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1 Introduction information measuréSIM), was introduced in Refs. 1-4. It

A remotely sensed image is usually collected by a number M0dels the spectrum of a pixel vector as a probability dis-
of spectral channels, each of which produces its individual tribution so that the speqtral properties 9f .the pixe| vector
and separate, but coregistered image. As a result, it is actuS2" be further characterized by its statistical moments of
ally an image cube with each image pixel represented by a2y order, S.UCh as the mean, vanance, skewness, and kur-
column vector of which each component is a pixel of an tosis. More importantly, by virtue of the SIM, many con-

) . . . cepts in information theory are readily applied to spectral
image acquired t?y a particular spectral (;hannel. With re- characterization. For example, the self-information derived
cent remote sensing instruments such as imaging SPEClroMs. ;1 the SIM can be used to describe the information pro-
eters, hundreds of spectral channels can be used to dete%

. ided by a particular spectral channel within a pixel vector.
many material substances that generally cannot be resolve sing such self-information, a discrimination measure,

by multispectral imaging sensors. Such images are gener-.gjied the spectral information divergené8ID), can be

ally referred to as hyperspectral images, as opposed to Mulgerived and used to measure the spectral similarity between
tispectral images, which are acquired by tens of spectral 0 pixel vectors.

channels. With so many additional spectral channels used | the remote sensing community, the spectral angle
for data acquisition, a hyperspectral image pixel vector pro- mapper(SAM) has been widely used as a spectral similar-
vides more spectral information than does a multispectral jty measure for material identification. It calculates the
image pixel vector. In many situations, such spectral infor- angle between two spectra and uses it as a measure of dis-
mation is valuable or even crucial in data analysis. crimination. Another popular spectral similarity measure,
In order to capture and characterize the spectral proper-Euclidean distancéED), has also been used to calculate the
ties provided in a single pixel vector by hundreds of spec- distance between two spectra as a spectral similarity mea-
tral channels, a new stochastic measure, called the spectrasure. It is shown in Refs. 1 and 2 that when the angle is
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small, the SAM and ED vyield very close results and they
are essentially equivalent in terms of spectral discrimina-
tion. In contrast with the SID, the SAM and the ED are
deterministic measures and consider a spectrum of a pixel
vector as a vector rather than a probability distribution as
modeled by the SIM.

This paper develops a new measure that combines the
SID and SAM to form a mixed measure, called the SID-
SAM mixed measure, which takes advantages of strengths
of both measures. It can be implemented in two versions,
SID(s,s') X tan(SAM(s,s')) and SIDE,s')

X sin(SAM(s,s')), wheres ands’ are the spectra of the
two pixel vectorsr andr’, and tan and sin are the tangent
and sine trigonometric functions respectively. The SID-
SAM mixed measure takes advantage of the strengths of
both the SID and the SAM in spectral discriminability, in
the sense that the spectral similarity and dissimilarity re-
sulting from the mixed measure is considerably enhanced
by multiplying the spectral abilities of the two measures.
The reason for taking tangent or sine rather than cosine is
to calculate the perpendicular distance between two vectors
instead of the projection of one vector along the other vec-
tor. As a result, experimental results demonstrate that the
simple SID-SAM mixed measure can be a significant im-
provement in discriminatory ability over the SID and the
SAM.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the concept of spectral informa-
tion measure developed in Refs. 1 and 2. Section 3 intro-
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Fig. 1 Spectra of five AVIRIS reflectances: (a) Spectral signatures

duces three spectral discrimination measures: the SID, theof blackbrush, creosote leaves, dry grass, red soil, and sagebrush.

SAM, and the proposed SID-SAM mixed measure. Section

(b) Spectral signature of sagebrush, used as the reference signa-

4 describes some measures that can be used to evaluate tH&e:

effectiveness of a spectral discrimination measure. Section
5 presents experimental results. Section 6 concludes with
some remarks.

2 Spectral Information Measure

The spectral information measuf8IM) is a newly devel-
oped stochastic measurewhich considers the spectral
band-to-band variability as a result of uncertainty incurred
by randomness. It models the spectral values of each hy-
perspectral image pixel vector as a random variable with
the probability distribution obtained by normalizing its
spectral histogram to unity. With this interpretation, the
SIM is a measure of the spectral variability of a single
hyperspectral image pixel vector based on interband corre-
lation. It not only can capture the randomness of interband

high-order statistics of spectral variations. Therefore, the
SIM can be considered as a single-pixel-based information-
theoretic measure.

