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Abstract. Entropic thresholding provides an alternative view to the de-
sign rationale of conventional thresholding. Abutaleb proposed a
second-order entropic thresholding approach to improve Pun’s first-order
entropic thresholding by introducing a 2-D gray-level histogram to take
into account the spatial correlation. Abutaleb’s (1989) method was fur-
ther modified by Brink (1992). However, a major drawback of Abutaleb-
Brink’s method is very high computational cost. Recently, Chen et al.
(1994) developed a fast efficient 2-D algorithm that reduces computa-
tional complexity from O(L4) to O(L8/3), where L is the total number of
gray levels. A hierarchical fast 2-D entropic thresholding algorithm using
a gray-level histogram pyramid is presented that can be viewed as a
generalization of Chen et al.’s algorithm. The new algorithm consists of a
2-D gray-level histogram pyramid build-up procedure expanding Ab-
utaleb’s 2-D gray-level histogram to a histogram pyramid, and a thresh-
olding process applying a modified version of Chen et al.’s algorithm to
the histogram pyramid layer by layer from top to bottom. As a result, the
computational complexity of Chen et al.’s algorithm can be further re-
duced to the optimal complexity, O(L2). The experiments show that the
computer time of the new algorithm is only one tenth of that required for
Chen et al.’s algorithm, which is a significant saving. © 1996 Society of
Photo-Optical Instrumentation Engineers.

Subject terms: Abutaleb’s two-dimensional gray-level histogram; co-occurrence
matrix; two-dimensional gray-level histogram pyramid; entropic thresholding;
quantization.
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1 Introduction

Thresholding is an initial step of image segmentati
Many thresholding techniques have been studied in
past. Of particular interest is entropic thresholding, wh
uses Shannon’s entropy of an image histogram as a th
olding criterion to segment an image. The first work
introduce the entropic approach into thresholding was
vestigated by Pun1 and later improved by Kapur et al.2 Due
to the fact that the Pun-Kapur et al. approach is based
the image histogram, which is the first-order statistic, th
method can be regarded as a first-order entropic thresh
ing. A major drawback of first-order thresholding is that t
spatial correlation between pixels is not taken into acco
As a result, the performance is generally not satisfact
Pal and Pal3 extended Pun-Kapur et al. method by using
gray-level co-occurrence matrix to account for correlat
between pixels. Two methods were suggested in Re
called local entropy and joint entropy, both of which we
also based on maximization of Shannon’s entropy.
cently, Chang et al.4 adopted a different approach that us
the concept of relative entropy defined on a gray-level
occurrence matrix to minimize the discrepancy between
original image and a thresholded image. Since the g
level co-occurrence matrix is basically a 2-D spatial gr
Opt. Eng. 35(11) 3227–3241 (November 1996) 0091-3286/96/$6.0
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level histogram, the methods in Refs. 3 and 4 can b
thought of as second-order entropic thresholding a
proaches.

An alternative to considering a 2-D spatial gray-leve
histogram is one introduced by Abutaleb,5 which is formed
by the 1-D gray-level histogram and the 1-D local averag
gray-level histogram. Abutaleb’s work was the first repo
to propose using such a 2-D~gray-level, local average gray-
level! histogram, to be called Abutaleb’s histogram, to im
prove the first-order entropic thresholding techniques. H
approach is also a second-order entropic thresholding te
nique. However, unlike methods in Refs. 3 and 4, whic
generate only one threshold, Abutaleb found a pair
thresholds, one for each dimension, and his method w
further improved by Brink.6 The advantage of the
Abutaleb-Brink approach is that the two thresholds can b
simultaneously adjusted to obtain a better image qual
than methods3,4 using the same threshold value for both
dimensions. Nevertheless, a principal disadvantage of t
Abutaleb-Brink method is the computational cost, whic
exponentially increases with the image size and the to
number of gray levels. To alleviate this problem, Che
et al.7 proposed a fast 2-D thresholding algorithm that de
composes a thresholding process into two procedures. T
first-stage procedure is to quantize gray levels of an ima
prior to thresholding, followed by a second-stage procedu
to find a pair of thresholds based on this quantized imag
32270 © 1996 Society of Photo-Optical Instrumentation Engineers
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Although the two obtained thresholds may not be exac
the desired optimal threshold vectors, they should be v
close. How close they are depends on how fine the g
levels are to be quantized. It was proved7 that dL2/3e is the
optimal number of quantization levels, whereL is the total
number of gray levels to be used for the image, anddxe is
defined as the smallest integer>x, and the required com-
puting time is significantly reduced.

