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1 Introduction
Considerable use is being made of multispectral and hyper-
spectral data for many applications. As imaging spectrometer
sensors become more available and collect larger image
cubes, the task of processing the data can become time con-
suming and complex. Techniques to segment targets from
background based on the relative entropy of the probability
distribution of a spatial co-occurrence matrix of the original
image versus the segmented binary image were introduced
in Ref. 1. The techniques are based on the principles of in-
formation theory and follow from entropy thresholding work
in Ref. 2. The multispectral data used here are collected by
an imaging system designed to detect and map multiple or-
ganic vapor compounds. Normally, the target vapor will have
one or more spectral features appearing in one or more of
the imager's spectral bands. Likelihood ratio testing methods
of detection have been developed for this type of data and
have worked well,3 but require considerable computing
power and are based on assumptions that may not always
hold. The search for less complex although possibly less
robust but operationally functional methods has led to this
work.
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Abstract. Relative entropy thresholding techniques have been used for
segmentation of objects from background in gray-level images. These
techniques are related to entropy-based segmentations computed for the
statistics of a spatial co-occurrence matrix. For detection of spectrally
active targets such as chemical vapor clouds in multispectral or hyper-
spectral imagery, a spectral co-occurrence matrix is employed. Using the
entropy of various regions of the matrix, thresholds can be derived that
will segment an image family based on the spectral characteristics of
the intended target. Experiments are presented that show the detection
of a chemical vapor cloud in multispectral thermal imagery. Several man-
ners of dividing the co-occurrence matrix into regions are explored.
Thresholds are determined on both a local and global basis and com-
pared. Locally generated thresholds are treated as a distribution and
separated into classes. The point of class separation is used as a global
threshold with improved results.

Because their unique character is spectral rather than spa-
tial, some spectral resolution in the data is crucial to detecting
chemical vapors. Because organic chemical vapors have a
very precise spectral footprint in the IR, vapors and airborne
interferants can be differentiated. Additionally this spectral
characteristic can be used to enhance the contrast of the vapor
component of an image relative to the usually spectrally flat
background. In the case of the very weak signal, unique
spectral features can be used to design a noise-suppressing
filter. Here, we extend the use of the co-occurrence matrix,
but rather than the spatial transitions previously used,' spec-
tral transitions are employed. The temporal co-occurrence
matrix, also based on two images, has been used as a de-
scription of a moving target.7 Although the temporal tran-
sitions are not investigated here, note that the techniques
generated for spectral transitions can apply to temporal tran-
sitions as well.

2 Spectral Co-occurrence Matrix
In as far as can be found, the spectral co-occurrence matrix
is a new representation. A similar representation, the spectral
scatter plot8 has been used, but not in a manner like the co-
occurrence matrix is employed here. In place of the single
gray-scale image I(x,y), which was segmented to separate an
object from the background,' we now have a family of gray-
scale images of the same scene I(x,y,X). These images are
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pixel registered, that is, each pixel (x,y) has the same field
ofview (FOV) for all values ofwavelength X. The wavelength
x represents the center value of the optical bandwidth of the
image. To be of most use, the spectral bands should be in-
dependent, that is, without overlap in the optical bandwidths.
Independence implies no spectral information will be redun-
dant between bands. Spatial information, on the other hand,
is highly correlated between spectral bands for all features
except the chemical vapors. We use the spatial correlation to
our great advantage.

Given a family of digital images I of spatial dimension
M X N with L gray levels G ={1, 2 L}, and with spectral
dimension A, the gray level of spatial location (x,y) and spec-
tral band X is denoted by I(x,y,X) E G. Thus the family of
images may be represented by the 3-D array or image cube
I= [l(x,y,X)IM X NX A The spectralco-occurrenceofi is anL X L
matrix W = Lf,JIL X L' which contains the frequency of tran-
sitions from one gray level to another associated with the
pixel (x,y) in two spectral bands Xa and Xb. For a pair of gray
levels i and j, the (i,j)'th entry of the co-occurrence matrix
w, is defined as follows

fif = (m,n) , (1) Fig. 1 Spectral co-occurrence matrix.
in= 1 n = 1

where 1
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cannot be divided into quadrants by a gray level threshold
as in the spatial case1 because it now comprises components • : • : • : • : • : • : • : • : • : • : • : • : • : • : • : • : • : : : • : • .

from two separate images. Performing a gray-level threshold L • . • . . • • . • . . . •

on either orboth of the input images based on the spectral
co-occurrence matrix would be inappropriate because the Fig. 2 Segmentation of a spectral co-occurrence matrix