For a given hyperspectral pixel vectorr
=(ry,ry,....r1)", each component; represents a pixel in
the band imagéB;, which is acquired by a certain wave-
length o; in a specific spectral range. Lets
=(s;,S,,...,5.)" be the corresponding spectral signature
(i.e., spectrumof r, wheres; represents the spectral signa-
ture ofr; in the form of either radiance or reflectance val-
ues. Suppose thétuj}jil is a set ofL wavelengths, each
of which corresponds to a spectral band channel. Tihen

spectral changes of a pixel vector, but also can generatecan be modeled as a random variable by defining an appro-

Table 1 Discrimination values produced by SAM and SID.

SAM
Red
Blackbrush Creosote leaves Dry grass soail Sagebrush
SID Blackbrush 0 0.1767 0.2575 0.4058 0.0681
Creosote leaves 0.0497 0 0.4213 0.5714 0.1289
Dry grass 0.0766 0.2298 0 0.2179 0.2968
Red soil 0.1861 0.4154 0.0640 0 0.4515
Sagebrush 0.0063 0.0303 0.0973 0.2340 0
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Table 2 Discrimination values produced by SID(SIN) and SID(TAN).

SID(SIN)
Blackbrush  Creosote leaves Dry grass Red soil  Sagebrush
SID(TAN) Blackbrush 0 0.0087 0.0195  0.0735 0.0004
Creosote leaves 0.0089 0 0.094 0.2247 0.0039
Dry grass  0.0202 0.103 0 0.0138 0.0285
Red soil  0.0800 0.2671 0.0142 0 0.1021
Sagebrush  0.0004 0.004 0.0298  0.1135 0
priate probability space(},>,,P) associated with it, where L L
Q is a sample spacg, is an event space, aRlis a prob-  H(r)= 21 li(r)p;=— 21 p; logp;, 4
i= i=

ability measure. In our cas€)={w,,w,,...,0 } is the
sample space, is the power set of) (i.e., the set of all
subsets of}), andr(w;)=s;.

In order to define a legitimate probability meas@&éor
r, we first assume that all componesjsassociated wittn
are nonnegative. This is generally a valid assumption due to
the nature of radiance or reflectance. With this assumption,
we can normalizes; to the range of0, 1] as follows,

> @

= L .
218

Pj

Using Eq.(1), we can further define a probability measure
P for r by

P({oj})=p;. 2
The probability vectop=(p;,p,,...,.p.)" is the probabil-
ity mass function of the probability measuReand is the
desired probability distribution of the pixel vector By
means of this probability interpretation, any pixel veator
=(rq,r5,...,r)" can be viewed as a single information
source with its statistics governed Ipy=(p1,p5,....p.)"
via Egs.(1) and(2). As a resultp=(p;,p,,...,.p.) " can be
used to describe the spectral variability of a pixel vector
and its statistics of any ordémean, variance, skewness,
kurtosis, etg. For instance, we can define its statistics of
different orders, such as the mem@r)=2};1p|s|, vari-
ance o?(r)=3_,p,[s,—w(r)]? third central moment
k3(r)=3l_,pi[s— u(r)]?, fourth central momeni*(r)
=3[ pils—w(n] ete.

From information theory we can further usep
=(p1,P2,....p.)" to define the self-information provided
by a particular band, say bard by

lij(r)=—logp;, (3
which describes how much information is yielded by the
band imageB; . The entropy of a hyperspectral image pixel
vector r, denoted byH(r), is actually the mean of the
self-information over all bands and can be calculated by

which measures the uncertainty resulting from the pixel

vectorr.

3 Spectral Discrimination Measures

In this section, three spectral discrimination measures are
presented and used to measure the similarity between any
two pixel vectors. Assume pixel vectorsaandr’ with their
respective spectral signatures given $y(s;,S,,...,5.)"
ands’' =(s},sy,...,s/)".

3.1 Spectral Information Divergence®

Let p=(p1.P2,....,p)" and g=(01,0z,....a))" be the
two probability mass functions generated by

=($1,S;,...,8) " ands' = (s} ,s5,...,5/)", the spectral sig-
natures ofr andr’, respectively. So the self-information
provided byr’ for bandj is defined by Eq(3) and given
by

©)

Using Egs.(3) and (5), the discrepancy in the self-
information of the band imagB; in r relative to the self-
information of B in r’, denoted byD(r||r"), can be de-
fined as

li(r')=—logq;.