In this paper, a hierarchical fast 2-D entropic thresho
ing pyramid algorithm is presented that includes Ch
et al.’s 2-D fast thresholding algorithm as a special ca
The proposed algorithm is basically a hierarchical thre
olding process that can be implemented in multiple sta
using a gray-level histogram pyramid rather than only tw
stages, as described in Ref. 7. It expands Abutaleb’s
gray-level histogram into a 2-D gray-level histogram pyr
mid. Each layer of the histogram pyramid represents
reduced-size/resolution version of Abutaleb’s 2-D gra
level histogram, with the number of gray levels gradua
reduced as the layer number increases. Each layer in
histogram pyramid represents a 2-D gray-level histogr
generated by merging into one gray level vector~gray level,
local average gray level! a fixed number of gray level vec
tors in the histogram of its next immediate lower layer.
other words, the histogram of layerk can be also thought o
as a quantized version of the histogram of layerk21 with
gray level vectors viewed as quantization level vecto
Based on this pyramidal histogram structure, Chen et a
2-D fast thresholding algorithm can be implemented by
two-layer histogram pyramid process. The top layer~i.e.,
the second layer! corresponds to a 2-D gray-level histogra
obtained by uniformly quantizing the original Abutaleb 2-
gray-level histogram along each dimension in the bott
layer ~i.e., the first layer!. The uniform quantizer to be use
is one mergingbL1/3c gray levels along each dimension i
the bottom layer into one gray level in the top layer wi
bxc defined as the largest integer<x. More generally, as-
sume thatq is the number of gray levels to be merge
along each dimension in a layer of the 2-D gray-level h
togram pyramid,q2 gray level vectors~i.e.,q gray levels in
each dimension! will be merged into one gray level vecto
and the size of the histogram will be reduced by a ra
q221 as the layer number is increased. As a result,
computer processing time can be significantly reduced
O(L2 logq L) from O(L4) of Abutaleb’s algorithm and
O(L8/3) of Chen et al.’s algorithm, where logq L is the
number of layers in the pyramid. This means the new p
posed algorithm can further reduce the complexity,L2/3

from O(L8/3) to O(L2), and achieves an optimal complex
ity because it requires at leastO(L2) to search for two
optimal thresholds independently along each dimension
can be also shown that the optimal choice forq is 2. Ex-
perimental results demonstrate that the proposed 2-D h
archical pyramid thresholding algorithm requires only o
tenth the computing time of Chen et al.’s algorithm a
1/600 to 1/800 of that for Brink’s method. This is a su
stantial saving.

In Sec. 2, three 2-D entropic thresholding algorithm
Abutaleb’s, Brink’s, and Chen et al.’s algorithms a
briefly reviewed. In Sec. 3, a new hierarchical entrop
thresholding pyramid algorithm is described that is ma
3228 Optical Engineering, Vol. 35 No. 11, November 1996
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up of two algorithms, a build-up algorithm for Abutaleb’s
2-D gray-level histogram pyramid and a modified version
of Chen et al.’s algorithm. In Sec. 4, experimental results
based on six test images are included to show that the new
algorithm is indeed very efficient and effective. In Sec. 5,
the computational complexity is discussed on the basis of
trade-off between various quantization schemes used in the
pyramid build-up algorithm and the new algorithm is
shown to achieve optimal complexity. Also discussed in
Sec. 5 is a further computational saving that can be
achieved by narrowing the search areas for optimal thresh-
old vectors in Abutaleb’s histogram to a smaller feasible
region. Finally, a brief conclusion is given in Sec. 6.

2 2-D Entropic Thresholding

Entropy is an uncertainty measure first introduced by
Shannon into information theory to describe how much in-
formation is contained in a source governed by a probabil-
ity law. This concept becomes increasingly important in
image processing, since an image can be interpreted as a
information source with the probability law given by its
image histogram. The first work applying the concept of
entropy to thresholding was investigated by Pun,1 who sug-
gested selecting a threshold that maximizes the sum of en
tropies of the object and background classes. Although
Pun’s algorithm was later corrected and improved by Kapur
et al.,2 their results were generally not satisfactory. This is
primarily due to the fact that the image histogram they
considered was the first-order statistic and did not take into
consideration the spatial correlation. To remedy this prob-
lem, several approaches3–5 have been proposed to account
for the spatial correlation between pixels.

Two types of 2-D gray-level histograms are of interest,
one is the gray-level co-occurrence matrix suggested by
Haralick et al.,8 and the other was proposed by Abutaleb.5

While the former has found a wide range of applications in
texture analysis, the latter is almost entirely limited to
thresholding applications. The work in Refs. 3 and 4 used
the gray-level co-occurrence matrix of an image to define a
2-D gray-level histogram from which various second-order
entropies can be defined. The difference between Refs. 3
and 4 is that the former maximized the second-order Shan-
non’s entropy, while the latter minimized the relative en-
tropy between an original image and a thresholded image.

Abutaleb’s 2-D gray-level histogram is another type of
2-D gray-level histogram that differs from the gray-level
co-occurrence matrix. It is formed by the Cartesian product
of the original 1-D gray-level histogram and the 1-D local
average gray-level histogram generated by applying a loca
window to each pixel of the image and calculating the av-
erage of the gray levels within the window. Since Ab-
utaleb’s 2-D gray-level histogram is the main focus in this
paper, the gray-level co-occurrence matrix approach to
thresholding is not discussed here~but refer to Refs. 3 and
4!.