•
showing

• • . . . . . main diagonal (doffed line), threshold lines, background region (clear
spectral information is only partially contained in a single area), and target region (shaded area).
gray-level image. Rather, we must look at the diagonal versus
the nondiagonal elements of the spectral co-occurrence ma-
trix. The diagonal, where i =j, contains those pixels that have
a constant gray level in both images. Pixels on the diagonal threshold lies parallel to the main diagonal both above and
are considered spectrally ''fiat,' ' that is, devoid of spectral below it at a selected distance from the main diagonal. Thus
features. Ifthe correct pair of spectral bands has been chosen, the co-occurrence matrix is separated into two regions, the
the target cloud will have significantly higher or lower gray diagonal region and the shaded nondiagonal regions. The two
levels in one of the images. Target pixels will lie at some nondiagonal regions, while both target or object regions, are
distance from the diagonal, with the distance off diagonal treated as one for threshold computation, but separately con-
equal to the gray-level differences. We then choose a thresh- sidered because they represent pixels with either a dark-to-
old that separates the diagonal from the nondiagonal elements light or light-to-dark transition. Each of these transition types
of the co-occurrence matrix and generate a binary image occupies a different shaded triangular region. With this in
based on these two classes of pixels. mind, each of the two nondiagonal regions is viewed as a

Figure 2 illustrates this concept. The co-occurrence matrix separate target or object region and a binary image formed
is shown, with the main diagonal as a dotted line. A single from each.
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To proceed further with the threshold selection, we need
the probabilities associated with the diagonal (D) and non-
diagonal (ND) cells. They are defined by

L
t'D

f±t1
L

Jij
L

L
=

j±t—1
.

p(i,j),
j=1 i=j—t±1

j=1
j=1

i=1
i=j—t±1

p(i,j)
PND("J)

ND

Based on these spectral transition probabilities, entropy meth-
ods can be used to find the threshold t.

Shown in Fig. 3 are the six frames taken for one scene by
a modified FSI 2000 thermal imager. The instrument and
some testing of it are described in Ref. 9. There is quite a
range of image quality in these frames. Table 1 lists the
spectral band center frequencies and bandwidths. The scene
is looking across a field, with a tree about 100 yd distant in
the center of the frame. The tree is clearly visible in bands
1, 2, and 5 and somewhat visible in band 6. The band 3 image
contains mostly vapor, but the top of the tree is visible. Band
4 has no identifiable features; this is caused by a severely
degraded optical filter. It is included as representative of some
bands of multispectral images that have substantial atmo-
spheric absorption. Given that the frames are fairly well
matched or normalized for background scene brightness, the
one or ones containing the cloud should have some differ-
ences in the pixel gray levels that exhibit a spatial character.
In practice, the differences are very subtle and not visible to
the operator in the scene unless the vapor concentration is
very high.
3 Entropy-Based Thresholding
Entropy is a measure of the information contained in a prob-
ability distribution. If a particular event -y happens with prob-

Band Center Frequency (sm) Range

1 8.7 8.5-8.9
2 9.8 9.6-10.0
3 10.6 10.45-10.75
4 11.6 11.45-11.7
5 open 7.6-12.0
6 7.8 7.6-8.1

ability P(-y), then the information derived from the occurrence
of y is

I(y)=log—--- , (6)
P(-y)

(5) and I(-y) is defined as the self-information of the event -y.
Entropy is the average self-information of all the individual
outcomes in a probability distribution. Suppose that the ran-
dom variable F can take any of the values -y ,-y ,
-y}, then the probability that F takes the value is

p(-y) =P(F=-y) , (7)

such that

Pr()1 , (8)

and Pi is the discrete probability distribution of F. The en-
tropy of F, H(F), is defined by

H(F)= p()log . (9)i=' pI,eyi)

Entropy is the average self-information of the elements of a
probability distribution. It is the average information or un-
certainty of a distribution.

Several methods of dividing the co-occurrence matrix by
diagonal thresholds were examined. They produced two re-
gions (2R), four regions (4R), and three regions (3R) within
the matrix. The 2R method is as shown in Fig. 2, with a single
threshold value applied both above and below the main di-
agonal producing D and ND regions. Each portion (upper
and lower) of the ND region is then used to create a binary
image. Only one image of the pair will contain the target.
The two nondiagonal regions are separate areas and are, in
fact, representative of different phenomena. That is, the pres-
ence of a lighter than background object in the lower non-
diagonal region and the presence of a darker than background
object in tile upper nondiagonal region. It would make in-
tuitive sense to treat the two regions independently for the
calculation of the thresholds. If the two images used for the
spectral co-occurrence matrix had no differing features, all
of the elements of the co-occurrence matrix would lie on the
main diagonal. We assume that noise within the image se-
quence is responsible for the width ofthe pixel mapping along
the diagonal. This noise is a combination of instrument noise,
which is generally quite small, and fluctuation within the
viewed scene resulting from the changing atmospheric con-
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Table 1 Spectral frequency band characteristics.

