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Abstract. The spectral angle mapper (SAM) has been widely used in
multispectral and hyperspectral image analysis to measure spectral simi-
larity between substance signatures for material identification. It has
been shown that the SAM is essentially the Euclidean distance when the
spectral angle is small. Most recently, a stochastic measure, called the
spectral information divergence (SID), has been suggested to model the
spectrum of a hyperspectral image pixel as a probability distribution, so
that spectral variations among spectral bands can be captured more
effectively in a stochastic manner. This paper develops a new hyper-
spectral spectral discrimination measure, which combines the SID and
the SAM into a mixed measure. More specifically, let r and r8 denote two
hyperspectral image pixel vectors with their corresponding spectra speci-
fied by s and s8. Then SAM(s,s8) measures the spectral angle between
s and s8. Similarly, SID(s,s8) measures the information divergence be-
tween the probability distributions generated by s and s8. The proposed
new measure, referred to as the SID-SAM mixed measure, can be imple-
mented in two versions, given by SID(s,s8)3tan(SAM(s,s8)) and
SID(s,s8)3sin(SAM(s,s8)), where tan and sin are the usual trigonomet-
ric functions. The spectral discriminability of such a mixed measure is
greatly enhanced by multiplying the spectral abilities of the two mea-
sures. In order to demonstrate its utility, a comparative study is con-
ducted among the SID-SAM mixed measure, the SID, and the SAM. Our
experimental results have shown that the discriminatory ability of the
(SID,SAM) mixed measure can be a significant improvement over the
SID and SAM. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1766301]

Subject terms: relative spectral discriminatory entropy (RSDE); relative spectral
discriminatory power (RSDPW); relative spectral discriminatory probability (RS-
DPB); self-information; spectral angle mapper (SAM); spectral information diver-
gence (SID); spectral information measure (SIM).
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1 Introduction

A remotely sensed image is usually collected by a num
of spectral channels, each of which produces its individ
and separate, but coregistered image. As a result, it is a
ally an image cube with each image pixel represented b
column vector of which each component is a pixel of
image acquired by a particular spectral channel. With
cent remote sensing instruments such as imaging spect
eters, hundreds of spectral channels can be used to d
many material substances that generally cannot be reso
by multispectral imaging sensors. Such images are ge
ally referred to as hyperspectral images, as opposed to
tispectral images, which are acquired by tens of spec
channels. With so many additional spectral channels u
for data acquisition, a hyperspectral image pixel vector p
vides more spectral information than does a multispec
image pixel vector. In many situations, such spectral inf
mation is valuable or even crucial in data analysis.

In order to capture and characterize the spectral pro
ties provided in a single pixel vector by hundreds of sp
tral channels, a new stochastic measure, called the spe
Opt. Eng. 43(8) 1777–1786 (August 2004) 0091-3286/2004/$15.00
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information measure~SIM!, was introduced in Refs. 1–4. I
models the spectrum of a pixel vector as a probability d
tribution so that the spectral properties of the pixel vec
can be further characterized by its statistical moments
any order, such as the mean, variance, skewness, and
tosis. More importantly, by virtue of the SIM, many con
cepts in information theory are readily applied to spect
characterization. For example, the self-information deriv
from the SIM can be used to describe the information p
vided by a particular spectral channel within a pixel vect
Using such self-information, a discrimination measu
called the spectral information divergence~SID!, can be
derived and used to measure the spectral similarity betw
two pixel vectors.

In the remote sensing community, the spectral an
mapper~SAM! has been widely used as a spectral simil
ity measure for material identification. It calculates t
angle between two spectra and uses it as a measure o
crimination. Another popular spectral similarity measu
Euclidean distance~ED!, has also been used to calculate t
distance between two spectra as a spectral similarity m
sure. It is shown in Refs. 1 and 2 that when the angle
1777© 2004 Society of Photo-Optical Instrumentation Engineers
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small, the SAM and ED yield very close results and th
are essentially equivalent in terms of spectral discrimi
tion. In contrast with the SID, the SAM and the ED a
deterministic measures and consider a spectrum of a p
vector as a vector rather than a probability distribution
modeled by the SIM.

