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Abstract. Entropic thresholding provides an alternative view to the de-
sign rationale of conventional thresholding. Abutaleb proposed a
second-order entropic thresholding approach to improve Pun’s first-order
entropic thresholding by introducing a 2-D gray-level histogram to take
into account the spatial correlation. Abutaleb’s (1989) method was fur-
ther modified by Brink (1992). However, a major drawback of Abutaleb-
Brink’s method is very high computational cost. Recently, Chen et al.
(1994) developed a fast efficient 2-D algorithm that reduces computa-
tional complexity from O(L*) to O(L®3), where L is the total number of
gray levels. A hierarchical fast 2-D entropic thresholding algorithm using
a gray-level histogram pyramid is presented that can be viewed as a
generalization of Chen et al.’s algorithm. The new algorithm consists of a
2-D gray-level histogram pyramid build-up procedure expanding Ab-

utaleb’s 2-D gray-level histogram to a histogram pyramid, and a thresh-
olding process applying a modified version of Chen et al.’s algorithm to
the histogram pyramid layer by layer from top to bottom. As a result, the
computational complexity of Chen et al.’s algorithm can be further re-
duced to the optimal complexity, O(L?). The experiments show that the
computer time of the new algorithm is only one tenth of that required for
Chen et al.’s algorithm, which is a significant saving. © 1996 Society of
Photo-Optical Instrumentation Engineers.

Subject terms: Abutaleb’s two-dimensional gray-level histogram; co-occurrence
matrix; two-dimensional gray-level histogram pyramid; entropic thresholding;
guantization.
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1 Introduction level histogram, the methods in Refs. 3 and 4 can be
thought of as second-order entropic thresholding ap-
Thresholding is an initial step of image segmentation. proaches.

Many thresholding techniques have been studied in the An alternative to considering a 2-D spatial gray-level
past. Of particular interest is entropic thresholding, which histogram is one introduced by Abutallshich is formed
uses Shannon’s entropy of an image histogram as a threshby the 1-D gray-level histogram and the 1-D local average
olding criterion to segment an image. The first work to gray-level histogram. Abutaleb’s work was the first report
introduce the entropic approach into thresholding was in- to propose using such a 2{gray-level, local average gray-

: . level) histogram, to be called Abutaleb’s histogram, to im-
vestigated by Purand later improved by Kapur et abue prove the first-order entropic thresholding techniques. His
to the fact that the Pun-Kapur et al. approach is based on

. ) e ) > D ~approach is also a second-order entropic thresholding tech-
the image histogram, which is the first-order statistic, their nique. However, unlike methods in Refs. 3 and 4, which

method can be regarded as a first-order entropic thresholdgenerate only one threshold, Abutaleb found a pair of
ing. A major drawback of first-order thresholding is that the thresholds, one for each dimension, and his method was
spatial correlation between pixels is not taken into account. further improved by Brin. The advantage of the
As a result, the performance is generally not satisfactory. Abutaleb-Brink approach is that the two thresholds can be
Pal and Pdlextended Pun-Kapur et al. method by using a smultaneoule adjusted to obtain a better image quality
gray-level co-occurrence matrix to account for correlation than methods® using the same threshold value for both
between pixels. Two methods were suggested in Ref. 3 dimensions. Nevertheless, a principal disadvantage of the
called local entropy and joint entropy, both of which were “‘outaleb-Brink method is the computational cost, which

S , exponentially increases with the image size and the total
also based on maximization of Shannon’'s entropy. Re-

X number of gray levels. To alleviate this problem, Chen
cently, Chang et dl.adopted a different approach that uses g 57 proposed a fast 2-D thresholding algorithm that de-

the concept of relative entropy defined on a gray-level co- composes a thresholding process into two procedures. The
occurrence matrix to minimize the discrepancy between an first-stage procedure is to quantize gray levels of an image
original image and a thresholded image. Since the gray- prior to thresholding, followed by a second-stage procedure
level co-occurrence matrix is basically a 2-D spatial gray- to find a pair of thresholds based on this quantized image.
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Although the two obtained thresholds may not be exactly up of two algorithms, a build-up algorithm for Abutaleb’s
the desired optimal threshold vectors, they should be very 2-D gray-level histogram pyramid and a modified version
close. How close they are depends on how fine the grayof Chen et al.’s algorithm. In Sec. 4, experimental results
levels are to be quantized. It was pro¥ehat[L??| is the based on six test images are included to show that the new
optima| number of quantization levels, whdrds the total algorithm is indeed very efficient and effective. In Sec. 5,

number of gray levels to be used for the image, pds the computational complexity is discussed on the basis of
defined as the smallest integeix, and the required com- trade-off between various quantization schemes used in the

puting time is significantly reduced pyramid build-up algorithm and the new algorithm is
In this paper, a hierarchical fast 2-D entropic threshold- shown to achieve optimal complexity. Also discussed in

ing pyramid algorithm is presented that includes Chen Sec. 5 Is a furthe_r computational saving th_at can be
et al.’s 2-D fast thresholding algorithm as a special case. achieved by.narrowmg t,he §earch areas for optimal th(esh-
The proposed algorithm is basically a hierarchical thresh- old vectors in Abutaleb’s histogram to a smaller feasible

olding process that can be implemented in multiple stages region. Finally, a brief conclusion is given in Sec. 6.