L Jt L

ND >p(i,j)+j=I i1 j=1 i =1 +t
(4)

Within the cell, the individual element probabilities are then

p(i,j)
PD("JY

Fig. 3 Image set with six spectral bands (image 1).
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ditions. The noise that would affect the data used here is
random over the relatively short data collection time. A col-
lection time of many minutes would be needed to see a per-
manent shift in the thermal scene caused by a change in
ambient conditions. Thus, we expect the elements of the co-
occurrence matrix on and in close proximity to the main
diagonal to be evenly distributed above and below the di-
agonal. Based on this reasoning, we can split the co-
occurrence matrix into two triangular regions, each including
the main diagonal, and determine a threshold for each tn-
angular region independently. This arrangement is illustrated
in Fig. 4. In this manner, the thresholds that will segment the
lighter or darker objects will not be influenced and biased by
the other nondiagonal region. This calculation will now entail
four regions (4R); they are the upper diagonal (UD), the lower
diagonal (LD), and upper nondiagonal (UND), and the lower
nondiagonal (LND). A threshold is calculated independently
for the upper and lower D and ND region pairs. Having
separate thresholds will be more important for the case of
multiple targets of different types, such as a vapor cloud in
an image that also has a spectrally active solid target. Another
example is the case where the cloud spans the horizon; the
cloud is warmer than the sky background, but cooler than
the terrain background. Each nondiagonal region would con-
tam part of the vapor cloud image and the binaries could be
fused to obtain the complete target image.

A third arrangement of the co-occurrence matrix would
again have two thresholds, but not divide the diagonal region
into two portions for the calculation. Figure 5 shows the three
regions (3R) that this approach would produce. The threshold
t 1 in the figure is labeled t in the equations and t2 come-
sponds to tL . There is some intuitive superiority to this ar-
rangement because we do not need the assumption of an even
distribution of background pixels about the diagonal, and the
full background class is used to calculate each threshold. In
practice, if the filters used are not perfectly matched, there
will be some (hopefully linear) shift in the population of
background pixels to a position above or below the main
diagonal. Thus an arbitrary division of the background class,
such as is done in 4R, could yield erroneous results.

The mathematical approach followed here is similar to
that used in Ref. 1. Although the 3R method is detailed in

The diagonal probability distribution is defined by

Fig. 5 Spectral co-occurrence matrix showing two thresholds and
three regions.

the equations to follow, the other methods are similarly ob-
tamed by choice of appropriate limits in the summations.

Following from Eqs. (4) and (5), the region and element
probabilities for the ND regions are

UND p(i,j)
j=1 jj±tU

(10)

(11)

. (12)

Note that the tt superscript indicates the dependence on two
threshold variables. With these probabilities, the entropies
for the regions can now be computed by

(13)

(14)

1 L

1

L

Fig. 4 Diagram of regions of co-occurrence matrix for the four re-
gion method.

HUND(tU) = — PUND('J) logp(i,j)
j=1 i=j+tU

L jtL
HLND(tL) = — : PLND(L'J) logp(i,j)

j=1 1=1

for the nondiagonal regions.



TARGET DETECTION IN MULTISPECTRAL IMAGES

scene background remains static in general over many sec-
onds so it is not improper to analyze an image pair as long
as only one image has a nonstationary object such as the
vapor cloud. In addition to the vapor cloud, Fig. 9 contains
the grassy foreground at the bottom of the image and some
clutter in the middle ground. This incomplete segmentation
could be due to the narrower distribution of gray levels in
bands 3 and 6 and the lack of contrast as a result of the poor
condition of the optical filters. Although there is as great a
transition length (the gray-level difference of the transition)

OPTICAL ENGINEERING /JuIy 1995 /VoI. 34 No. 7/2139

Fig. 7 Binary image from lower threshold 19 from bands 2 and 1 of
image 1.