This paper develops a new measure that combines
SID and SAM to form a mixed measure, called the SI
SAM mixed measure, which takes advantages of stren
of both measures. It can be implemented in two versio
SID(s,s8)3tan(SAM(s,s8)) and SID(s,s8)
3sin(SAM(s,s8)), wheres and s8 are the spectra of the
two pixel vectorsr andr 8, and tan and sin are the tange
and sine trigonometric functions respectively. The SI
SAM mixed measure takes advantage of the strength
both the SID and the SAM in spectral discriminability,
the sense that the spectral similarity and dissimilarity
sulting from the mixed measure is considerably enhan
by multiplying the spectral abilities of the two measure
The reason for taking tangent or sine rather than cosin
to calculate the perpendicular distance between two vec
instead of the projection of one vector along the other v
tor. As a result, experimental results demonstrate that
simple SID-SAM mixed measure can be a significant i
provement in discriminatory ability over the SID and th
SAM.

The remainder of this paper is organized as follow
Section 2 briefly reviews the concept of spectral inform
tion measure developed in Refs. 1 and 2. Section 3 in
duces three spectral discrimination measures: the SID,
SAM, and the proposed SID-SAM mixed measure. Sect
4 describes some measures that can be used to evalua
effectiveness of a spectral discrimination measure. Sec
5 presents experimental results. Section 6 concludes
some remarks.

2 Spectral Information Measure

The spectral information measure~SIM! is a newly devel-
oped stochastic measure,1 which considers the spectra
band-to-band variability as a result of uncertainty incurr
by randomness. It models the spectral values of each
perspectral image pixel vector as a random variable w
the probability distribution obtained by normalizing i
spectral histogram to unity. With this interpretation, t
SIM is a measure of the spectral variability of a sing
hyperspectral image pixel vector based on interband co
lation. It not only can capture the randomness of interba
spectral changes of a pixel vector, but also can gene
1778 Optical Engineering, Vol. 43 No. 8, August 2004
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high-order statistics of spectral variations. Therefore,
SIM can be considered as a single-pixel-based informat
theoretic measure.

For a given hyperspectral pixel vector r
5(r 1 ,r 2 ,...,r L)T, each componentr j represents a pixel in
the band imageBj , which is acquired by a certain wave
length v j in a specific spectral range. Lets
5(s1 ,s2 ,...,sL)T be the corresponding spectral signatu
~i.e., spectrum! of r , wheresj represents the spectral sign
ture of r j in the form of either radiance or reflectance va
ues. Suppose that$v j% j 51

L is a set ofL wavelengths, each
of which corresponds to a spectral band channel. Ther
can be modeled as a random variable by defining an ap

Fig. 1 Spectra of five AVIRIS reflectances: (a) Spectral signatures
of blackbrush, creosote leaves, dry grass, red soil, and sagebrush.
(b) Spectral signature of sagebrush, used as the reference signa-
ture.
Table 1 Discrimination values produced by SAM and SID.

SAM

Blackbrush Creosote leaves Dry grass
Red
soil Sagebrush

SID Blackbrush 0 0.1767 0.2575 0.4058 0.0681

Creosote leaves 0.0497 0 0.4213 0.5714 0.1289

Dry grass 0.0766 0.2298 0 0.2179 0.2968

Red soil 0.1861 0.4154 0.0640 0 0.4515

Sagebrush 0.0063 0.0303 0.0973 0.2340 0
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Table 2 Discrimination values produced by SID(SIN) and SID(TAN).

SID(SIN)

Blackbrush Creosote leaves Dry grass Red soil Sagebrush

SID(TAN) Blackbrush 0 0.0087 0.0195 0.0735 0.0004

Creosote leaves 0.0089 0 0.094 0.2247 0.0039

Dry grass 0.0202 0.103 0 0.0138 0.0285

Red soil 0.0800 0.2671 0.0142 0 0.1021

Sagebrush 0.0004 0.004 0.0298 0.1135 0
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priate probability space (V,S,P) associated with it, where
V is a sample space,S is an event space, andP is a prob-
ability measure. In our case,V5$v1 ,v2 ,...,vL% is the
sample space,S is the power set ofV ~i.e., the set of all
subsets ofV!, andr (v1)5sj .

In order to define a legitimate probability measureP for
r , we first assume that all componentssj associated withr
are nonnegative. This is generally a valid assumption du
the nature of radiance or reflectance. With this assumpt
we can normalizesj to the range of@0, 1# as follows,

pj5
sj

( l 51
L sl

. ~1!