2.1 Abutaleb’s Approach5

Suppose that a digital imageI is represented by a set of
N3M pixels. Associated with a pixel at the spatial location
(x,y) in image I is a gray level functionf (x,y) taking
values in a discrete setG5$0,1,...,L21%, called gray lev-



l

-
a

s
a

r

n
e
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els. For each pixel (x,y), we can also consider a window
with sizen113n11 centered at the pixel (x,y) and cal-
culate its local average gray level within the window by

g~x,y!5
1

~n11!2 (
j52n/2

n/2

(
i52n/2

n/2

f ~x1 i ,y1 j !

where n<N and n<M . ~1!

From Eq.~1! a pixel at (x,y) can be assigned a pair of gray
levels (i , j ), where gray leveli and local average gray leve
j are determined byf (x,y) and g(x,y) respectively. Let
r i j denote the frequency of occurrence of the pair (i , j ) in
the imageI . The prior probability of the pair (i , j ) is given
by

pi j5
r i j
NM

. ~2!

Based on Eq.~2!, Abutaleb’s 2-D gray-level histogram, de
noted byW, can be depicted by Fig. 1 and defined by
matrix @W( i , j )#L3L with entriesW( i , j )5r i j , wherei and
j represent the horizontal and vertical axes, respective
with ~0,0! at the left upper corner. Both gray leveli and
local average gray level j take values in
G5$0,1,...,L21%. If we assume that the pair (T,S) is a
threshold vector to be used for thresholding, the (T,S) di-
vides Abutaleb’s 2-D histogram into four quadrants. The
quadrants can be further classified into the diagonal qu
rantsA andC and off-diagonal quadrantsB andD, respec-
tively, in Fig. 1. Since pixels belonging to either the objec
class or background class are expected to have small g
level variations, diagonal quadrantsA andC reflect local
properties. On the other hand, off-diagonal quadrantsB and
D represent greater differences between gray levels a
local mean, which reflect transitions between backgrou
and objects, thus, they are very likely to be edges. Nev

Fig. 1 Abutaleb’s 2-D gray-level histogram with threshold vector
(T,S).
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theless, this is not necessarily true in general. For instance,
the diagonal of matrix in Fig. 1 generally represents per-
fectly homogeneous regions. As shown in Fig. 1, the diag-
onal line passes through quadrantB if the threshold pair
(S,T) with S.T ~or could be quadrantD if S,T!. In such
a case, pixels represented by gray levels on the diagonal
cannot be edges. Abutaleb’s 2-D histogram may not do
well, for example, the results in Fig. 8 in Sec. 4. However,
if we allow a tolerance for small deviations from the diag-
onal, which may be caused by noise effects, the diagonal
line can be expanded into a diagonal band so that if pixels
represented by this band can be still thought of to be in a
homogeneous region. A similar idea considered for spectral
co-occurrence matrix9 can be applied to this case. But, it is
not our major concern and is not pursued here.

From Fig. 1, the probabilities of the object class and
background class can be calculated by

PB~T,S!5(
j50

S

(
i50

T

pi j ,

~3!

PO~T,S!5 (
j5S11

L21

(
i5T11

L21

pi j .

Using Eqs.~3! as normalization factors, the normalizeda
posteriori probabilities of the object class and background
class are functions of threshold vector (T,S) and defined as

pB~ i , j uT,S!5
pi j

PB~T,S!
,

~4!

pO~ i , j uT,S!5
pi j

PO~T,S!
.

From thea posteriori probabilities given by Eqs.~4! we
can define the entropy for the background class, denoted by
HB(T,S) and the entropy of the object class, denoted by
HO(T,S) as follows:

HB~T,S!52(
j50

S

(
i50

T

pB~ i , j uT,S! log pB~ i , j uT,S!,

~5!

HO~T,S!52 (
j5S11

L21

(
i5T11

L21

pO~ i , j uT,S!log pO~ i , j uT,S!.

Following the idea suggested in Ref. 6, Abutaleb used Eqs.
~5! to define the total entropy sum given by

C~T,S!5HB~T,S!1HO~T,S!. ~6!

Abutaleb claimed that the best threshold vector (T* ,S* ) is
the one that maximizes Eq.~6!, namely, (T* ,S* ) is the
solution to the following maximization problem.

~T* ,S* !5arg$max
~T,S!

C~T,S!%. ~7!
3229Optical Engineering, Vol. 35 No. 11, November 1996
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2.2 Brink’s Approach6

Instead of maximizing the total entropy sum of Eq.~6!,
Brink improved Abutaleb’s method in Ref. 1 by proposin
an alternative approach that is a max-min method. Br
first found the minimum of$HB(T,S),HO(T,S)% for each
given threshold vector (T,S), then maximized the mini-
mum of $HB(T,S),HO(T,S)% over all possible threshold
pairs (T,S), namely,

~T* ,S* !5arg$ max
T50,1,••• ,L21
S50,1,••• ,L21

@min$HB~T,S!,HO~T,S!%#%.

~8!

Brink showed that in most experiments, the max-m
method performed better than Abutaleb’s maximization
the total entropy sum.