The entropy of the diagonal region is a 2-D function. In
the 2R method in this section there was only one threshold
and in the 4R there were two thresholds but each ofthe regions
was dependent only on one of them. In the 2R and 4R meth-
ods, the maxima is found over a 1 -D function and for 3R the
maxima will have to found over a surface. The entropy of
the co-occurrence matrix H(tU,tL) is

H —HD(tU,tL)+ HUND(tU) + HLND(tL)
15(tU,tL)— 3

, ( )

where the denominator of 3 is simply to keep the entropy
magnitudes on the same scale. The 3R entropy H(tU,tL) re-
quires a more lengthy computation time than the other two
methods, but gives full and equal weight to the three regions.
A division of the spectral co-occurrence into three regions is
most satisfying from a system standpoint in that it fits the
best the system ' 'model'' of having a spectrally flat back-
ground and an object or target spectrally brighter or darker
than the background. The optimal threshold selection, that
which maximizes the entropy, is formally stated by

(t,t)=arg max H(tU,tL) . (16)
L ltu,tLL j

The results of this operation on the image 1 pairs (bands
1 and 2 and bands 3 and 6) are shown in Figs. 6 to 9. A
binary image is formed by mapping those pixels with tran-
sitions lying in the nondiagonal region to gray level 1 and
those lying within the diagonal region to gray level 256. In
Fig. 7 the cloud shape can clearly be seen along with a small
number of pixels that appear to be clutter, but may indeed
be a low vapor concentration close to the ground. On the day
these images were collected, the wind was brisk (approxi-
mately 5 mIs) and the main cloud plume moved about in the
field of view. This cloud image comes from the lower non-
diagonal region; the upper nondiagonal region (Fig. 6) had
no cloud target. Because a threshold is chosen on the infor-
mation present, background features are segmented in the
absence of a true target. Based on study of the background
statistics, a minimum threshold level could be chosen for a
target presence decision. The cloud image in Fig. 9 is dif-
ferent from that in Fig. 7 because the spectral bands are col-
lected sequentially. Therefore, the cloud had moved. The

Fig. 8 Binary image from upper threshold 3 from bands 3 and 6 of
image 1.

-.-.- -.#--_.
F".

-:-
Fig. 9 Binary image from lower threshold 12 from bands 3 and 6 of
image 1.

-

Fig. 6 Binary image from upper threshold 1 from bands 2 and 1 of
image 1.
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in the 1,2 pairing as in the 3,6 pairing the bulk of the distri-
bution lies much closer to the central diagonal in the band 3
and 6 co-occurrence matrix. It might be easier to demonstrate
the advantages ifa data set with more bands and many targets,
such as AVIRIS (Airborne Visible/InfraRed Imaging Spec-
trometer) type image cubes with 224 bands'° could be used.
It is our hope that high-spectral-resolution imagery of vapor
clouds will be collected in the near future.

Data from a second scene (image 2 in Fig. 10) collected
by the same imager is now examined. The vapor type and
six bands are the same as before, but the scene contains a
greater variation of gray levels in the background. One can
see some foliage to the left, and electric pole with a warm
transformer in the upper center, a hot steam pipe in the lower
part of the image (visible in all bands), and glass in a truck
reflecting the cold sky at the center right of the image. Using
again the pairings of 1, 2 and 3, 6 because the experimental
conditions of scene 2 are the same as those of scene 1 except
for the FOV, we obtain the resulting binary images in Figs.
11 to 14. Visible in Figure 12 is the vapor cloud, rising from
the right-hand side of the image, as well as a bit of the near
horizon and some bloom around the steam pipe. The vapor
dissemination point is within the scene, but because the vapor
is being released from a bottle under pressure it is cool and
then warms quickly to the ambient temperature, at which it
is warmer than the background. Figures 13 and 14 present
an interesting case: Fig. 14 shows the cloud along with the
truck windows and some foreground and Fig. 13 shows only
the steam pipe, the vapor cloud is not well segmented. These
two features (pipe and windows) are the temperature ex-
tremes in the scene. Although the range ofpossible thresholds
(1 to 1 16) is larger than in the image 1 example (1 to 43),
the threshold, tH 10 or 15, selected by the entropy method
is not out of the range of previous cases. This indicates that
a very large gray-level variation lies in the rather spatially
small features segmented and that although their numbers
are not great, the co-occurrence matrix elements that relate
to these transitions dominated the calculation by their mag-
nitude. Features of temperature extreme can cause the thresh-
old to miss the intended vapor target because of the relatively
large transition variations possible.

Fig. 10 Six spectral band images for scene 2.

2140 / OPTICAL ENGINEERING / July 1995 / Vol.34 No.7

Fig. 11 Binary image from upper threshold 1 from bands 1 and 2 of
image 2.