Dj(rfr")=1;(r)=1;(r")=log(p; /q;). (6)

Averaging Di(r|[r") in Eq. (6) over all the band images
{B,}}_, with respect ta results in
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Fig. 2 Graphical plots of Tables 1 and 2.
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Table 3 RSDPW values of SAM and SID using sagebrush as the reference signature.

SAM
Blackbrush Creosote leaves Dry grass Red soll
SID Blackbrush 0 1.892 805 4.358 297 6.629 956
Creosote leaves 4.809 524 0 2.302 56 3.502 715
Dry grass 15.444 44 3.211 221 0 1.521226
Red soil 37.142 86 7.722772 2.404 933 0

Table 4 RSDPW values of SID(SIN) and SID(TAN) using red soil as the reference signature.

SID(SIN)
Blackbrush Creosote leaves Dry grass Red soil
SID(TAN) Blackbrush 0 9.162 602 67.494 31 243.1528
Creosote leaves 9.172 358 0 7.366 282 26.537 53
Dry grass 68.164 23 7.431 484 0 3.602 568
Red soil 257.6992 28.0952 3.780 563 0
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Fig. 3 Graphical plots of Tables 4 and 5.

Table 5 RSDPB and self-information values generated by SAM, SID, SID(SIN), and SID(TAN).

Value

Measure Quantity Blackbrush Creosote leaves Dry grass Red soil Sagebrush Entropy

SAM RSDPB 0.2266 0.3446 0.1074 0.0624 0.2589
Self-information  0.485 33 0.5297 0.3457 0.2497 0.5047 2.1151

SID RSDPB 0.1879 0.4953 0.0549 0.0132 0.2486
Self-information  0.453 21 0.5021 0.2299 0.0824 0.4992 1.7668

SID(SIN) RSDPB 0.1519 0.5953 0.0213  0.003 0.2284
Self-information  0.412 99 0.4455 0.1183  0.0251 0.4866 1.4885

SID(TAN) RSDPB 0.1452 0.6106 0.0196 0.0027 0.2218
Self-information  0.4042 0.434 56 0.1112 0.0230 0.4819 1.4549

1780 Optical Engineering, Vol. 43 No. 8, August 2004



Du et al.: New hyperspectral discrimination method . . .

25
= —— i
E 5 {===sip 4

== 5ID(SINY

A
E 18 SIDCTANY
5
gy
i 08 5
0

ymugprg
FEHE|

Fo e

s=miiig

paspay

ymgabes

Adesuz

Fig. 4 Graphical plots of self-information values and entropies in
Table 5.

L L

D(rir)=2, Dy(rlir)p;= 2, pylog(p; /), )

where D(r||r’) is the average discrepancy in the self-
information ofr’ relative to that ofr. In context of infor-
mation theoryD(r|[r’) in Eq. (7) is called the relative en-
tropy of r’ with respect tor; it is also known as the
Kullback-Leibler information measure, directed diver-
gence, or cross entrofySimilarly, we can also define the
average discrepancy in the self-informationraklative to
the self-information of ' by

L

L
D(r'lr)=2, D;(r'llNg;=2, g log(a;/p;)- ®)

Adding Egs.(7) and (8) yields thespectral information

divergence(SID), defined by

SID(r,r"y=D(r|r")+D(r’|r), 9

which can be used to measure the discrepancy between tW35|D(TAN) = SID(s,s') X tan SAM(s, s )).

pixel vectorsr andr’ in terms of their corresponding prob-
ability mass functiong andq. It should be noted that while
SID(r,r') is symmetric, D(r|r’) is not. That is,
SID(r,r’)=SID(r’,r) andD(r|[r")#=D(r’[|r).
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Fig. 5 Graphical plots of RSDPB values in Table 5.

3.2 Spectral Angle Mapper’

The SAM measures spectral similarity by finding the angle
between the spectral signatureands’ of two pixel vec-
tors,r andr’:

(10

- <ss’>)
1 — 1
satss')=os ! 7 .

where (ss)=3tss/, [§=(S,s) and s/

=[Zra(sN)™2

3.3 SID-SAM Mixed Measure

A new hyperspectral measure is introduced by combing the
SID and SAM into a new measure, referred to as the SID-
SAM mixed measure, which can be implemented in two

versions. The first version is obtained by multiplying the

SID by the tangent of the SAM between two spectral sig-
naturess ands’ and is given by

(11

The second version replaces the tangent function in Eg.
(11) with the sine function and yields the following new

measure:

Fig. 6 (a) AHYDICE panel scene that contains 15 panels; (b) ground truth map of the spatial locations

of the 15 panels
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Fig. 7 Spectra of P1, P2, P3, P4, and P5.

