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Abstract. MR images and remotely sensed images share similar image
structures and characteristics because they are acquired remotely as
image sequences by spectral channels at different wavelengths. As a
result, techniques developed for one may be also applicable to the other.
In the past, we have witnessed that some techniques that were devel-
oped for magnetic resonance imaging (MRI) found great success in re-
mote sensing image applications. Unfortunately, the opposite direction is
yet to be investigated. In this paper, we present an application of one
successful remote sensing image classification technique, called or-
thogonal subspace projection (OSP), to magnetic resonance image clas-
sification. Unlike classical image classification techniques, which are de-
signed on a pure pixel basis, OSP is a mixed pixel classification
technique that models an image pixel as a linear mixture of different
material substances assumed to be present in the image data, then es-
timates the abundance fraction of each individual material substance
within a pixel for classification. Technically, such mixed pixel classifica-
tion is performed by estimating the abundance fractions of material sub-
stances resident in a pixel, rather than assigning a class label to it as
usually done in pure-pixel-based classification techniques such as a
minimum-distance or nearest-neighbor rule. The advantage of mixed
pixel classification has been demonstrated in many applications in re-
mote sensing image processing. The MRI experiments reported in this
paper further show that mixed pixel classification may have advantages
over the pure pixel classification. © 2002 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1479710]

Subject terms: classification; detection; MR images; orthogonal subspace projec-
tion (OSP); unsupervised orthogonal subspace projection (UOSP).
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1 Introduction

Nuclear magnetic resonance~NMR! has recently develope
as a versatile technique in many fields such as chemi
physics, and engineering because its signals provide
information about material structures concerning the na
of a population of atoms, the structure of their environme
and the way in which the atoms interact with environmen1

When NMR is applied to human anatomy, the signals c
be used to measure the nuclear spin density and the i
1546 Opt. Eng. 41(7) 1546–1557 (July 2002) 0091-3286/2002/$15
,

r-

actions of the nuclei with their surrounding molecular e
vironment and those between close nuclei. It produce
sequence of multiple spectral images of tissues with a
riety of contrasts, using three magnetic resonance par
eters: spin-lattice~T1!, spin-spin~T2!, and dual echo-echo
proton density~PD!. By appropriately choosing the puls
sequence parameters—the echo time~TE! and repetition
time ~TR!—a sequence of images of an anatomical area
be generated by using pixel intensities that represent c
.00 © 2002 Society of Photo-Optical Instrumentation Engineers
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Wang et al.: Unsupervised orthogonal subspace . . .
acteristics of different types of tissues throughout the
quence. As a result, magnetic resonance imaging~MRI!
becomes a more useful image modality than x-ray comp
erized tomography~X-ray CT! when it comes to analysis o
soft tissues and organs, since the information about T1
T2 offers a more precise picture of tissue functionality th
that produced by X-ray CT.2

MRI shares many image structures and characteris
with remotely sensed imagery. The images are acquired
motely as image sequences by spectral channels at diffe
specific wavelengths. Most importantly, they produce a
quence of images that explore the spectral properties
correlation within the sequence so as to improve ima
analysis. One unique feature that multispectral MR ima
and remote sensing images have in common is spe
properties characterized by an image pixel that are ge
ally not explored in classical image processing. Since v
ous material substances can be identified by different wa
lengths, an MR or remote sensing image pixel is actual
pixel vector, of which each component represents an im
pixel acquired by a specific spectral band. So, in orde
capture such spectral characterization, a general approa
to model a pixel vector as a linear mixture of material su
stances assumed to be resident in the pixel and then un
the mixture to find material substances of interest. This
ear unmixing process is usually referred to as mixed p
analysis.

Many linear unmixing methods have been proposed
remote sensing image classification in the past. One e
example is the orthogonal subspace projection~OSP! ap-
proach, which has shown great success in hyperspe
image classification.3–7 It was derived from an eigenimag
ing approach,8–13 which is based on the ratio of a desire
feature energy to undesired feature energies, a crite
similar to the signal-to-noise ratio~SNR!. More recently,
Soltanian-Zadeh et al. developed a constrained criterion
MRI to characterize brain issues for 3-D featu
representation.14 It was based on the ratio of the inters
distance to intraset distance subject to a constraint that
class center must be aligned along some predetermine
rections. Their idea was further polished and improved
Du and Chang,15 who referred to it as linear constraine
distance-based discriminant analysis~LCDA! in hyperspec-
tral image classification and target detection. They show
that Soltanian-Zadeh et al.’s approach and LCDA could
viewed as a constrained version of the OSP. In the OSP
noise in the linear mixture is assumed to be additive but
necessarily Gaussian. However, if the additive noise
Gaussian, the OSP is reduced to the well-known Gaus
maximum-likelihood estimation.16

All these examples provide evidence that the OSP
proach may find its application in MR image classificatio
In this paper, we revisit this approach and further expand
ability in MR image classification. In particular, we con
sider an unsupervised version of OSP that does not req
image background knowledge. Its effectiveness will
evaluated by a series of experiments using phantom
real MR images.