using a gray-level histogram pyramid rather than only two

stages, as described in Ref. 7. It expands Abutaleb’s 2-D2 2-D Entropic Thresholding

gray-level histogram into a 2-D gray-level histogram pyra- Entropy is an uncertainty measure first introduced by
mid. Each layer of the histogram pyramid represents a shannon into information theory to describe how much in-
reduced-size/resolution version of Abutaleb’s 2-D gray- formation is contained in a source governed by a probabil-
level histogram, with the number of gray levels gradually jty |Jaw. This concept becomes increasingly important in
reduced as the layer number increases. Each layer in thamage processing, since an image can be interpreted as an
histogram pyramid represents a 2-D gray-level histogram jnformation source with the probability law given by its
generated by merging into one gray level vectpay level,  jmage histogram. The first work applying the concept of
local average gray leveh fixed number of gray level vec-  entropy to thresholding was investigated by Puvho sug-
tors in the h|StOgram Of Its next |mmed|ate |0Wer |ayel’. In gested Se'ecting a thresho|d that maximizes the sum Of en-
other words, the histogram of laykrcan be also thought of  tropies of the object and background classes. Although
as a quantized version of the histogram of lalgerl with Pun’s algorithm was later corrected and improved by Kapur
gray level vectors viewed as quantization level vectors. et al.? their results were generally not satisfactory. This is
Based on this pyramidal histogram structure, Chen et al.’s primarily due to the fact that the image histogram they
2-D fast thresholding algorithm can be implemented by a considered was the first-order statistic and did not take into
two-layer histogram pyramid process. The top lagies., consideration the spatial correlation. To remedy this prob-
the second laygicorresponds to a 2-D gray-level histogram lem, several approach&s have been proposed to account
obtained by uniformly quantizing the original Abutaleb 2-D for the spatial correlation between pixels.
gray-level histogram along each dimension in the bottom  Two types of 2-D gray-level histograms are of interest,
layer (i.e., the first layer. The uniform quantizer to be used one is the gray-level co-occurrence matrix suggested by
is one mergindL 3| gray levels along each dimension in Haralick et al® and the other was proposed by Abutateb.
the bottom layer into one gray level in the top layer with While the former has found a wide range of applications in
|x] defined as the largest integerx. More generally, as-  texture analysis, the latter is almost entirely limited to
sume thatq is the number of gray levels to be merged thresholding applications. The work in Refs. 3 and 4 used
along each dimension in a layer of the 2-D gray-level his- the gray-level co-occurrence matrix of an image to define a
togram pyramidg? gray level vectordi.e., g gray levels in 2-D gray—level h|stogr_am from wh_lch various second-order
each dimensionwill be merged into one gray level vector €Ntropies can be defined. The difference between Refs. 3
and the size of the histogram will be reduced by a ratio @1d 4 is that the former maximized the second-order Shan-
q%—1 as the layer number is increased. As a result, the ON'S entropy, while the latter minimized the relative en-
computer processing time can be significantly reduced to tro%fg\gginzag erg'/ngv'é?i?;%}gn? Egrgzg?#éﬁ;&ag?'
2 4 y A - -
O(LS,Iqu L) from O(L,) of Abutalebs algorlth.m and 2-D gray-level histogram that differs from the gray-level
O(L*) of Chen et al.’s algor'lthm,'Where Igg. is the co-occurrence matrix. It is formed by the Cartesian product
number of layers in the pyramid. This means the NEW Pr0- of the original 1-D gray-level histogram and the 1-D local
posed algorithm can further reduce the c_omplexllﬁ/, average gray-level histogram generated by applying a local
from O(L®3) to O(L?), and achieves an optimal complex- window to each pixel of the image and calculating the av-
ity because it requires at lea€(L?) to search for two  erage of the gray levels within the window. Since Ab-
optimal thresholds independently along each dimension. It utaleb’s 2-D gray-level histogram is the main focus in this
can be also shown that the optimal choice dois 2. Ex- paper, the gray-level co-occurrence matrix approach to
perimental results demonstrate that the proposed 2-D hier-thresholding is not discussed hdfrit refer to Refs. 3 and
archical pyramid thresholding algorithm requires only one 4).
tenth the computing time of Chen et al.’s algorithm and
1/600 to 1/800 of that for Brink's method. This is a sub- 21 aputaleb’s Approach®
stantial saving. o .