Using Eq.~1!, we can further define a probability measu
P for r by

P~$v j%!5pj . ~2!

The probability vectorp5(p1 ,p2 ,...,pL)T is the probabil-
ity mass function of the probability measureP and is the
desired probability distribution of the pixel vectorr . By
means of this probability interpretation, any pixel vector
5(r 1 ,r 2 ,...,r L)T can be viewed as a single informatio
source with its statistics governed byp5(p1 ,p2 ,...,pL)T

via Eqs.~1! and~2!. As a result,p5(p1 ,p2 ,...,pL)T can be
used to describe the spectral variability of a pixel vec
and its statistics of any order~mean, variance, skewnes
kurtosis, etc.!. For instance, we can define its statistics
different orders, such as the meanm(r )5( l 51

L plsl , vari-
ance s2(r )5( l 51

L pl@sl2m(r )#2, third central moment
k3(r )5( l 51

L pl@sl2m(r )#3, fourth central momentk4(r )
5( l 51

L pl@sl2m(r )#4, etc.
From information theory5 we can further usep

5(p1 ,p2 ,...,pL)T to define the self-information provide
by a particular band, say bandj , by

I j~r !52 log pj , ~3!

which describes how much information is yielded by t
band imageBj . The entropy of a hyperspectral image pix
vector r , denoted byH(r ), is actually the mean of the
self-information over all bands and can be calculated b
,

H~r !5(
j 51

L

I j~r !pj52(
j 51

L

pj log pj , ~4!

which measures the uncertainty resulting from the pi
vector r .

3 Spectral Discrimination Measures

In this section, three spectral discrimination measures
presented and used to measure the similarity between
two pixel vectors. Assume pixel vectorsr andr 8 with their
respective spectral signatures given bys5(s1 ,s2 ,...,sL)T

ands85(s18 ,s28 ,...,sL8)T.

3.1 Spectral Information Divergence1

Let p5(p1 ,p2 ,...,pL)T and q5(q1 ,q2 ,...,qL)T be the
two probability mass functions generated bys
5(s1 ,s2 ,...,sL)T ands85(s18 ,s28 ,...,sL8)T, the spectral sig-
natures ofr and r 8, respectively. So the self-informatio
provided byr 8 for band j is defined by Eq.~3! and given
by

I j~r 8!52 logqj . ~5!

Using Eqs. ~3! and ~5!, the discrepancy in the self
information of the band imageBj in r relative to the self-
information of Bj in r 8, denoted byD j (r ir 8), can be de-
fined as

D j~r ir 8!5I j~r !2I j~r 8!5 log~pj /qj !. ~6!

Averaging D j (r ir 8) in Eq. ~6! over all the band images
$Bl% l 51

L with respect tor results in

Fig. 2 Graphical plots of Tables 1 and 2.
1779Optical Engineering, Vol. 43 No. 8, August 2004
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Fig. 3 Graphical plots of Tables 4 and 5.

Table 3 RSDPW values of SAM and SID using sagebrush as the reference signature.

SAM

Blackbrush Creosote leaves Dry grass Red soil

SID Blackbrush 0 1.892 805 4.358 297 6.629 956

Creosote leaves 4.809 524 0 2.302 56 3.502 715

Dry grass 15.444 44 3.211 221 0 1.521226

Red soil 37.142 86 7.722 772 2.404 933 0

Table 4 RSDPW values of SID(SIN) and SID(TAN) using red soil as the reference signature.

SID(SIN)

Blackbrush Creosote leaves Dry grass Red soil

SID(TAN) Blackbrush 0 9.162 602 67.494 31 243.15 28

Creosote leaves 9.172 358 0 7.366 282 26.537 53

Dry grass 68.164 23 7.431 484 0 3.602 568

Red soil 257.6992 28.0952 3.780 563 0

Table 5 RSDPB and self-information values generated by SAM, SID, SID(SIN), and SID(TAN).