2.3 Chen et al.’s Approach7

Since Brink’s method requires brute force to solve Eq.~8!
by exhaustively searching for all possible pairs of (T,S)
with T andS ranging from 0 toL21, the computational
cost is very expensive and the complexity can be as high
O(L4). To alleviate this problem, Chen et al.7 proposed a
fast algorithm to find a solution to Eq.~8!. Rather than
directly finding an optimal threshold vector (T* ,S* ), their
idea was to decompose Brink’s thresholding procedure i
two processes. The first-stage process is to quantize
original image using a small number of gray levels fro
which a set of candidate threshold vectorsC, called local
optimal threshold vectors, can be generated using Eq.~8!.
This quantization procedure narrows the search area fo
optimal threshold vector (T* ,S* ) to a candidate set of loca
optimal threshold vectors. This is followed by a seco
stage process in which Brink’s method is applied again
this candidate set of local optimal threshold vectors to o
tain a desired optimal threshold vector. It was shown7 that
the computer processing time required for Chen et al.’s f
algorithm wasO(L8/3), which is a significant saving in
storage and time compared toO(L4). For instance, the sav-
ing could be reduced from 1 h to 1 min insome experi-
ments conducted in this paper and is calculated based
total computing time andL5256.

3 Hierarchical 2-D Entropic Thresholding
Pyramid Algorithm

Despite the saving provided by Chen et al.’s algorithm, it
still possible to improve the algorithm in terms of compu
ing time and memory space. In this section, we presen
hierarchical pyramid algorithm that can further reduce t
computational complexity of Chen et al.’s algorithm. Th
proposed algorithm is based on the idea of presenting A
utaleb’s 2-D gray-level histogram in a pyramidal structu
with each layer being a reduced-size/resolution Abuta
2-D gray-level histogram, and then applying a modifie
version of Chen et al.’s algorithm to each layer of the pyr
mid from top to bottom. In this way, the algorithm is ca
ried out by two procedures, a preprocessing step to build
Abutaleb’s 2-D gray-level histogram pyramid, and a mod
fied Chen et al. 2-D thresholding processing using the g
erated histogram pyramid.
3230 Optical Engineering, Vol. 35 No. 11, November 1996
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3.1 Algorithm for Constructing Abutaleb’s 2-D
Gray-Level Histogram Pyramid

LetW(0) denote Abutaleb’s 2-D gray-level histogram of the
original image obtained from the 1-D gray-level histogram
and 1-D local average gray-level histogram given by Eq.
~1!, where i and j represent the 1-D gray-level histogram
coordinate and local average gray-level histogram coordi-
nate, respectively. Assume thatq.1 is a fixed positive
integer that is the number of gray levels to be merged as a
layer moves up one its next higher layer. An Abutaleb 2-D
gray-level histogram pyramid can be constructed as follows
~see Fig. 2!.

1. Calculate the local average gray levelg(x,y) for
each pixel over ann3n square window, as shown in
Eq. ~1!.

2. Layer 0: Construct the Abutaleb’s 2-D gray-level his-
togram @W(0)( i , j )#L(0)3L(0) for the original image.
LetG1

(0)5G5$0,1,...,L (0)21% be the range for gray
level i andG2

(0)5G5$0,1,...,L (0)21% be the range
for local average gray levelj , whereL (0)5L.

3. Layerk.0: Construct a reduced-size/resolution Ab-
utaleb 2-D gray-level histogramW(k) at layerk based
on the following equation:

rij
~k!5W~k!~i,j!5 (

m5jq11

~ j11!q

(
l5iq11

~i11!q

rml
~k21! , ~i,j!PG1

~k!3G2
~k! ,

~m,l!PG1
~k21!3G2

~k21! , ~9!

Fig. 2 Construction of Abutaleb’s 2-D gray-level histogram pyramid.
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wherer i j
(k) is the frequency of occurrence of the gra

level pair (i , j ) inW(k); andG1
(k) andG2

(k) are the sets
of gray levels and local average gray levels in lay
k, respectively, with the size equal toL (k)5L/qk.
This gives the size ofW(k) to beL (k)3L (k).

4. Increasek by 1 and repeat the above process un
L (k11),q. That is, ifK11 is the number of layers in
the pyramid,L (K11),q.

3.2 Algorithm for Finding Threshold Vectors from
Abutaleb’s 2-D Histogram Pyramid

Basically, the following algorithm is a modified version o
Chen et al.’s algorithm. For any two successive lay
k21 andk in Abutaleb’s 2-D gray-level histogram pyra
mid, we can treat the histogram of layerk21 in Abutaleb’s
2-D gray-level histogram pyramid as the original image
gray-level histogram and the histogram of layerk as that of
the quantized image. As a result of this interpretation, Ch
et al.’s algorithm can be viewed as a special version of
proposed hierarchical pyramid algorithm using a two-lay
Abutaleb 2-D gray-level histogram pyramid.

1. Initialization: LetK11 be the total number of layer
in the pyramid andW(K) be the top layer of Ab-
utaleb’s 2-D histogram pyramid. The algorithm is in
tialized by letting the candidate set, i.e., the set
local optimal threshold vectors of layerK, CK equal
to G1

(K)3G2
(K) .