In Sec. 2, three 2-D entropic thresholding algorithms, Suppose that a digital imadeis represented by a set of
Abutaleb’s, Brink’'s, and Chen etal.’s algorithms are NXM pixels. Associated with a pixel at the spatial location
briefly reviewed. In Sec. 3, a new hierarchical entropic (X,y) in imagel is a gray level functionf(x,y) taking
thresholding pyramid algorithm is described that is made values in a discrete s&={0,1,...L — 1}, called gray lev-
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Fig. 1 Abutaleb’s 2-D gray-level histogram with threshold vector
(7.5).

els. For each pixelxX,y), we can also consider a window
with sizen+1Xn+1 centered at the pixelk(y) and cal-
culate its local average gray level within the window by

n/2 n/2

YY) = iy 2, 2, FOCFTY D)

n =—ni2i=-n

where ns=N and nsM. D
From Eq.(1) a pixel at ,y) can be assigned a pair of gray
levels (,j), where gray level and local average gray level
j are determined by(x,y) and g(x,y) respectively. Let
rij denote the frequency of occurrence of the pajf)(in
the imagd . The prior probability of the pairi(j) is given
by

rij
Pi=NM )
Based on Eq(2), Abutaleb’s 2-D gray-level histogram, de-
noted byW, can be depicted by Fig. 1 and defined by a
matrix [W(i,j) ] ». with entriesW(i,j)=r;; , wherei and
j represent the horizontal and vertical axes, respectively,
with (0,0) at the left upper corner. Both gray levieland
local average gray level j take values in
G={0,1,...L—1}. If we assume that the pai(S) is a
threshold vector to be used for thresholding, theS) di-
vides Abutaleb’s 2-D histogram into four quadrants. These

quadrants can be further classified into the diagonal quad-

rantsA andC and off-diagonal quadran& andD, respec-
tively, in Fig. 1. Since pixels belonging to either the object

theless, this is not necessarily true in general. For instance,
the diagonal of matrix in Fig. 1 generally represents per-
fectly homogeneous regions. As shown in Fig. 1, the diag-
onal line passes through quadrahtif the threshold pair
(S, T) with S>T (or could be quadrar® if S<T). In such
a case, pixels represented by gray levels on the diagonal
cannot be edges. Abutaleb’s 2-D histogram may not do
well, for example, the results in Fig. 8 in Sec. 4. However,
if we allow a tolerance for small deviations from the diag-
onal, which may be caused by noise effects, the diagonal
line can be expanded into a diagonal band so that if pixels
represented by this band can be still thought of to be in a
homogeneous region. A similar idea considered for spectral
co-occurrence matrixcan be applied to this case. But, it is
not our major concern and is not pursued here.

From Fig. 1, the probabilities of the object class and
background class can be calculated by

s
Pe(T.S)=2> > pj,
j=01i=0
©)
L-1 L-1
Po(T,S)= > , pij -
j=S+1i=T+1

Using Egs.(3) as normalization factors, the normalized
posteriori probabilities of the object class and background
class are functions of threshold vectdr,§) and defined as

Po(1i[TS= 515
4
s by
po('d”ﬁ)—m-

From thea posteriori probabilities given by Eqs(4) we

can define the entropy for the background class, denoted by
Hg(T,S) and the entropy of the object class, denoted by
Ho(T,S) as follows:

T

HB(T,S):_j=O “~ pB(l,JlTyS) |Og pB(|,]|T,S),
(5)
L-1 L-1
Ho(T,9=— X 2 poli,ilT,9)log po(i,j|T,S).
j=S+1i=T+1

Following the idea suggested in Ref. 6, Abutaleb used Egs.
(5) to define the total entropy sum given by

W (T,S)=Hg(T,S)+Hu(T,S). (6)

class or background class are expected to have small grayAbutaleb claimed that the best threshold vectbf (S*) is

level variations, diagonal quadramdsand C reflect local
properties. On the other hand, off-diagonal quadr&nasd

D represent greater differences between gray levels and

local mean, which reflect transitions between background
and objects, thus, they are very likely to be edges. Never-

the one that maximizes Ed6), namely, T*,S*) is the
solution to the following maximization problem.

(T*,S*)=ardmax¥(T,9)}.
(T,9)

@)
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2.2 Brink’s Approach®

Instead of maximizing the total entropy sum of H§),

Brink improved Abutaleb’s method in Ref. 1 by proposing :
an alternative approach that is a max-min method. Brink ..o w® @)
first found the minimum ofHg(T,S),Ho(T,S)} for each '
given threshold vectorT,S), then maximized the mini-

Layer K => w® |:|

0,0,
mum of {Hg(T,S),Ho(T,S)} over all possible threshold 09
pairs (T,S), namely, (i)
. Layer 1 => w® /q
(T*,8*)=argf max [min{Hg(T,S),Hp(T,S)}]}. "
T=01: L—1 0"+ 1a
S=0,1,-- ,L—-1
(8 -1, L)
g (i"1)q

Brink showed that in most experiments, the max-min
method performed better than Abutaleb’s maximization of 0.9
the total entropy sum.