Measure Quantity

Value

Blackbrush Creosote leaves Dry grass Red soil Sagebrush Entropy

SAM RSDPB 0.2266 0.3446 0.1074 0.0624 0.2589

Self-information 0.485 33 0.5297 0.3457 0.2497 0.5047 2.1151

SID RSDPB 0.1879 0.4953 0.0549 0.0132 0.2486

Self-information 0.453 21 0.5021 0.2299 0.0824 0.4992 1.7668

SID(SIN) RSDPB 0.1519 0.5953 0.0213 0.003 0.2284

Self-information 0.412 99 0.4455 0.1183 0.0251 0.4866 1.4885

SID(TAN) RSDPB 0.1452 0.6106 0.0196 0.0027 0.2218

Self-information 0.4042 0.434 56 0.1112 0.0230 0.4819 1.4549
neering, Vol. 43 No. 8, August 2004
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D~r ir 8!5(
j 51

L

D j~r ir 8!pj5(
j 51

L

pj log~pj /qj !, ~7!

where D(r ir 8) is the average discrepancy in the se
information of r 8 relative to that ofr . In context of infor-
mation theory,D(r ir 8) in Eq. ~7! is called the relative en
tropy of r 8 with respect tor ; it is also known as the
Kullback-Leibler information measure, directed dive
gence, or cross entropy.6 Similarly, we can also define th
average discrepancy in the self-information ofr relative to
the self-information ofr 8 by

D~r 8ir !5(
j 51

L

D j~r 8ir !qj5(
j 51

L

qj log~qj /pj !. ~8!

Adding Eqs.~7! and ~8! yields thespectral information
divergence~SID!, defined by

SID~r ,r 8!5D~r ir 8!1D~r 8ir !, ~9!

which can be used to measure the discrepancy between
pixel vectorsr andr 8 in terms of their corresponding prob
ability mass functionsp andq. It should be noted that while
SID(r ,r 8) is symmetric, D(r ir 8) is not. That is,
SID(r ,r 8)5SID(r 8,r ) andD(r ir 8)ÞD(r 8ir ).

Fig. 4 Graphical plots of self-information values and entropies in
Table 5.
o

3.2 Spectral Angle Mapper 7

The SAM measures spectral similarity by finding the an
between the spectral signaturess ands8 of two pixel vec-
tors, r and r 8:

SAM~s,s8!5cos21S ^s,s8&
isi is8i D , ~10!

where ^s,s8&5( l 51
L slsl8 , isi5(( l 51

L sl
2)1/2 and is8i

5@( l 51
L (sl8)

2#1/2.

3.3 SID-SAM Mixed Measure

A new hyperspectral measure is introduced by combing
SID and SAM into a new measure, referred to as the S
SAM mixed measure, which can be implemented in tw
versions. The first version is obtained by multiplying th
SID by the tangent of the SAM between two spectral s
naturess ands8 and is given by

SID~TAN!5SID~s,s8!3tan~SAM~s,s8!!. ~11!

The second version replaces the tangent function in
~11! with the sine function and yields the following ne
measure:

Fig. 5 Graphical plots of RSDPB values in Table 5.
Fig. 6 (a) A HYDICE panel scene that contains 15 panels; (b) ground truth map of the spatial locations
of the 15 panels
1781Optical Engineering, Vol. 43 No. 8, August 2004



M

the

ake
wo
the
Eq.
-
on
jec

sed
tive
tra

en
or
t
-

d

ty
ed

c-

of

re
t

Du et al.: New hyperspectral discrimination method . . .
SID~SIN!5SID~s,s8!3sin~SAM~s,s8!!, ~12!

which is the product of the SID and the sine of the SA
between two spectral signaturess ands8.

By taking the product of two measures, the SAM and
SID, the spectral discriminability of the new SID-SAM
mixed measure is increased considerably because it m
two similar spectral signatures even more similar and t
dissimilar spectral signatures more distinct. However, if
cosine function is used to replace the sine function in
~12!, the spectral discriminability will be significantly re
duced, because the cosine calculates the projection of
spectral signature along the other one instead of the pro
tion of one spectral signature orthogonal to the other.

4 Measures of Spectral Discriminability

In this section, we briefly review three measures propo
in Refs. 1 and 2 that can be used to evaluate the effec
ness of a discrimination measure in terms of the spec
discriminatory probability and power.

4.1 Relative Spectral Discriminatory Probability
(RSDPB)

Let $sk%k51
K be K spectral signatures specified by a giv

set D, which can be considered as either a database
spectral library. Also assume thatt is any specific targe
spectral signature to be identified viaD. We define the spec
tral discriminatory probabilities of allsk’s in D with respect
to t by

Fig. 7 Spectra of P1, P2, P3, P4, and P5.