2. For any vector (T(k),S(k)) P C(k) in layerk,K, first
calculate thea posterioriprobabilities

PB
~k!~T~k!,S~k!!5 (

i<S~k!
(
j<T~k!

pij
~k! , iPG1

~k! , jPG2
~k! ,

PO
~k!~T~k!,S~k!!5 (

i.S~k!
(
j.T~k!

pij
~k! , iPG1

~k! , jPG2
~k! ,

wherepi j
(k) is the probability ofr i j

(k) by normalization.

3. Find the probabilities of the object class and bac
ground class:

pB
~k!~i,juT~k!,S~k!!5

pij
~k!

PB
~k!~T~k!,S~k!!

,

pO
~k!~i,juT~k!,S~k!!5

pij
~k!

PO
~k!~T~k!,S~k!!

.
~10!

4. Find the entropies of object class and backgrou
class inW(k):

HB
~k!~T~k!,S~k!!52 (

i<S~k!
(
j<T~k!

pB
~k!~i,juT~k!,S~k!! log pB

~k!

(i,juT~k!,S~k!), iPG1
~k! , jPG2

~k! ,

HO
~k!~T~k!,S~k!!52 (

i.S~k!
(
j.T~k!

pO
~k!~i,juT~k!,S~k!! log pO

~k!

(i,juT~k!,S~k!), iPG1
~k! , jPG2

~k! .

~11!

5. Find the optimal threshold vector for layerk using
Brink’s method, i.e.,
y
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~T~k,* !,S~k,* !!5arg$ max
~T~k!,S~k!!PG1

~k!
3G2

~k!

@ min
aP$B,O%

$Ha
~k!

(T~k!,S~k!!%#%. ~12!

6. FindC(k21) ~shown in Fig. 3!, the set of candidate
threshold vectors for layerk21 resulting from

(T(k,* ),S(k,* )) given by Eq.~12! in step 5:

C~k21!5$~T~k21!,S~k21!!u~T~k,* !2e!q<T~k21!<~T~k,* !

1e!q, ~S~k,* !2e!q<S~k21!<~S~k,* !1e!q%, ~13!

wheree is the tolerance of quantization error.

7. Reducek by 1 and go to step 2 untilk,0.

4 Experimental Results

In this section, results of experiments conducted to make
comparative study of various thresholding algorithms de
scribed in this paper are presented. In addition, the advan
tages that the proposed algorithm can offer in terms of tim
and memory saving and an extension into three-leve
thresholding are also discussed. Six images were used f
comparison ~shown in Figs. 4 to 9!, which were
2563256 pixels, with gray level values of
G5$0,1,...,255% and L5256. The window size used to
generate local average gray levels was 333. The number
of pixels merged for the bins in each layer,q was chosen to
be 2 and the tolerance of quantization errore51. The total
number of layers constructed in Abutaleb’s 2-D histogram
pyramids was 8, i.e.,K57. All images were run on a Sun
Sparc 20 workstation with OS version 5.4 and 32M
memory using C language. The histogram size of two suc
cessive layers was reduced by a factor of 4 as the layer wa
incremented. More specifically, for eachk, the histogram
size of layerk is only a quarter of that of layerk21. Four
methods were studied for computational complexity:
Brink’s method, Chen et al.’s algorithm, diagonal search
and the proposed hierarchical pyramid algorithm. The diag
onal search is a special version of Brink’s method that lim-

Fig. 3 Candidate set of threshold vectors for layer k21 in the his-
togram pyramid.
3231Optical Engineering, Vol. 35 No. 11, November 1996
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Yang, Chung, and Chang: Hierarchical fast two-dimensional entropic thresholding . . .
its the optimal threshold vector (T* ,S* ) to the diagonal
line of Abutaleb’s 2-D gray-level histogram (T* ,T* ), i.e.,
T*5S* . As expected, the computing time of the diagona
search is reduced at least one order lower than that requi
for (T* ,S* ) by Chen et al.’s algorithm, since only 256
gray levels are compared for the diagonal search instead
2563256 gray level pairs required for Brink’s algorithm.
Experiments using the diagonal search were included in o
comparative study to demonstrate the efficiency of the h
erarchical pyramid algorithm. The results tabulated i
Tables 1 and 2 show the comparison in terms of computin
time between the hierarchical pyramid algorithm and th
other three algorithms. The new method requires only 1/1
the time required by Chen et al.’s algorithm, approximate
1/5 to 1/4 of that for the diagonal search, and 1/800
1/600 for Brink’s max-min method.

Six images were used for experiments: Fig. 4~‘‘Pep-
pers’’!, Figs. 5 and 6~‘‘Text1’’ and ‘‘Text2’’ !, Fig. 7
~‘‘Rose’’ !, Fig. 8 ~‘‘F-16 jet’’ !, and Fig. 9~‘‘Lena’’ !. Parts
~a! of all figures are original images, parts~b! are three-
level thresholded images obtained by Chen et al.’s alg
rithm, parts~c! are three-level thresholded images obtaine
by the new hierarchical pyramid algorithm, parts~d! are
three-level thresholded images obtained by Brink’s metho
and parts~e! are three-level thresholded images obtained b
the diagonal search. All the three-level thresholded imag
are generated by setting the gray levels in quadrantA to 0,
quadrantC to 255, and quadrantsB and D ~i.e., corre-
sponding to edges and noise! to 127, respectively. Thresh-

Table 1 Comparison of computing time (unit in seconds) between
the hierarchical pyramid algorithm and the other three algorithms.