Layer 0 => @
jq

2.3 Chen et al.’s Approach’

Since Brink’'s method requires brute force to solve Ej. G+1)q
by exhaustively searching for all possible pairs a%,%)

with T and S ranging from 0 toL —1, the computational
cost is very expensive and the complexity can be as high as
O(L%. To alleviate this problem, Chen et‘aproposed a
fast algorithm to find a solution to Ed8). Rather than
directly finding an optimal threshold vectof{,S*), their iq  (i+1)q @1, L)

idea was to decompose Brink’s thresholding procedure into

two processes. The first-stage process is to quantize therig. 2 Construction of Abutaleb’s 2-D gray-level histogram pyramid.
original image using a small number of gray levels from

which a set of candidate threshold vect@s called local

optimal threshold vectors, can be generated using@d. 31 agorithm for Constructing Abutaleb’s 2-D

Th|§ guantization procedure narrows the_ search area for an Gray-Level Histogram Pyramid

optimal threshold vectorT* ,S*) to a candidate set of local )

optimal threshold vectors. This is followed by a second LetW® denote Abutaleb’s 2-D gray-level histogram of the
stage process in which Brink’s method is applied again to original image obtained from the 1-D gray-level histogram
this candidate set of local optimal threshold vectors to ob- and 1-D local average gray-level histogram given by Eq.
tain a desired optimal threshold vector. It was shbitmat (1), wherei andj represent the 1-D gray-level histogram
the computer processing time required for Chen et al.’s fast coordinate and local average gray-level histogram coordi-
algorithm wasO(L®3), which is a significant saving in  nate, respectively. Assume thgt-1 is a fixed positive
storage and time compared®{L*). For instance, the sav-  integer that is the number of gray levels to be merged as a

ing could be reduced fro 1 h to 1 min insome experi-  layer moves up one its next higher layer. An Abutaleb 2-D
ments conducted in this paper and is calculated based orgray-level histogram pyramid can be constructed as follows
total computing time andl = 256. (see Fig. 2

1. Calculate the local average gray levagx,y) for
each pixel over am X n square window, as shown in
Eqg. (1).

. Layer 0: Construct the Abutaleb’s 2-D gray-level his-
togram [W(i,j)] . for the original image.

3 Hierarchical 2-D Entropic Thresholding
Pyramid Algorithm

Despite the saving provided by Chen et al.’s algorithm, it is 2
still possible to improve the algorithm in terms of comput-
ing time and memory space. In this section, we present a

hierarchical pyramid algorithm that can further reduce the Let G{¥=G={0,1,...L(®~1} be the range for gray
computational complexity of Chen et al.’s algorithm. The leveli andG{”=G={0,1,....(©—1} be the range
proposed algorithm is based on the idea of presenting Ab- for local average gray levél whereL(®=L.

utaleb’s 2-D gray-level histogram in a pyramidal structure 3
with each layer being a reduced-size/resolution Abutaleb
2-D gray-level histogram, and then applying a modified
version of Chen et al.’s algorithm to each layer of the pyra-

mid from top to bottom. In this way, the algorithm is car-

. Layerk>0: Construct a reduced-size/resolution Ab-
utaleb 2-D gray-level histograitv(¥ at layerk based
on the following equation:

ried out by two procedures, a preprocessing step to build up ® s e (+1a k1) Ko (K

Abutaleb’s 2-D gray-level histogram pyramid, and a modi- i =w (I’J):m;ﬂ |=i2+1 i~ (L) eGXGy,7,
fied Chen et al. 2-D thresholding processing using the gen- 1 (111) k1)

erated histogram pyramid. (mheGy “XGy 7, )

3230 Optical Engineering, Vol. 35 No. 11, November 1996



Yang, Chung, and Chang: Hierarchical fast two-dimensional entropic thresholding . . .

wherer {9 is the frequency of occurrence of the gray
level pa|r( j) inW®; andG{ andG are the sets
of gray levels and local average gray levels in layer
k, respectively, with the size equal 10 =L/qg".
This gives the size oV®) to be L& x L(®),

. Increasek by 1 and repeat the above process until
Lk*tN<q. Thatis, ifK + 1 is the number of layers in
the pyramid,L®*Y<q.

3.2

Algorithm for Finding Threshold Vectors from
Abutaleb’s 2-D Histogram Pyramid

Basically, the following algorithm is a modified version of
Chen etal.’’s algorithm. For any two successive layers
k—1 andk in Abutaleb’s 2-D gray-level histogram pyra-
mid, we can treat the histogram of layer 1 in Abutaleb’s
2-D gray-level histogram pyramid as the original image’s
gray-level histogram and the histogram of lakeas that of
the quantized image. As a result of this interpretation, Chen
et al.’s algorithm can be viewed as a special version of the
proposed hierarchical pyramid algorithm using a two-layer
Abutaleb 2-D gray-level histogram pyramid.