SID(SIN)=SID(s,s") X si(SAM(s,s)), (12
which is the product of the SID and the sine of the SAM
between two spectral signatureands’.

By taking the product of two measures, the SAM and the
SID, the spectral discriminability of the new SID-SAM

Table 7 Discrimination values produced by SID(SIN) and SID(TAN).

SID(SIN)
P1 P2 P3 P4 P5
SID(TAN)  P1 — 0.0002 0.0006 0.0027 0.0039
P2 0.0002 — 0.0001 0.0057 0.0076
P3  0.0006 0.0001 — 0.0078  0.0097
P4 0.0027 0.0057 0.0079 — 0.0001
P5 0.0039 0.0077 0.0098 0.0001 —
m(t,s,)
m
Pea(K)=cxr——— for k=1,2,.K, (13
Zinim(t,s)

whereEiK:lm(t,s) is a normalization constant determined
by t and A. The resulting probability vectorpy
=(p{a(1),ps(2),... p"(K)) T is calledrelative spectral
discriminatory probability(RSDPB of A with respect td,
or the spectral discriminatory probability vector dfrela-
tive to t.

Using Eq.(13) we can identifyt by selecting the mem-
ber of A with the smallest relative spectral discriminability

mixed measure is increased considerably because it makegrobability. If there is a tie, any tied member can be used
two similar spectral signatures even more similar and two for t.

dissimilar spectral signatures more distinct. However, if the

cosine function is used to replace the sine function in Eq.

(12), the spectral discriminability will be significantly re-

duced, because the cosine calculates the projection of on
spectral signature along the other one instead of the projec-

tion of one spectral signature orthogonal to the other.

4 Measures of Spectral Discriminability

In this section, we briefly review three measures proposed
in Refs. 1 and 2 that can be used to evaluate the effective-
ness of a discrimination measure in terms of the spectral

discriminatory probability and power.

4.1 Relative Spectral Discriminatory Probability
(RSDPB)

Let {s}i_, be K spectral signatures specified by a given

4.2 Relative Spectral Discriminatory Entropy
(RSDE)

Since pfly=(p{a(1),p{a(2),.-Pa(K)T given by Eq.

(13) is the relative spectral discriminatory probability vec-
tor of t using a selective set of spectral signaturas,
={sJK_,, we can further define thelative spectral dis-
criminatory entropy(RSDE) of the spectral signatuttewith
respect to the sek, denoted byH R sp(t,A), as follows:

K

HRspe(t,A) = —gl pi"y (K)log, piy (k). (14

Equation (14) provides a measure of the uncertainty of
identifying t by usingA={s}k_,. A larger HRspt,A)

setA, which can be considered as either a database or amay have a smaller chance of identifyihg

spectral library. Also assume thatis any specific target
spectral signature to be identified \iaWe define the spec-
tral discriminatory probabilities of al,’s in A with respect

tot by

Table 6 Discrimination values produced by SAM and SID.

SAM
P1 P2 P3 P4 P5
sib Pl — 0.0435 00673 0.1144  0.1240
P2 0.0039 — 0.0430  0.1479  0.1567
P3 00086  0.0033 — 0.1652  0.1710
P4 00233 00385 0.0476 — 0.0248
P5 00313 00485 0.0570 0.0025 —
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4.3 Relative Spectral Discriminatory Power
(RSDPW)

Assume thatm( , ) is any given hyperspectral measure
such as the SID, SAM, or SID-SAM mixed measure. Het
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Fig. 8 Graphical plots of Tables 6 and 7.
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Table 8 RSDPB and self-information values generated by SAM, SID, SID(SIN), and SID(TAN) using

P23 -
Value

Measure Quantity P1 P2 P3 P4 P5 Entropy

SAM RSDPB 0.1309 0.0670 0.1284 0.3259 0.3477
Self-information 0.3840 0.2613 0.3802 0.5271 0.5299 2.0826

SID RSDPB 0.0705 0.0200 0.0536 0.3786 0.4773
Self-information 0.2697 0.1129 0.2263 0.5305 0.5093 1.6487

SID(SIN) RSDPB 0.0302 0.0044 0.0225 0.4022 0.5407
Self-information 0.1525 0.0344 0.1232 0.5285 0.4797 1.3182