Table 6 Discrimination values produced by SAM and SID.

SAM

P1 P2 P3 P4 P5

SID P1 — 0.0435 0.0673 0.1144 0.1240

P2 0.0039 — 0.0430 0.1479 0.1567

P3 0.0086 0.0033 — 0.1652 0.1710

P4 0.0233 0.0385 0.0476 — 0.0248

P5 0.0313 0.0485 0.0570 0.0025 —
1782 Optical Engineering, Vol. 43 No. 8, August 2004
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m ~k!5

m~ t,sk!

( i 51
K m~ t,si !

for k51,2,...,K, ~13!

where( i 51
K m(t,si) is a normalization constant determine

by t and D. The resulting probability vectorpt,D
m

5(pt,D
m (1),pt,D

m (2),...,pt,D
m (K))T is calledrelative spectral

discriminatory probability~RSDPB! of D with respect tot,
or the spectral discriminatory probability vector ofD rela-
tive to t.

Using Eq.~13! we can identifyt by selecting the mem-
ber of D with the smallest relative spectral discriminabili
probability. If there is a tie, any tied member can be us
for t.

4.2 Relative Spectral Discriminatory Entropy
(RSDE)

Since pt,D
m 5(pt,D

m (1),pt,D
m (2),...,pt,D

m (K))T given by Eq.
~13! is the relative spectral discriminatory probability ve
tor of t using a selective set of spectral signatures,D
5$sk%k51

K , we can further define therelative spectral dis-
criminatory entropy~RSDE! of the spectral signaturet with
respect to the setD, denoted byHRSDE

m (t,D), as follows:

HRSDE
m ~ t,D!52 (

k51

K

pt,D
m ~k!log2 pt,D

m ~k!. ~14!

Equation ~14! provides a measure of the uncertainty
identifying t by using D5$sk%k51

K . A larger HRSDE
m (t,D)

may have a smaller chance of identifyingt.

4.3 Relative Spectral Discriminatory Power
(RSDPW)

Assume thatm( , ) is any given hyperspectral measu
such as the SID, SAM, or SID-SAM mixed measure. Led

Fig. 8 Graphical plots of Tables 6 and 7.

Table 7 Discrimination values produced by SID(SIN) and SID(TAN).

SID(SIN)

P1 P2 P3 P4 P5

SID(TAN) P1 — 0.0002 0.0006 0.0027 0.0039

P2 0.0002 — 0.0001 0.0057 0.0076

P3 0.0006 0.0001 — 0.0078 0.0097

P4 0.0027 0.0057 0.0079 — 0.0001

P5 0.0039 0.0077 0.0098 0.0001 —
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Table 8 RSDPB and self-information values generated by SAM, SID, SID(SIN), and SID(TAN) using
p23 .

Measure Quantity

Value

P1 P2 P3 P4 P5 Entropy

SAM RSDPB 0.1309 0.0670 0.1284 0.3259 0.3477

Self-information 0.3840 0.2613 0.3802 0.5271 0.5299 2.0826

SID RSDPB 0.0705 0.0200 0.0536 0.3786 0.4773

Self-information 0.2697 0.1129 0.2263 0.5305 0.5093 1.6487

SID(SIN) RSDPB 0.0302 0.0044 0.0225 0.4022 0.5407

Self-information 0.1525 0.0344 0.1232 0.5285 0.4797 1.3182

SID(TAN) RSDPB 0.0298 0.0043 0.0223 0.4020 0.5415

Self-information 0.1510 0.0338 0.1224 0.5285 0.4792 1.3149
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be the spectral signature of a reference pixel vector. S
pose thats ands8 are the spectral signatures of any pair
pixel vectors. The RSDPW ofm( , ), denoted by
RSDPWm(s,s8;d), is then defined by

RSDPWm~s,s8;d!5maxH m~s,d!

m~s8,d!
,
m~s8,d!

m~s,d! J . ~15!

More precisely, RSDPWm(s,s8;d) calculates two ratios—
the ratio of m(s,s8;d) to m(s8,s;d) and the ratio of
m(s8,s;d) to m(s,s8;d)—and selects the greater of them
the discriminatory power of m( , ). The function
RSDPWm(s,s8;d) defined by Eq.~15! provides a quantita-
tive index of the spectral discrimination ability of a speci
hyperspectral measurem( , ) between two spectral signa
tures s and s8 relative to d. Obviously, the higher
RSDPWm(s,s8;d) is, the better the discriminatory power o
m( , ) is. In addition, RSDPWm(s,s8;d) is symmetric and
bounded below by 1, i.e., RSDPWm(s,s8;d)>1, with
equality if and only ifs5s8.