1. Initialization: LetK + 1 be the total number of layers
in the pyramid andW®) be the top layer of Ab-
utaleb’s 2-D histogram pyramid. The algorithm is ini-
tialized by letting the candidate set, i.e., the set of
local optimal threshold vectors of lay&r, CX equal
to GIOX G .

2. For any vector T®,sM) e CM in layerk<K, first
calculate thea posterioriprobabilities
PE(T4,89)= E E A iecr jeGy,
|< J<
PYTY. 8= > E P ieGljecy,
i>g j>Tl
wherep{? is the probab|I|ty ofr {9 by normalization.
3. Find the probabilities of the object class and back-
ground class:
py’
K) i+ —
pE (i T.8%) = S aw PITH gH)
o o o (10)
(i,J]T,89)= :
po (0| PR(TM, 5)
4. Find the entropies of object class and background
class inW®:
HE/(TH 89)=~ > E pe(1,j|T¥.S¥) log pg’
|< J<
(70,89, ieGV, jeGY,
11
HE(TX, %)= E 2 pG(1,j|T¥.S¥) log p¢
K j>Tl
(I,j|T(k g9, eGP, jeGY.
5. Find the optimal threshold vector for laykrusing

Brink’s method, i.e.,

0,0) gray level

1* Ve % % e

% epq
st

% Yre)q

Vs R i)

local average gray level

Fig. 3 Candidate set of threshold vectors for layer k—1 in the his-
togram pyramid.

Tk, gk =argf

max [ min {H¥
('l'(k),gk))EGg_k)XG(zk) aE{B,O}

(TS}

6. Find Ck~1 (shown in Fig. 3, the set of candidate
threshold vectors for layek—1 resulting from

(T 5™y given by Eq.(12) in step 5:

12

C(k—l):{(T(k—l)’gk—l))KT(k,*)_e)qST(k—l)S(T(k,*)

+e)g, (S —eg=SkV<(S I +e)q, (13

wheree is the tolerance of quantization error.
7. Reducek by 1 and go to step 2 untd<<O.

4 Experimental Results

In this section, results of experiments conducted to make a
comparative study of various thresholding algorithms de-
scribed in this paper are presented. In addition, the advan-
tages that the proposed algorithm can offer in terms of time
and memory saving and an extension into three-level
thresholding are also discussed. Six images were used for

comparison (shown in Figs. 4 to § which were
256x256 pixels, with gray level values of
G={0,1,...,25% and L=256. The window size used to

generate local average gray levels was3 The number

of pixels merged for the bins in each laygrwas chosen to

be 2 and the tolerance of quantization erer1. The total
number of layers constructed in Abutaleb’s 2-D histogram
pyramids was 8, i.eK=7. All images were run on a Sun
Sparc 20 workstation with OS version 5.4 and 32M
memory using C language. The histogram size of two suc-
cessive layers was reduced by a factor of 4 as the layer was
incremented. More specifically, for ea&h the histogram
size of layerk is only a quarter of that of layet— 1. Four
methods were studied for computational complexity:
Brink's method, Chen et al.’s algorithm, diagonal search,
and the proposed hierarchical pyramid algorithm. The diag-
onal search is a special version of Brink’s method that lim-
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Table 1 Comparison of computing time (unit in seconds) between
the hierarchical pyramid algorithm and the other three algorithms.

old vectors generated by these four methods are tabulated
in Table 2. As shown in the table, the threshold vectors
produced by the new algorithm are very different from

Algorithms those computed by the other three methédkich differ
Brinks  Chenetal’s Diagonal  Pyramid only slightly). This is indeed an advantage of the new al-
Images Method Algorithm Search Algorithm gorithm over the other three methods, as demonstrated in
Figs. 4 to 7, where the images thresholded by the new
“Peppers” 3407 44 21 4 algorithm are of better quality than the other thresholded
“Textl” 2258 34 13 4 images. In images of Figs.(d), 4(d), and 4e) the front
“Text2" 2184 35 13 4 pepper is classified as foreground and the other two peppers
“Rose” 2804 37 17 3 are classified as background since they correspond to quad-
“ena” 3310 43 21 4 rantC and quadranf\, respectively. This is not the case for
“F16jet” 2418 31 15 3 the image of Fig. &), where the rear pepper emerges from

the background and appears in the foreground as an object.
This is attributed to the fact that the rear pepper is identified
by quadrantsB and D. From Table 2, we can see the
its the optimal threshold vectorT{,S*) to the diagonal  threshold vector(119,79 generated by the new pyramid
line of Abutaleb’s 2-D gray-level histogranT{,T*), i.e., algorithm is far different fron{109,110 by the other three
T*=S*. As expected, the computing time of the diagonal Methods. This shows that by allowing a certain deviation
search is reduced at least one order lower than that requiredcrom the diagonal line in Abutaleb’s 2-D histogram, a bet-
for (T*,S*) by Chen etal.’s algorithm, since only 256 ter thresholded image can be produced. S|m_|lar evidence is
gray levels are compared for the diagonal search instead of2lS0 demonstrated in Figs. 5 to 7. In particular, for the
256X 256 gray level pairs required for Brink’s algorithm. F'_I'ext2b|r716a3e, Fig. 6(::) II—'S ol:;wotjﬁly mhuclr; l?]etter: t|2|a2|
Experiments using the diagonal search were included in our. igs. @b), 6(d), or &(€). In Fig. 7, although all thresholde