Images

Algorithms

Brink’s
Method

Chen et al.’s
Algorithm

Diagonal
Search

Pyramid
Algorithm

‘‘Peppers’’ 3407 44 21 4

‘‘Text1’’ 2258 34 13 4

‘‘Text2’’ 2184 35 13 4

‘‘Rose’’ 2804 37 17 3

‘‘Lena’’ 3310 43 21 4

‘‘F16jet’’ 2418 31 15 3

Table 2 Comparison of threshold vectors between the hierarchical
pyramid algorithm and the other three algorithms.

Images

Algorithms

Brink’s
Method

Chen et al.’s
Algorithm

Diagonal
Search

Pyramid
Algorithm

‘‘Peppers’’ (109,110) (109,110) (110,110) (119,79)

‘‘Text1’’ (53,51) (53,51) (52,52) (39,53)

‘‘Text2’’ (40,37) (40,37) (39,39) (15,27)

‘‘Rose’’ (183,184) (175,167) (184,184) (157,127)

‘‘Lena’’ (107,94) (107,94) (103,103) (93,106)

‘‘F16jet’’ (99,112) (75,119) (108,108) (68,111)

*Threshold vectors5(gray level, local average gray level).
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old vectors generated by these four methods are tabulat
in Table 2. As shown in the table, the threshold vector
produced by the new algorithm are very different from
those computed by the other three methods~which differ
only slightly!. This is indeed an advantage of the new al-
gorithm over the other three methods, as demonstrated
Figs. 4 to 7, where the images thresholded by the ne
algorithm are of better quality than the other thresholde
images. In images of Figs. 4~b!, 4~d!, and 4~e! the front
pepper is classified as foreground and the other two peppe
are classified as background since they correspond to qua
rantC and quadrantA, respectively. This is not the case for
the image of Fig. 4~c!, where the rear pepper emerges from
the background and appears in the foreground as an obje
This is attributed to the fact that the rear pepper is identifie
by quadrantsB and D. From Table 2, we can see the
threshold vector~119,79! generated by the new pyramid
algorithm is far different from~109,110! by the other three
methods. This shows that by allowing a certain deviation
from the diagonal line in Abutaleb’s 2-D histogram, a bet-
ter thresholded image can be produced. Similar evidence
also demonstrated in Figs. 5 to 7. In particular, for the
‘‘Text2’’ image, Fig. 6~c! is obviously much better than
Figs. 6~b!, 6~d!, or 6~e!. In Fig. 7, although all thresholded
images miss the rose, Fig. 7~c! picks up more portions of
the leaves of the rose than Figs. 7~b!, 7~d!, or 7~e!. For the
images in Figs. 8 and 9, all thresholded images produced b
these four methods look very much alike with no signifi-
cant differences. Note that the six images included in thi
paper are only representative image among many imag
examined in our laboratory. Based on our experiments, th
new pyramid algorithm generally performs better than the
other three methods. Most impressively, the computationa
saving is enormous.

5 Discussion of Computational Complexity

Recall that in step 3 of the histogram pyramid build-up
algorithm,q gray levels along each dimension are merged
into one gray level by averaging. In general, this step ca
be replaced with any 2-D vector quantizer to achieve
better quantization at the expense of complexity.10

5.1 Complexity on Quantization

As mentioned previously, Chen et al.’s algorithm is a spe
cial version of the new hierarchical pyramid algorithm be-
cause the algorithm can be implemented as a two-laye
pyramid algorithm in which the histogram of the top layer
in the pyramid is obtained by a 2-D uniform vector quan-
tizer using a quantization threshold squarebL1/3c3 bL1/3c to
quantize the original Abutaleb 2-D gray-level histogram in
the bottom layer. However, the threshold vectors found b
the uniform quantization are generally suboptimal. Of
course, this can be further improved by designing an opt
mal vector quantizer11 instead of the uniform vector quan-
tizer, but it may not be worthwhile due to complexity of
finding global extrema at tremendous computational cos
The averaging used in step 3 of the histogram pyrami
construction is probably the simplest quantization schem
to achieve the best compromise between computation
complexity and implementation. This is shown by the fac
that the computer processing time required for the new a
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Fig. 4 (a) Original image of ‘‘peppers,’’ (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
3233Optical Engineering, Vol. 35 No. 11, November 1996
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32
Fig. 5 (a) Original image of ‘‘Text1,’’ (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
34 Optical Engineering, Vol. 35 No. 11, November 1996
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Fig. 6 (a) Original image of ‘‘Text2,’’ (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
3235Optical Engineering, Vol. 35 No. 11, November 1996
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3