Fig. 12 Binary image from lower threshold 19 from bands 1 and 2
of image 2.

Fig. 13 Binary image from upper threshold 10 from bands 3 and 6
of image 2.

Because the entropy for the 3R method is a surface that
must be searched for the maximum value, the computation
load is the square of that required for the 2R and 4R methods.
In the case of the data studied in this paper, all of the entropy
surfaces were smooth and had only one maxima (entropy is
a convex function). Thus, an assent algorithm was used to
greatly reduce the computational load. The entropy calcu-
lation is normally limited to combinations of nonzero region
probabilities, which generally reduced the iterations to about

•-•r . ••

image2, band 6
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0 5 10 15 20 25 30 35 40
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Fig. 15 These curves show half of the synthetic vapor cloud concentration function. The dashed curve
is the function before quantization and the solid curves are quantized with peaks of 5, 10, and 20.
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sumed to be independent, and thus the total distribution can
be a product. An insertion location in the target image is
chosen and defined as point (0,0) for the purpose of the
synthetic cloud distribution. The standard deviations r and
ff are chosen as well to set the cloud size. Lastly, a peak
cloud concentration in gray level p is selected. With the pa-
rameters chosen, the individual axis density functions f(x)
and f,(y) are computed and then normalized by f(O) and
f(O) respectively to give a center value of 1. Combining all
the terms yields

. (17)

The function f(x,y) must then be quantized before being
added to the digital target image. Quantization is accom-
plished by the Fortran rounding function NINT. By observing
the length and width of the quantized cloud distribution, one
knows the dimensions of the cloud being inserted. Figure 15
contains quantized curves of f(x) = pf(x)/f(O) for the p
values of 5, 10, and 20 and also an unquantized curve for
comparison. Note that the cloud width changes relatively little
because the standard deviation is constant at 10. This feature
will help in the assessment. These sizes are used to assess
how much of the cloud is resolvable in the segmented image
and from that, a measure of the vapor detection threshold.
The contrast resolvable in an imager is a function of the
instrument parameters, for which general values are assumed,
the temperature difference (z t) between cloud and back-
ground, and the vapor concentration and absorption coeffi-
cient. Because the cloud is synthetic, some realistic values
are selected. A detection threshold for a particular vapor can
then be derived as a function of z t.

A set of synthetic clouds were generated, the parameters
of which are contained in Table 2. The x and y lengths are
the overall dimensions of the synthetic cloud, i.e., the spans

Fig. 14 Binary image from lower threshold 15 from bands 3 and 6
of image 2.

1000 from a possible 16,384 (by limiting the threshold to a
value l28, 1282 16,384). The asset begins by computing
H(1,1), H(1,2), H(2,1), and H(2,2). The largest of these is
selected as the peak and the adjacent values (the eight nearest
neighbors) are computed. If one of the neighbors is larger,
it becomes the peak and the process continues until the max-
ima is found. For the data used here, the assent to the global
maximum required only from 40 to 60 iterations or entropy
calculations, a 95% reduction.

4 Simultaneous Detection of Two Targets
To assess the spectral target detection methods, a synthetic
cloud has been inserted into band 1 of image 1 . Becauseband
2 of image 1 contains a true vapor cloud, this will permit the
investigation of the two-target case and also, because the
parameters of the synthetic cloud can be manipulated, some
estimation of the algorithms vapor concentration sensitivity
may be made.

The synthetic cloud will be a 2-D zero-mean Gaussian
concentration distribution. The x and y dimensions are as-

20 —

15

10 —

5

0

—Q(5)
Q(20)
20

Q(10)

I I I I I



ALTHOUSE and CHANG

Table 2 Synthetic cloud parameters.

image AJ. A.C A

x

y

p

Qy

length
length

10
30
15

117
59

20
30
15

137
69

40
30
15

153
77

of pixels with a gray level greater than zero. These clouds
are inserted in band 1 of image 1 centered at location
(130,200). Figures 16 to 18 are of the synthetic clouds alone
(the cloud is darker), and Figs. 19 to 21 show the resulting
band 1 images from the insertion (the cloud is lighter). Ob-
serve that the synthetic cloud in the second two-target image,
with p = 20, to the eye is quite faint, and the p =10 cloud is
not visible at all. These two target images were then processed
by the three spectral co-occurrence matrix methods with band
2 as the second image of the pair.