. - - images miss the rose, Fig(cJ picks up more portions of
comparative study to demonstrate the efficiency of the hi- ; .
erarchical pyramid algorithm. The results tabulated in the leaves of the rose than Figeby, 7(d), or 7(e). For the

Tables 1 and 2 show the comparison in terms of computing images in Figs. 8 and 9, all thresholded images produced by

time between the hierarchical pyramid algorithm and the these four methods look very much alike with no signifi-

other three algorithms. The new method requires only 1/10 anta?I;f?ere:r?les}eN(r)ézgggtit\?: ifr;);lrgaa?mezr:ncmgﬁd :nm;hltses
the time required by Chen et al.’s algorithm, approximately pap y rep 9 9 y 9

1/5 to 1/4 of that for the diagonal search, and 1/800 to SX@mined in our laboratory. Based on our experiments, the
1/600 for Brink’s max-min method ' new pyramid algorithm generally performs better than the

Six images were used for experiments: Fig(“Pep- other three methods. Most impressively, the computational

pers”), Figs. 5 and 6(“Textl” and “Text2"), Fig. 7 saving IS enormous.

(“Rose”), Fig. 8(“F-16 jet" ), and Fig. 9(*Lena” ). Parts

(a) of all figures are original images, parth) are three- 5 Discussion of Computational Complexity

level thresholded images obtained by Chen etal.’s algo- Recall that in step 3 of the histogram pyramid build-up
rithm, parts(c) are three-level thresholded images obtained |gorithm, q gray levels along each dimension are merged
by the new hierarchical pyramid algorithm, pafth are  intg one gray level by averaging. In general, this step can
three-level thresholded images obtained by Brink's method, e replaced with any 2-D vector quantizer to achieve a
and partge) are three-level thresholded images obtained by petter quantization at the expense of compleXity.

the diagonal search. All the three-level thresholded images
are generated by setting the gray levels in quadéatd O,
quadrantC to 255, and quadrant8 and D (i.e., corre-
sponding to edges and nojge 127, respectively. Thresh-

5.1 Complexity on Quantization

As mentioned previously, Chen et al.’s algorithm is a spe-
cial version of the new hierarchical pyramid algorithm be-
cause the algorithm can be implemented as a two-layer
pyramid algorithm in which the histogram of the top layer
in the pyramid is obtained by a 2-D uniform vector quan-
tizer using a quantization threshold squir&|x|L3| to

Table 2 Comparison of threshold vectors between the hierarchical
pyramid algorithm and the other three algorithms.

Algorithms quantize the original Abutaleb 2-D gray-level histogram in

o , . . the bottom layer. However, the threshold vectors found by
Brink’s Chen et al’'s  Diagonal Pyramid . o .

Images Method Algorithm Search  Algorithm the uniform quantization are generally suboptimal. Of
course, this can be further improved by designing an opti-

“Peppers”  (109,110) (109,110) (110,110)  (119,79) mal vector quantizet instead of the uniform vector quan-

“Textl” (53,51) (53,51) (52,52) (39,53) tizer, but it may not be worthwhile due to complexity of
“Text2” (40,37) (40,37) (39,39) (15,27) finding global extrema at tremendous computational cost.
“Rose” (183,184)  (175,167)  (184,184) (157,127) The averaging used in step 3 of the histogram pyramid
“Lena” (107,94) (107.94)  (103,103)  (93,106) construction is probably the simplest quantization scheme
“F16jet” (99.112) (75119)  (108108)  (68.111) to achieve the best compromise between computational

complexity and implementation. This is shown by the fact
that the computer processing time required for the new al-

*Threshold vectors=(gray level, local average gray level).
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Fig. 4 (a) Original image of “peppers,” (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image

obtained by diagonal search.

Optical Engineering, Vol. 35 No. 11, November 1996 3233



Yang, Chung, and Chang: Hierarchical fast two-dimensional entropic thresholding . . .

ngineering a
f known opti;
technolQgy
anuscripts she
and the, prese
t as compreh

(a)

ngineering a pngineering a
f known opti pf known opti
technology { technolQgy

anuscripts sh« fanuscripts shq

and the prese [and the, prese

t as comprel |t as comprcl-

()

ngineering

f known opti

‘technology

anuscripts sh
and the, prese

t as compre

Fig. 5 (a) Original image of “Textl,” (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
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Fig. 6 (a) Original image of “Text2,” (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
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(e)

Fig. 7 (a) Original image of “Rose,” (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image

obtained by diagonal search.
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Fig. 8 (a) Original image of “F-16jet,” (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image

obtained by diagonal search.
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(e)

Fig. 9 (a) Original image of “Lena,” (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image

obtained by diagonal search.
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gorithm is O(L? log, L) and O(L®?) for Chen etal’s al-
gorithm, both of which are reduced fro®(L*%) by simple
quantization techniques. Note that since the averaging and
uniform quantizations are simple arithmetic operations,
their computing times should be negligible and will not
affect the computational complexity to be considered here. feasible region
On the other hand, this is not true if an optimal vector

quantizer is used in each layer. This is because the comput- 11
ing time of generating optimal vector quantizers using the 2L/3-1
Linde-Buzo-Gray(LBG) algorithm! cannot be neglected

and,.in the worse case, may even dominate the total pro- 8L/9-1
cessing time.