5 Experiments

Two data sets were used for experiments. The first was
AVIRIS ~Airborne Visible/Infrared Imaging Spectromete!
reflectance data shown in Fig. 1~a!, consisting of five field
reflectance spectra~blackbrush, creosote leaves, dry gra
red soil, and sagebrush! with a spectral coverage from 0.
to 2.5mm. Only 158 bands were left after the water ban
were removed. Using these five signatures, we calcula

Fig. 9 Graphical plots of RSDPB values in Table 8.
-the discrimination values for four spectral measures:
SAM, the SID, the SID~TAN!, and the SID~SIN!. Table 1
tabulates the results for the SAM and the SID, where
values in the upper triangular matrix were generated by
SAM and the values in the lower triangular matrix we
produced by the SID. Similarly, the values generated by
SID~SIN! and the SID~TAN! are tabulated in the upper an
lower triangular matrices of Table 2, respectively. It is d
ficult to see which measure is more effective, merely fro
a comparison between Table 1 and Table 2. Thus, Fig
also plots the values in Tables 1 and 2 for visual comp
son. However, despite the fact that the SID~TAN! and the
SID~SIN! yielded smaller values than those produced
the SAM and the SID, we cannot conclude that a larg
spectral similarity value means better discriminatory pow

In order to remedy this diffuculty, we calculate the rel
tive spectral discriminatory power defined by Eq.~15! us-
ing sagebrush as the reference signatured as shown in Fig.
1~b!. We selected sagebrush for this purpose because s
brush is very close to both blackbrush and creosote lea
as shown in Tables 1 and 2, and provides a good cas
evaluate the effectiveness of a spectral measure. Tabl
and 4 tabulate their results. As we can see from these
tables, the proposed SID~TAN! and SID~SIN! performed
significantly better than the SID and the SAM. Figure
plots their RSDPW values, which also clearly indicate t
superior performance of the SID~TAN! and the SID~SIN! to
the SID and the SAM. For example, the spectral signatu
of sagebrush, blackbrush, and creosote leaves are

Fig. 10 Graphical plots of self-information values and entropies in
Table 8.
1783Optical Engineering, Vol. 43 No. 8, August 2004
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close according to Fig. 1. As expected, the spectral
crimination among these three is difficult. Apparent
based on our experiments, the SAM was the worst, w
discriminatory power 1.892 805. The SID improved on t
discriminatory power of the SAM by 2.5 times; for th
SID-SAM mixed measure the discriminatory power w
almost 5 times that of the SAM and twice that of the SI
It is worth noting that the RSDPW values between d
grass and red soil are very small among all the four m
sures. This is mainly because the sagebrush, which
selected as the reference signature, has a very distinct s
tral signature from those of dry grass and red soil. A
result, the RSDPW values yielded by the four measu
were relatively small, which implies that the discriminato
power between dry grass and sagebrush was nearly
same as that between red soil and sagebrush. These re
also suggested that the dry grass and red soil have
distinct signatures from the signature of sagebrush.

In order to further evaluate the ability of the mixed me
sures in discriminatory power against a reference signat
we used the same target signature used in Ref. 1, whic
a mixed signature composed of 0.1055 blackbrush, 0.0
creosote leaves, 0.0272 dry grass, 0.7588 red soil,
0.0974 sagebrush. Table 5 tabulates the RSDPB and
information values with their entropies for the signatur
the proposed SID-SAM mixed measures, SID~SIN! and
SID~TAN!, yielded the two smallest entropies. Plots
comparisons among these four measures are also show
Figs. 4 and 5, where the proposed SID~SIN! and SID~TAN!
clearly have better spectral discriminability in identifyin
the target signaturet as red soil, with smaller spectral dis
criminatory probabilities than those produced by the S
and the SAM.