Not all of the resulting images are included here. For
instance, the two-region method produced a blank image for
the smallest synthetic cloud because it uses only one thresh-
old, which is more influenced by the significantlylarger actual
vapor cloud in band 2. Figures 22 through 28 are arranged
left to right by method (2R, 4R, 3R), and top to bottom by
synthetic vapor cloud concentration (p = 10, 20, 40). There
are no images for the 2R method for the two lower concen-
trations as mentioned before because the images are blank.
In the rest, it is easy to see the increasing detection moving
left to right. The 3R co-occurrence matrix method does the
best job of resolving the target cloud, although it also picks
up the most sky. A human operator might readily recognize
the sky portion as sky, but an autonomous system might have
to employ some morphological processing such as region

1 to discriminate homogeneous areas of detection
from the clutter, which might also be picked up by the co-
occurrence matrix or use more than two spectral bands. For
higher concentration clouds, there is only slight difference
between the result of the 4R and 3R methods, but in the low
concentration case (Figs. 22 and 23) the difference is sig-
nificant. To get an objective measure of the detection or
segmentation power of the three methods, signal-to-noise
ratio (SNR) is used.

Fig. 18 Synthetic cloud, p =40.

Fig. 19 Band 1 with AC1 inserted.

Comparing the cloud ' 'energy'
' with the noise ' 'energy"

will lead us to an SNR value. Computing SNR for a series
of images in which the cloud strength or concentration has
been varied and subjecting these to the spectral co-occurrence
processing methods will result in a series of binary images
in which the observer can determine cloud presence by sub-
jective means. This is a difficult procedure to quantify due
to the subjective final decision, but it can be made less variant
when a temporal sequence is used as well because human
perception is very sensitive to the dynamics of the cloud as
it moves in time.

In computing the SNR, the difference image with no syn-
thetic cloud, e(x,y) =11(x,y)—

12(x,y), is averaged squared
over the local region occupied by the cloud. A ratio is made

2142/OPTICAL ENGINEERING / July 1995 / Vol.34 No.7

Fig. 17 Synthetic cloud, p=2O.

Fig. 16 Synthetic cloud, p= 10.
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Fig. 20 Band 1 with AC2 inserted.

Fig. 21 Band 1 with AC4 inserted.

Fig. 22 Result of upper threshold 5, four-region method, p =10.

with a similar measurement of the cloud containing difference
frame, g(x,y) =Iç(x,y) —

12(x,y), where I' signifies the pres-
ence of the synthetic cloud. The ratio R is

g(x,y)
R=ERe2(x,y)

(18)

in which 01 is the local region under consideration. Gonzalez
and Wintz12 assert that the variance is a measure of contrast,
thus the SNR will serve as an indicator of contrast and signal
strength. The terms in Eq. (18) may not look like variances,
but Ref. 12 leaves off the squared mean term of the variance
and when checked here, the inclusion of the mean had very

Fig. 23 Result of upper threshold 1 of three-region method.

Fig. 24 Result of upper threshold 5, four regions, p =20.

Fig. 25 Result of upper threshold 4, three regions.

Fig. 26 Result of threshold 18, two regions, p =40.

OPTICAL ENGINEERING /JuIy 1995/Vol. 34 No.7/2143
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little effect on R. Of course, the normalization by the area of
the region cancels in the ratio. The SNR is found by

SNR=1O log10(R) . (19)

For the three synthetic clouds used in the images shown and
for the additional values of p = 5 and p = 80, the SNR results
are plotted in Fig. 29. The curve labeled ''raw SNR' ' is the
SNR ofthe band 1 image with the cloud versus band 1 without
the cloud and the curve labeled ''diff SNR' ' is from the
difference of bands 1 and 2 with the cloud versus the dif-
ference of bands 1 and 2 without the cloud. From an obser-
vation of the spectral co-occurrence thresholding results and
using the diff SNR curve, the 2R detection limit is between
0.8 and 1.3, the 4R detection limit is about 0.8, and the 3R
detection limit is between 0.5 and 0.8. More data might nar-
row these ranges, but the examples given are sufficient to
illustrate the results.

5 Local Thresholding
Localthresholding, the practice of computing a threshold for
a window or portion of an image rather than for the image
as a whole (global thresholding), has been attempted with
varying degrees of success with many of the thresholding
techniques developed. The utility of the local implementation
of a thresholding method depends to a great part on the nature
of the image and the target or object in that image which the
threshold is supposed to detect or segment. If either the noise
or background gray level varies in a nonuniform manner in
the image, for instance, if the image scene is illuminated from
a side so as to cause shadows, a bimodal histogram will show

Fig. 29 SNR for the synthetic clouds in the two target images as a function of peak concentration or
amplitude.
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Fig. 27 Result of upper threshold 7, four regions.
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Fig. 28 Result of upper threshold 5, three regions.
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TARGET DETECTION IN MULTISPECTRAL IMAGES

Fig. 30 Image 1 , 4R, bands 1 and 2 with two targets, 32 x 32 win-
dow, lower.