(0,0)

impossible region I

L/9-1

11 noise area

L/3-1

noise area

I impossible region

V (L-1,L-1)

5.2 Comparison between Chen’s et al.’s Algorithm
and the New Algorithm

In Chen et al.’s algorithm, it was proved that the optimal Fig. 10 Various regions for threshold vectors.

number of the quantized gray levels to be used in the uni-

form quantizer wa$L??|, which resulted in a complexity

of O(L®3) becausd L¥?|x|LY? gray-level vectors were each layer. As a result, the computational load of finding an
merged into one gray-level vector. Similarly, jdgin the optimal threshold vector among 25@56 gray level vec-
complexity of O(L?2 log, L) is the number of layers in the tors is distributed over the candidate sets in all layers, each
pyramid that is the result of averagirgd gray-level vec-  Of which has relatively small size. On the other hand, the

tors. In the Appendix, we prove that the computational NUmber of gray level vectors in each layer of the pyramid
complexity of the new algorithm i©(L? log, L)=0(L?) as well as the candidate set are exponentially decreased as
q ’

which means, logL does not really contribute any com- the layer is increased. Consequently, the increase of over-

. . . . head for overall computing time is still limited. The com-
2
plexity and is absorbed i®(L<). On the other hand, it also puting time shown in Table 1 includes the time for con-

requires at least? comparisons to search for an optimal structing histogram pyramid@bout 1 $ and the time for
threshold vector T*,S*), because each dimension of Ab-  finding local optimal threshold vectors for all layers. It is
utaleb’s 2-D gray-level histogram hasgray levels, and is  clear that all six test images require nearly the same com-
independent of the other dimensions. This implies a sur- puting time, ranging from 3 to 4 s. For instance, for the
prising result. Despite the fact that the averaging is not an “Lena” image, the new algorithm requires aktoR s to
optimal quantization method, the new hierarchical pyramid construct the histogram pyramid and ab@us to find the
algorithm actually achieves the optimal complexity desired threshold vector.
O(L?). Furthermore, the optimal value of required for
the new algorithm is also proved to be 2 in the AppendiX. 54 Feasible Region for Searching Optimal

One disadvantage of this new algorithm is that the final Threshold Vectors

threshold vector generated is a suboptimal solution. It is h ional . b hieved by elimi
true that a better or an optimal quantization scheme to find ~N0ther computational saving can be achieved by eliminat-

the desired optimal threshold vectors can be used. In thisi"d Unnecessarigray level, local average gray leygairs

case, each layer in the histogram pyramid needs a differentn Abutaleb’s 2-D gray-level histogram prior to threshold-

optimal quantizer to find the optimal threshold vector, at "9 Since the local average gray level is calculated based
the expense of significantly increased computational cost,On & 3<3 window, some regions in Abutaleb’s 2-D gray-
Nevertheless, according to our experimeffgs. 4 to 9, level histogram will never be chosen for threshold vectors.
the images thresholded by optimal threshold vectors areFor instance, if a pixel has gray level the local average
about the same as those thresholded by the new algorithmgray level obtained from Eq1) must be either<i/9 or

and the improvement in image quality is negligible. As =(8L+i)/9, as shown in Fig. 10, where the two regions
described in Subsec. 5.1, such a trade-off is computation-labeled by | are impossible regions to be chosen for thresh-

ally too expensive and not worth the effort. old vectors. The right upper triangle area, obtained by the
line connecting ((0,0){ — 1, L/9 — 1)), contains gray-
5.3 Comparison between Diagonal Search and New level pairs with the local average gray levets/9. Simi-
Algorithm larly, the left lower triangle area obtained by the line con-

It is interesting to note from Table 1 that the computing Necting ((&/9—1,0),( — 1, L — 1)), contains gray-level
time of the new algorithm was approximately about 1/5 of Pairs with the local average gray levet(8L + i)/9. The
that of the diagonal search, despite 5856 gray level ~ regions labeled by Il in Fig. 10 are designated as noise
vectors needed to be searched for the former and only 2562r€as. They are obtained by assuming the surrounding pix-
gray levels for the latter. The diagonal search must examine€ls within a 3x3 window with gray levels<1/4 of that of

all 256 gray levels to find an optimal threshold value, while the central pixel in the window. In this case, the local av-
the new algorithm takes advantages of the pyramidal struc-€rage gray levels will be in the range of eittef9, L/3) or

ture of the histogram, and only a certain set of local optimal [ (2L + i)/3, 8L/9), wherei is the gray level of the central
threshold vectors, called the candidate set, is processed fopixel. For instance, if the central pixel has gray level 255
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and the gray levels of the surrounding pixels are less thanwhich results in