The data in the second set to be used in the experim
are real HYDICE~Hyperspectral Digital Image Collectio
Experiment! data. A HYDICE image scene is shown in Fi
6~a! ~band 80! with the ground truth map in Fig. 6~b!. The
spatial positions of these 15 panels are precisely loca
with black ~B! pixels indicating the panel center pixels
all the 15 panels, and white~W! pixels being panel pixels
mixed with background pixels. In this case, a W pixel c
be considered as a mixed pixel. The scene has size
364 pixels; the low-signal, high-noise bands~bands 1 to 3
and bands 202 to 210!, and water vapor absorption band
~bands 101 to 112 and bands 137 to 153! have been re-
moved. The 15 panels are arranged in a 533 matrix. Each
element in this matrix is a square panel and denoted bypi j

with row indexed byi 51,...,5 andcolumn indexed byj
51,2,3. For each row i 51,...,5, the three panels

Table 9 RSDPW values of SAM and SID using P2 as the reference
signature.

SAM

P1 P3 P4 P5

SID P1 — 1.0116 3.4000 3.6023

P3 1.1818 — 3.4395 3.6442

P4 9.8718 11.6667 — 1.0595

P5 12.4103 14.6667 1.2571 —
1784 Optical Engineering, Vol. 43 No. 8, August 2004
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pi1 ,pi2 ,pi3 were painted with the same material but ha
three different sizes. For each columnj 51,2,3, the five
panelsp1 j ,p2 j ,p3 j ,p4 j ,p5 j have the same size but wer
painted by five different materials. The sizes of the pan
in the first, second, and third columns are 3m33m, 2m
32m, and 1m31m, respectively. The 15 panels have fi
different materials and three different sizes. Figure 7 pl
the five panel spectral signatures$Pi % i 51

5 obtained from
Fig. 6~b!, where thei ’ th panel signature, denoted by Pi ,
was generated by averaging all B pixels in row I and w
used to represent target knowledge of the panels in rowi .
The 1.5-m spatial resolution of the image scene sugg
that except forp21,p31,p41,p51, which are two-pixel pan-
els, all the rest of the 11 panels are single-pixel panels

As with the AVIRIS data studied previously, we con
ducted similar experiments using these five panel sig
tures. Tables 6 and 7 tabulate spectral discrimination va
of the SAM, the SID, the SID~SIN!, and the SID~TAN!; the
values in the upper triangular matrices were generated
the SAM and the SID~SIN!, respectively, while the value
in the lower triangular matrices were produced by the S
and the SID~TAN!, respectively. As expected, the values
the proposed SID~SIN! and SID~TAN! were also smaller
than those produced by the SAM and the SID. In analo
with Fig. 2, Fig. 8 plots the values in Tables 6 and 7 f
graphical comparison. Once again, we also calculated
RSDPB and self-information values among the five pa
signatures and their entropies. The results are tabulate
Table 8, with their corresponding graphical plots in Figs
and 10. As shown in these tables and Fig. 9, the propo
SID~SIN! and SID~TAN! again produced the smallest e
tropies. The RSDPW values of the four measures are ta
lated in Tables 9 and 10, and their corresponding graph
plots are in Fig. 11, where the reference signatured was
chosen to be the panel signaturep23. As shown, the RS-
DPW values of the proposed SID~SIN! and SID~TAN!
yielded better discriminatory powers than did the SID a

Table 10 RSDPW values of SID(SIN) and SID(TAN) using P2 as
the reference signature.

SID(SIN)

P1 P3 P4 P5

SID(TAN) P1 — 2.0000 28.5000 38.0000

P3 2.0000 — 57.0000 76.0000

P4 28.5000 57.0000 — 1.3333

P5 38.5000 77.0000 1.3509 —

Fig. 11 Graphical plots of RSDPW values in Tables 9 and 10.
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the SAM. The magnitude of the improved power is prop
tional to the dissimilarity between the signatures and
reference signature.

6 Conclusions

This paper presents a new hyperspectral discrimina
measure, the SID-SAM mixed measure, which is a mixt
of the widely used spectral angle mapper~SAM! and a
recently developed information measure, the spectral in
mation divergence~SID!. Despite the fact that the SID
SAM mixed measure is obtained by simply multiplying th
SID by the SAM, the improvement on the performance
spectral discriminability is remarkable, as demonstrated
experiments. As a result, two similar spectral signatures
made more similar, while two dissimilar spectral signatu
become more distinct. This is because the measure c
bines the strengths of SAM and SID.
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