Fig. 31 Image 1 , 4R, bands 1 and 2, two targets, 32 x 32 window,
upper, small cloud has medium concentration (AC2).

a significant population in the valley between the modes. The
shadow or uneven shading will cause an enor in the seg-
mentation. Alternately, if the object is unevenly lit or has
large gray-level variations, these will possibly result in errors.

Medical images are one data type that has benefited from
local thresholding. Chow and Kaneko'3 successfully used
local methods on sequences of cineangiograms. Local versus
global methods are also discussed in Refs. 14 and 15.

The thresholding algorithm in its entirety is executed on
each subimage or window of a chosen size of the original
image to generate a threshold which is used to segment the
gray-scale subimage into a binary subimage. The subimages
are then reassembled into a complete binary image.

The window size itself has considerable effect on the mag-
nitude of edge discontinuities and should be chosen with
some characteristic of the input image in mind. Fitting char-

Fig. 32 Image 1 , 3R, bands 1 and 2, 32 x 32 window, two targets,
lower.

acteristics could be the spatial size of variations in the image,
general target size, or textural frequency. In field applications,
the expected size of chemical vapor clouds has been exten-
sively modeled and an appropriate window could be chosen
for one of a few scenario classes. A smaller window means
more computations are required, so the window should be
no smaller than needed. The target should occupy a statis-
tically significant portion of the image, a fraction of 0.25 to
0.5 will give a significant edge feature. If the target covers
the whole window there is no background and the entropy
methods will segment variations in the target itself. Because
this work is with a limited data set, windows will be chosen
by a priori knowledge of the cloud size.

Modeling of tactics, delivery systems, and requirements
yields an expected cloud width of 100 m at a range of 3000 m
from the detector. The cloud would then occupy 1.91 deg of
the FOV of 30 deg horizontally and have a width of 32.6
pixels in the digital scene. Because the placement ofthe cloud
in the scene is random, the expected fraction of a 32 X 32
window that the cloud would occupy is 0.26. This is found
by considering the edge of the cloud to be uniformly dis-
tributed over the 32 pixels of the window. The mean of a
uniform distribution is 0.5, thus 0.5 (32.6pixels) = 16.3pixels
of the cloud will be in a window or 0.51 of the width of the
window is occupied. The height of a cloud is dependant on
more variables, so for simplicity, we assume it occupies the
same relative vertical fraction as it does the horizontal frac-
tion. Then we have (0.5 1)2 0.26 for the total fraction.

Thresholds computed on the basis of spectral information
can be applied to a local spatial area in much the same way
as in the previous section. A pair of images of the same scene
but with different spectral bands are split into subimages and
the spectral co-occurrence matrix entropy thresholding meth-
ods of Sec. 3 are applied to each subimage. The binary sub-
images are reassembled as a last step. This process was carried
out for both the 4R and 3R methods and the resulting binary
images are shown in Figs. 30 through 33. The large vapor
cloud is unresolved by both methods, and the small synthetic
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HTh(k)=-B 1=11=1

Pr(C1) = = w(t)

Pr(C2) = p=1— w(t)
i=t± I

and a class mean

ipii=1 -
w(t) w(t)'

p(L) —

1—o(t)

o(t) = [1i(L)w(t) —

(,i(t)[1 —w(t)]

and the optimal threshold t is

Otsu16 describes a simple gray-level thresholding method
which operates on the histogram and has been found to per-
form rather well in most situations. The premise is that the
histogram can be represented as a mixture distribution of two
Gaussian distributions. Otsu develops three equivalent cri-
tenon functions, which can be reduced to a function of the
zeroth- and first-order statistics of the histogram. The criteria
can be used to select a threshold that maximizes the between
class separation on the basis of the class variances. For an
image I(x,y) with pixels having L gray levels, the histogram
or gray-level probability distribution is formed by summing
the number n, of each of the L gray levels found in the image.
The elements of the histogram are then made a probability
distribution by dividing by the total number of pixels in the
image N; p, = ni/N. A threshold t will divide the histogram
into two classes, C1 and C2.