64, i.e., 1/4 of 255, the corresponding local average gray

level of the pixel will be less than 255/3, which lies in the ) 5 ,L%g%—1

region Il. As a result, the pixel will be considered to be time(d)=q°—(2eq)“+(2eq) =1 (19

noise. This will further reduce the searching area for the

candidate threshold vectors to the region indicated by Ill in +1, ;5

Fig. 10. Consequently, the feasible area of finding a desired -0 o
o - X =0(L"?).

threshold vector can be limited to region Il without wast- ; . " o :

ing efforts in regions | and Il. Note that the noise areas can _TO find optimalg*, let W= differentiate Eq.(15)

be also adjusted based on practical needs by changing th&Vith respect tow, and set it to zero:

gray-level ratio of the central pixel to the surrounding pix- )

els such as from 1/4 to 1/3 or 1/5. d time(q)

dw

the computational complexity i(time(q))

2% —
=1 dePtae W 1 +(4e’w*)
w*—1

W*
6 Conclusion

Second-order entropic thresholding has been proven useful
by taking advantage of spatial correlation. However there is
a trade-off of exponential growth of computing time. Al-

LA(wr—1)—(L’w*—1)]
x (W* —1)? B

though a fast 2-D algorithm recently proposed by Chen =(W*—1)%(1-4e?) +4e*(w* — 1)
et al. can reduce the computational complexity to a certain

extent, the computing cost is still high. In this paper, Chen X (L2wW* — 1)+ (4e®w*)[L2(w* — 1)
et al.’s algorithm was improved by introducing a pyramidal 2 %

structure into Abutaleb’s 2-D gray-level histogram. The —(L'w*=1)]=0

proposed new hierarchical pyramid algorithm consists of an

algorithm to build a bottom-up histogram pyramid, and a =(1-4e*+4e’L?)(w*)?

modified Chen et al. algorithm, implemented iteratively us-

ing histograms from the top layer to the bottom layer of the

pyramid. By doing so, the computational load is distributed

over different layers, which saves storage and computing

time. This new algorithm has been shown to achieve opti-

mal complexityO(L?). The optimal number of gray-level ( 1 2
1

—2(1-4e’+4e’L?)(w*)+1=0.(16)

Solving the quadratic equation w* given by Eq.(16)
yields

vectors to be averaged in each layer in the pyramid is alsoy* =1+
shown to be 4, i.e., two for each dimension. Experiments
demonstrate that the time required for the new algorithm is
substantially low compared to that of Chen et al.’s algo- To see whethew*, given by Eq.(17), is a minimum point,

T 127+ 4’ @7

rithm by a factor of 1/10. differentiate Eq.{15) twice or Eq.(16) one more time and
obtain
Appendix: Proofs of Optimal Complexity and & time(q) d
Optimal q —a | gy (WLl 4e?+ 4eLB)w?
W*

In the following, we derive and prove that the computa-
tional complexity of the new algorithm i©(L?), and the
optimal choice forg is 2.

From Figs. 2 and 3, we obtain

—2(1-4e*+4e’LHw* +1]}

=2wW*[(1—4e?+4e?L?)(w*)?
—2(1-4e*+4e’L?)(w*)+1]
+[(w*)*=1][2(1—4e?

and +4e’L2)w* —2(1—4e?+4e’L?)] (18

time(q) —g*+ (2eq)*=(2eq)*+(2e0)*q*+(2eq)’q*

time(q) =g+ (2eq)?9?+ (2eq)’q*+ - - + (2eq)*g?
+-+(2eq)?L2

=[(w*)2—1][2(1-4e’+4e’L?)w*

2q2i4 ...
Trot(zedtaT —2(1-4e?+4e%L?)]

log, L
1 (2e0)2L2= zq: (2e0)2? =[(w*)?—1][2(1—4e*+ 4e?L?)(w*
=0 ~1)]. (19)
qZ(Iogq L+1)_1
:(ZGQ)Zqz—_l SinceL is much larger thare, eitherw*~2 or w*~0.
- Obviously, the case ofv* ~0 is of no practical interest,

— (2eq)? Lg°— (14) which leaves the case that* ~2. Furthermore, Eq(19)
q qz—l ' >0 because the first term of E(1L8) is 0 due to Eq(16),
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w*>1 due to Eq(17), and (1-4e?+4e’L?)>0 as long
as L is much larger thare. As a result, the optimal
q* = yW* =v2 is a minimum point of Eq(15). However,
g is the number of pixels to be merged in each layer and
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