SID(TAN) RSDPB 0.0298 0.0043 0.0223 0.4020 0.5415

Self-information 0.1510 0.0338 0.1224 0.5285 0.4792 1.3149

be the spectral signature of a reference pixel vector. Sup-the discrimination values for four spectral measures: the
pose thas ands’ are the spectral signatures of any pair of SAM, the SID, the SIDTAN), and the SIDSIN). Table 1
pixel vectors. The RSDPW ofm(,), denoted by tabulates the results for the SAM and the SID, where the
RSDPW"(s,s';d), is then defined by values in the upper triangular matrix were generated by the
SAM and the values in the lower triangular matrix were
m(s,d) m(s',d) produced by the SID. Similarly, the values generated by the
—, ] (15 SID(SIN) and the SIDTAN) are tabulated in the upper and
m(s’,d) " m(s,d) lower triangular matrices of Table 2, respectively. It is dif-
. . . ficult to see which measure is more effective, merely from
More precisely, R§DPWS*S ’d? calculates two ratios— 5 comparison between Table 1 and Table 2. Thus, Fig. 2
the ratio of m(s,s';d) to m(s’,s;d) and the ratio of 3150 plots the values in Tables 1 and 2 for visual compari-
m(s',s;d) to m(s,s’;d)—and selects the greater of them as son. However, despite the fact that the STBN) and the
the discriminatory power ofm(,). The function  SID(SIN) yielded smaller values than those produced by
RSDPW'(s,s";d) defined by Eq(15) provides a quantita- the SAM and the SID, we cannot conclude that a larger
tive index of the spectral discrimination ability of a specific spectral similarity value means better discriminatory power.
hyperspectral measura( , ) between two spectral signa- In order to remedy this diffuculty, we calculate the rela-
tures s and s' relative to d. Obviously, the higher tive spectral discriminatory power defined by Efj5) us-
RSDPW'(s,s';d) is, the better the discriminatory power of Ng sagebrush as the reference signatliess shown in Fig.
m( , ) is. In addition, RSDPW(s,s";d) is symmetric and 1(b). We selected sagebrush for this purpose because sage-
bounded below by 1, i.e., RSDPYss d)=1, with brush is very close to both blackbrush and creosote leaves,
L e as shown in Tables 1 and 2, and provides a good case to
equality if and only ifs=s'. evaluate the effectiveness of a spectral measure. Tables 3
. and 4 tabulate their results. As we can see from these two
5 Experiments tables, the proposed S(DAN) and SIOSIN) performed
Two data sets were used for experiments. The first was thesignificantly better than the SID and the SAM. Figure 3
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer plots their RSDPW values, which also clearly indicate the
reflectance data shown in Fig(al, consisting of five field superior performance of the SIDAN) and the SIRSIN) to
reflectance spectrélackbrush, creosote leaves, dry grass, the SID and the SAM. For example, the spectral signatures
red soil, and sagebruskvith a spectral coverage from 0.4 of sagebrush, blackbrush, and creosote leaves are very
to 2.5 um. Only 158 bands were left after the water bands
were removed. Using these five signatures, we calculated

RSDPV\?“(s,s’;d)=ma)<{

0.6
— A
1.5 0.5 St =115
E ——cau 3 iy SOM(tg)
g ! —=—ciD g " SDM [sin}
SOMISINY - * g ———
| RE SO MITAN)) g ~
g 2 02 i
E i " =
£ 0.1 :
LK i —
3 t::::—,g,_-—::.-—"'r"y" g . .
0 . v " " P P2 P3 Fa P&
P1 P2 P13 P4 P5 Entropy
Fig. 10 Graphical plots of self-information values and entropies in
Fig. 9 Graphical plots of RSDPB values in Table 8. Table 8.
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Table 9 RSDPW values of SAM and SID using P2 as the reference Table 10 RSDPW values of SID(SIN) and SID(TAN) using P2 as
signature. the reference signature.
SAM SID(SIN)
P1 P3 P4 P5 P1 P3 P4 P5

SID P1 — 1.0116 3.4000 3.6023 SID(TAN) P1 — 2.0000 28.5000  38.0000

P3 1.1818 — 3.4395 3.6442 P3 2.0000 — 57.0000  76.0000

P4 9.8718 11.6667 — 1.0595 P4 285000 57.0000 — 1.3333

P5 12.4103 14.6667 1.2571 — P5  38.5000  77.0000 1.3509 —

close according to Fig. 1. As expected, the spectral dis- pi1,Pi2,Piz Were painted with the same material but have
crimination among these three is difficult. Apparently, three different sizes. For each colume1,2,3, the five
based on our experiments, the SAM was the worst, with panelspy;,py; ,P3;j . Paj . Ps; have the same size but were
discriminatory power 1.892805. The SID improved on the painted by five different materials. The sizes of the panels
discriminatory power of the SAM by 2.5 times; for the in the first, second, and third columns are 88m, 2m
SID-SAM .m|xed measure the dlscnm!natory power Was s om and 1nx 1m, respectively. The 15 panels have five
almost S times that of the SAM and twice that of the SID. jittarent materials and three different sizes. Figure 7 plots

