 No. 12, December 2000 3143



Ren and Chang: Target-constrained interference-minimized approach . . .

(b)

—
3
—
—
3)
—

Fig. 9 Results on the TCIMF in detecting three panels in row 5: (a)
U=[row 4]; (b) U=[row 3,row 4]; (c) U=[row 2,row 3,row 4]. Fig. 10 Results on the TCIMF in detecting three panels in row 5: (a)
U=[row 3]; (b) U=[row 2,row 3]; (c) U=[row 1,row 2,row 3].

zation of interfering effects in a single operation. It im-

proves the CEM in that the effects of undesired targets are being investigated®***can be used for this purpose.

minimized by the TCIMF rather than being eliminated by It is also worth noting that the CEM and the TCIMF are

the CEM. very sensitive to the target information used in their
It should be noted that in order to make a fair compari- implementatior??

son between the TCIMF and the CEM, only a single target

was used for experiments, since the CEM could detect only Acknowledgment
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