Fig. 7 (a) Original image of ‘‘Rose,’’ (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
236 Optical Engineering, Vol. 35 No. 11, November 1996
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Fig. 8 (a) Original image of ‘‘F-16jet,’’ (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
3237Optical Engineering, Vol. 35 No. 11, November 1996
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3238
Fig. 9 (a) Original image of ‘‘Lena,’’ (b) three-level thresholded image obtained by Chen et al.’s
algorithm, (c) three-level thresholded image obtained by the new hierarchical pyramid algorithm, (d)
three-level thresholded image obtained by Brink’s method, and (e) three-level thresholded image
obtained by diagonal search.
Optical Engineering, Vol. 35 No. 11, November 1996
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gorithm isO(L2 logq L) andO(L
8/3) for Chen et al.’s al-

gorithm, both of which are reduced fromO(L4) by simple
quantization techniques. Note that since the averaging a
uniform quantizations are simple arithmetic operation
their computing times should be negligible and will no
affect the computational complexity to be considered he
On the other hand, this is not true if an optimal vecto
quantizer is used in each layer. This is because the comp
ing time of generating optimal vector quantizers using th
Linde-Buzo-Gray~LBG! algorithm11 cannot be neglected
and, in the worse case, may even dominate the total p
cessing time.

5.2 Comparison between Chen’s et al.’s Algorithm
and the New Algorithm

In Chen et al.’s algorithm, it was proved that the optim
number of the quantized gray levels to be used in the u
form quantizer wasdL2/3e, which resulted in a complexity
of O(L8/3) becausebL1/3c3 bL1/3c gray-level vectors were
merged into one gray-level vector. Similarly, logq L in the
complexity ofO(L2 logq L) is the number of layers in the
pyramid that is the result of averagingq2 gray-level vec-
tors. In the Appendix, we prove that the computation
complexity of the new algorithm isO(L2 logq L)5O(L2),
which means, logq L does not really contribute any com
plexity and is absorbed inO(L2). On the other hand, it also
requires at leastL2 comparisons to search for an optima
threshold vector (T* ,S* ), because each dimension of Ab
utaleb’s 2-D gray-level histogram hasL gray levels, and is
independent of the other dimensions. This implies a su
prising result. Despite the fact that the averaging is not
optimal quantization method, the new hierarchical pyram
algorithm actually achieves the optimal complexit
O(L2). Furthermore, the optimal value ofq required for
the new algorithm is also proved to be 2 in the Appendi

One disadvantage of this new algorithm is that the fin
threshold vector generated is a suboptimal solution. It
true that a better or an optimal quantization scheme to fi
the desired optimal threshold vectors can be used. In t
case, each layer in the histogram pyramid needs a differ
optimal quantizer to find the optimal threshold vector,
the expense of significantly increased computational co
Nevertheless, according to our experiments~Figs. 4 to 9!,
the images thresholded by optimal threshold vectors a
about the same as those thresholded by the new algori
and the improvement in image quality is negligible. A
described in Subsec. 5.1, such a trade-off is computatio
ally too expensive and not worth the effort.

5.3 Comparison between Diagonal Search and New
Algorithm

It is interesting to note from Table 1 that the computin
time of the new algorithm was approximately about 1/5
that of the diagonal search, despite 2563256 gray level
vectors needed to be searched for the former and only 2
gray levels for the latter. The diagonal search must exam
all 256 gray levels to find an optimal threshold value, whi
the new algorithm takes advantages of the pyramidal str
ture of the histogram, and only a certain set of local optim
threshold vectors, called the candidate set, is processed
nd
,
t
e.
r
ut-
e

o-

l
i-

l

l

r-
n
d

.
l
is
d
is
nt
t
st.

re
m

n-

f

56
ne

c-
l
for

each layer. As a result, the computational load of finding a
optimal threshold vector among 2563256 gray level vec-
tors is distributed over the candidate sets in all layers, eac
of which has relatively small size. On the other hand, the
number of gray level vectors in each layer of the pyramid
as well as the candidate set are exponentially decreased
the layer is increased. Consequently, the increase of ove
head for overall computing time is still limited. The com-
puting time shown in Table 1 includes the time for con-
structing histogram pyramids~about 1 s! and the time for
finding local optimal threshold vectors for all layers. It is
clear that all six test images require nearly the same com
puting time, ranging from 3 to 4 s. For instance, for the
‘‘Lena’’ image, the new algorithm requires about 2 s to
construct the histogram pyramid and about 2 s to find the
desired threshold vector.

5.4 Feasible Region for Searching Optimal
Threshold Vectors

Another computational saving can be achieved by elimina
ing unnecessary~gray level, local average gray level! pairs
in Abutaleb’s 2-D gray-level histogram prior to threshold-
ing. Since the local average gray level is calculated base
on a 333 window, some regions in Abutaleb’s 2-D gray-
level histogram will never be chosen for threshold vectors
For instance, if a pixel has gray leveli , the local average
gray level obtained from Eq.~1! must be either, i /9 or
>(8L1 i )/9, as shown in Fig. 10, where the two regions
labeled by I are impossible regions to be chosen for thresh
old vectors. The right upper triangle area, obtained by th
line connecting ((0,0),(L 2 1, L/9 2 1)), contains gray-
level pairs with the local average gray levels, i /9. Simi-
larly, the left lower triangle area obtained by the line con-
necting ((8L/92 1,0),(L 2 1, L 2 1)), contains gray-level
pairs with the local average gray levels>(8L 1 i )/9. The
regions labeled by II in Fig. 10 are designated as nois
areas. They are obtained by assuming the surrounding pi
els within a 333 window with gray levels<1/4 of that of
the central pixel in the window. In this case, the local av-
erage gray levels will be in the range of either@ i /9, L/3) or
@(2L 1 i )/3, 8L/9), wherei is the gray level of the central
pixel. For instance, if the central pixel has gray level 255