Each class will have a probability
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Fig. 33 Image 1 , 3R, bands 1 and 2, two targets, 32 x 32 window,
upper, small cloud has medium concentration (AC2).

cloud is resolved less well than by the globally computed
threshold. As discussed in the previous section, this results
from the fact that the chosen method will do its best to seg-
ment the local area, even if the only '' signal' ' in the subimage
is noise. Similarly, if the subimage signal is primarily target,
then the method will segment the target into two regions.
Thus, the point is again worth making that the subimage size
must be sufficient to contain a fair representation of both
target and noise or background objects. The vapor clouds in
image 1 and image 2 are quite large, occupying of the order
of 25% of the total area. The synthetic clouds, however, fit
better the criteria presented for window size selection and
the result is more favorable.

If we consider the threshold computed for each of the
subimages as a statistical representation of the image, we
may treat the distribution of thresholds to arrive at a more
acceptable result. Suppose we have an image of size M XM,
and select a window of size A XA, then the matrix of thresh-
olds can be [Th(i,j)]B >< B' where B = MIA and Mis a multiple
of A. The histogram of the threshold values

(21)

(22)

(23)

where ji(L) is the mean of the whole image. Three discrim-
inant criterion functions are developed, all of which result in
the same threshold, and one is reduced to the function o(t),
which is the between class variance and is defined as

Imax o(t)l
t*=arg[1<.< ]

(24)

(25)

Even though visually very dim and indistinct in the orig-

h — Ji if Th (i,j) =k
"2O inal images, the target is successfully segmented by the globalw ere —

lo otherwise
" ) spectral co-occurrence methods. Viewing the co-occurrence

matrix itself, for a target containing pair of images, the off-
Ifthe image contains a target, HTh(k) should contain a bimodal diagonal population representative oftarget containing pixels
distribution, one peak corresponding to the subimages con- is rarely well separated from the main diagonal cluster. In
taming the target and the other peak corresponding to sub- contrast, the histogram curves exhibit good separation of the
images containing only noise or background. Because HTh(k) bimodal or multimodal peaks, as in Figs. 34 and 35. The
is a distribution, we can apply to it segmentation methods segmented images follow in Figs. 36 to 39. Note that the
designed to find the best segmentation point for a distribution large vapor cloud is more fully segmented, but at the penalty
that is the mixture of two Gaussians. This procedure was of greater clutter in the vicinity. The clutter could be reduced
implemented with the 3R method computed locally followed by a spatial filter of the appropriate size. For the synthetic
by the Otsu16 method to segment the histogram of local cloud, the medium concentration cloud has better definition
thresholds. That optimal threshold tTh is then applied globally than the result of either the global or simple local methods,
to segment the original image. whereas the global could be said to be slightly better for the
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Fig. 34 Histograms of the upper (synthetic cloud) thresholds for
three concentrations, AC, AC2, and AC4.
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Fig. 35 Histograms of the lower (vapor cloud) thresholds for three
synthetic cloud concentrations.

case of the low-concentration cloud. The reason can be seen
in the curves in Figure 34, where the thresholds are selected
at the first valley. For the high concentration, the two-step
local method selected a threshold of 6 and the global a thresh-
old of 5. There is negligible difference in the segmented
cloud.

Although the threshold histograms do illustrate the mix-
ture distribution, the curves are not very dramatic, especially
for the case of the real vapor cloud. This can be attributed
to the large cloud size relative to the window, the concen-
tration gradient within the cloud, the low signal level, and
the small number of windows in the entire image (64). With
a higher resolution image and optimal window size, the pop-

Fig. 36 Method 3R locally at 32 x 32, followed by Otsu, threshold
at 12.

Fig. 37 Method 3R, locally at 32 x 32, followed by Otsu, threshold
at 2, medium concentration cloud (AC2).

ulations should be better resolved. As discussed earlier, the
32 X 32 window is best suited for expected field target vapor
clouds, of which the real cloud in these images is not rep-
resentative, but the synthetic cloud is. Therefore, the synthetic
cloud results are a preferable example.

6 Conclusions
A method of chemical vapor cloud detection and target seg-
mentation has been demonstrated to achieve good results
when operating on multispectral infrared image sets. Three
methods of co-occurrence matrix division were studied and
the three-region division with two thresholds was found to
be the best. Multiple targets can be detected and segmented
if they have distinct spectral signatures. Computation of
thresholds locally followed by class separation and global
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Fig. 38 Method 3R, locally at 32 x 32, followed by Otsu, threshold
at 13.

Fig. 39 Method 3R, locally at 32 x 32, followed by Otsu, threshold
at 2, low concentration vapor cloud (AC).

threshold application improves the result over the simple
global calculation. An assent algorithm reduced computation
time by about 95%. The assent algorithm is possible because
of the observed smoothness of the entropy functions.
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