It is worth noting that the RSDPW values between dry the five panel spectral signaturé@i}f’:l obtained from
grass and red soil are very small among all the four mea-

sures. This is mainly because the sagebrush, which was 19: &), where thei’th panel signature, denoted by,P

selected as the reference signature, has a very distinct spec/as generated by averaging all B pixels in row | and was

tral signature from those of dry grass and red soil. As a USed to represent target knowledge of the panels inirow
result, the RSDPW values yielded by the four measures The 1.5-m spatial resolution of the image scene suggests
were relatively small, which implies that the discriminatory that except fop,;,ps1,P41,Ps1, Which are two-pixel pan-
power between dry grass and sagebrush was nearly theels, all the rest of the 11 panels are single-pixel panels.
same as that between red soil and sagebrush. These results As with the AVIRIS data studied previously, we con-
also suggested that the dry grass and red soil have veryducted similar experiments using these five panel signa-
distinct signatures from the signature of sagebrush. tures. Tables 6 and 7 tabulate spectral discrimination values
In order to further evaluate the ability of the mixed mea- Of the SAM, the SID, the SIE5IN), and the SIDTAN); the
sures in discriminatory power against a reference signature,values in the upper triangular matrices were generated by
we used the same target signature used in Ref. 1, which isthe SAM and the SIEBIN), respectively, while the values
a mixed signature composed of 0.1055 blackbrush, 0.0292in the lower triangular matrices were produced by the SID
creosote leaves, 0.0272 dry grass, 0.7588 red soil, andand the SIDTAN), respectively. As expected, the values of
0.0974 sagebrush. Table 5 tabulates the RSDPB and selfthe proposed SIBIN) and SIDTAN) were also smaller
information values with their entropies for the signatures; than those produced by the SAM and the SID. In analogy
the proposed SID-SAM mixed measures, 8IN) and with Fig. 2, Fig. 8 plots the values in Tables 6 and 7 for
SID(TAN), yielded the two smallest entropies. Plots of graphical comparison. Once again, we also calculated the
comparisons among these four measures are also shown ifRSDPB and self-information values among the five panel
Figs. 4 and 5, where the proposed SHIN) and SIDTAN) signatures and their entropies. The results are tabulated in
clearly have better spectral discriminability in identifying Table 8, with their corresponding graphical plots in Figs. 9
the target signatureas red soil, with smaller spectral dis- and 10. As shown in these tables and Fig. 9, the proposed
criminatory probabilities than those produced by the SID SID(SIN) and SIDTAN) again produced the smallest en-
and the SAM. tropies. The RSDPW values of the four measures are tabu-
The data in the second set to be used in the experimentdated in Tables 9 and 10, and their corresponding graphical
are real HYDICE(Hyperspectral Digital Image Collection plots are in Fig. 11, where the reference signauireas
Experiment data. A HYDICE image scene is shown in Fig. chosen to be the panel signatyrg;. As shown, the RS-
6(a) (band 80 with the ground truth map in Fig.(B). The DPW values of the proposed SIBIN) and SIOTAN)
spatial positions of these 15 panels are precisely located,yielded better discriminatory powers than did the SID and
with black (B) pixels indicating the panel center pixels of
all the 15 panels, and whit@V) pixels being panel pixels

mixed with background pixels. In this case, a W pixel can toeooce ——au
be considered as a mixed pixel. The scene has size 64 -._::E[sm:
X 64 pixels; the low-signal, high-noise bandsnds 1 to 3 i —— 510 (T &)

and bands 202 to 2)0and water vapor absorption bands """ |

(bands 101 to 112 and bands 137 to 15ave been re-
moved. The 15 panels are arranged in>a®matrix. Each

/‘

1.0000

H H H H - o o - - ';
elgment in this matr|>.( is a square panel an'd denotepipy £ i % £ 3 i
with row indexed byi=1,...,5 andcolumn indexed byj
=1,2,3. For each rowi=1,...,5 the three panels Fig. 11 Graphical plots of RSDPW values in Tables 9 and 10.
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