Fig. 10 Various regions for threshold vectors.
3239Optical Engineering, Vol. 35 No. 11, November 1996
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and the gray levels of the surrounding pixels are less t
64, i.e., 1/4 of 255, the corresponding local average g
level of the pixel will be less than 255/3, which lies in th
region II. As a result, the pixel will be considered to b
noise. This will further reduce the searching area for
candidate threshold vectors to the region indicated by III
Fig. 10. Consequently, the feasible area of finding a des
threshold vector can be limited to region III without was
ing efforts in regions I and II. Note that the noise areas c
be also adjusted based on practical needs by changing
gray-level ratio of the central pixel to the surrounding pi
els such as from 1/4 to 1/3 or 1/5.

6 Conclusion

Second-order entropic thresholding has been proven us
by taking advantage of spatial correlation. However there
a trade-off of exponential growth of computing time. A
though a fast 2-D algorithm recently proposed by Ch
et al. can reduce the computational complexity to a cert
extent, the computing cost is still high. In this paper, Ch
et al.’s algorithm was improved by introducing a pyramid
structure into Abutaleb’s 2-D gray-level histogram. Th
proposed new hierarchical pyramid algorithm consists of
algorithm to build a bottom-up histogram pyramid, and
modified Chen et al. algorithm, implemented iteratively u
ing histograms from the top layer to the bottom layer of t
pyramid. By doing so, the computational load is distribut
over different layers, which saves storage and compu
time. This new algorithm has been shown to achieve o
mal complexityO(L2). The optimal number of gray-leve
vectors to be averaged in each layer in the pyramid is a
shown to be 4, i.e., two for each dimension. Experime
demonstrate that the time required for the new algorithm
substantially low compared to that of Chen et al.’s alg
rithm by a factor of 1/10.

Appendix: Proofs of Optimal Complexity and
Optimal q

In the following, we derive and prove that the comput
tional complexity of the new algorithm isO(L2), and the
optimal choice forq is 2.

From Figs. 2 and 3, we obtain

time~q!5q21~2eq!2q21~2eq!2q41•••1~2eq!2q2i

1•••1~2eq!2L2

and

time~q!2q21~2eq!25~2eq!21~2eq!2q21~2eq!2q4

1•••1~2eq!2q2i1•••

1~2eq!2L25 (
i50

logq L

~2eq!2q2i

5~2eq!2
q2~ logq L11!21

q221

5~2eq!2
L2q221

q221
, ~14!
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which results in

time~q!5q22~2eq!21~2eq!2
L2q221

q221
. ~15!

Thus, the computational complexity isO(time(q))
5O(L2).

To find optimal q* , let w5q2, differentiate Eq.~15!
with respect tow, and set it to zero:

d time~q!

dw U
w*

50⇒124e214e2
L2w*21

w*21
1~4e2w* !

3FL2~w*21!2~L2w*21!

~w*21!2 G50

⇒~w*21!2~124e2!14e2~w*21!

3~L2w*21!1~4e2w* !@L2~w*21!

2~L2w*21!#50

⇒~124e214e2L2!~w* !2

22~124e214e2L2!~w* !1150.~16!

Solving the quadratic equation inw* given by Eq.~16!
yields

w*516S 12
1

124e214e2L2D
1/2

. ~17!

To see whetherw* , given by Eq.~17!, is a minimum point,
differentiate Eq.~15! twice or Eq.~16! one more time and
obtain

d2 time~q!

dw2 U
w*

5
d

dw
$@w221#@~124e214e2L2!w2

22~124e214e2L2!w*11#%U
w*

52w* @~124e214e2L2!~w* !2

22~124e214e2L2!~w* !11#

1@~w* !221#@2~124e2

14e2L2!w*22~124e214e2L2!# ~18!

5@~w* !221#@2~124e214e2L2!w*

22~124e214e2L2!#

5@~w* !221#@2~124e214e2L2!~w*

21!#. ~19!

SinceL is much larger thane, eitherw*'2 or w*'0.
Obviously, the case ofw*'0 is of no practical interest,
which leaves the case thatw*'2. Furthermore, Eq.~19!
.0 because the first term of Eq.~18! is 0 due to Eq.~16!,
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w*.1 due to Eq.~17!, and (124e214e2L2).0 as long
as L is much larger thane. As a result, the optimal
q*5Aw*5& is a minimum point of Eq.~15!. However,
q is the number of pixels to be merged in each layer an
must be greater than 1, which implies that the best choi
for q* approximatingA2 is 2.
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