The idea of the OSP is to assume that there arep mate-
rial substances present in the image data, which are cat
rized into two classes, one containing desired material s
stances, and another consisting of undesired mate
-
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substances. The OSP improves the performance of m
pixel classification by eliminating undesired material su
stances via orthogonal projection before the classifica
of desired material substances takes place. Unfortuna
in order for the OSP to be effective, complete knowledge
the background material substances is required for the
ear mixture model. In many practical applications, obta
ing such information is very difficult, if not impossible. T
mitigate this problem, extending the OSP to an unsup
vised OSP~UOSP! is highly desirable. One idea, recent
developed in Ref. 7 and referred to as desired-target de
tion and classification~DTDCA!, uses a target generatio
process to extract a set of unknown signal sources from
image background that could be used in the linear mixt
model. This approach seems particularly attractive for M
applications.

Two advantages can be gained from such a UOSP. F
it does not require image background knowledge. Tha
very useful for MR image classification, where many u
known signal sources that may result from various str
tures of human tissues cannot be characterized and id
fied by visual inspectiona priori. These signal sources ma
differ from one image to another. Since they are genera
unknown, they must be extracted directly from the ima
data in an unsupervised manner. Another advantage i
improvement in classification resulting from elimination
undesired material substances that are extracted by
UOSP. In order to evaluate the performance of the UOS
series of experiments are conducted where the comm
used c-means method is used for comparison.

The remainder of this paper is organized as follow
Section 2 briefly describes a linear spectral mixture mo
that will be used in the OSP. Section 3 presents the O
approach, followed by the unsupervised OSP in Section
Section 5 reports a series of experiments for performa
analysis. Section 6 concludes with some remarks.

2 Linear Spectral Mixture Model

A multispectral MR image can be considered as an im
cube where the third dimension is a spectral dimens
specified by TR/TE parameters. As a result, each im
pixel is actually a column vector, of which each compone
corresponds to a specific TR/TE value. In many occasio
the intrapixel spectral correlation~i.e., spectral correlation
among the components within a single pixel vector! may
uncover crucial information that cannot be provided by
terpixel spatial correlation, that is, spatial correlati
among sample vectors. In traditional spatial-based im
processing the techniques are generally developed to
plore interpixel spatial correlation rather than intrapix
spectral correlation. Consequently, they may not be eff
tive for the latter purpose. In order to take into account
inherent spectral properties present in an MR image p
vector, a general approach, called linear unmixing,17,18

which has been widely used for mixed pixel classificati
in remote sensing, may be applicable. It models an im
pixel vector as a linear mixture of substances that are
sumed to be present in the pixel, then unmixes the im
pixel by finding the abundance fraction of each of the
substances in the pixel. More precisely, linear unmixing c
be briefly described as follows.
1547Optical Engineering, Vol. 41 No. 7, July 2002
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Wang et al.: Unsupervised orthogonal subspace . . .
Suppose that a multispectral MR image is acquired bL
spectral bands that are specified by a set of values of TR
parameters. We further assume that there arep distinct sub-
stances present in the MR image, which are referred to
targets, denoted byt1 ,t2 ,...,tp with m1 ,m2 ,...,mp repre-
senting their corresponding spectral signatures. Letr be the
spectral signature of a multispectral MR image pixel vec
v. A linear unmixing method modelsr as a linear combina
tion of m1 ,m2 ,...,mp with appropriate abundance fraction
specified bya1 ,a2 ,...,ap . That is,

r5Ma1n, ~1!

wheren can be interpreted as an uncorrelated noise w
variances2 or as a measurement error. Herer is anL31
column pixel vector, andM anL3p spectral signature ma
trix, expressed as@m1 m2 ¯ mp#, where mj is an
L31 column vector represented by the spectral signa
of the j’th target, t j , resident in the pixelv, and a
5(a1 ,a2 ,...,ap)T is a p31 abundance column vector a
sociated withr , in which a j is the abundance fraction con
tributed by t j to r . The model represented by Eq.~1! is a
linear regression form, which assumes that the spectral
naturer is a linear mixture ofp distinct spectral signature
m1 ,m2 ,...,mp with unknown mixing coefficients
a1 ,a2 ,...,ap .

The problem described by Eq.~1! is called the mixed
pixel classification problem. A method that solves such
problem, generally referred to aslinear unmixing, finds the
unknown mixing coefficients,a1 ,a2 ,...,ap from the spec-
tral signaturer of the image pixel vectorv. Since linear
unmixing classifies a mixed pixelv according to its esti-
mated mixing coefficientsa1 ,a2 ,...,ap from r , the result-
ing images are a set ofp abundance-fraction images, ea
of which is a gray-scale image with gray scales repres
ing estimated abundance fractions of a particular tar
present in each pixel vector of the image. In this case,
mixed pixel classification is performed by a set ofp
abundance-fraction images represented by the mixing c
ficients a1 ,a2 ,...,ap estimated fromr . So, technically
speaking, linear unmixing is an abundance-fraction estim
tion technique and is more than just a classification te
nique. Compared to mixed pixel classification, the class
spatial-based image classification can be viewed as
pixel classification that assigns class membership on a
pixel basis. The resulting image is basically a classificat
map rather than a gray-scale image.

3 Orthogonal Subspace Projection Approach

The OSP approach is a linear unmixing method that
shown great success in mixed pixel classification. It w
recently developed by Harsanyi and Chang.4 It divides a set
of the p targets of interest,$t1 ,t2 ,...,tp% into a desired tar-
get, saytp , and a set of undesired targets,$t1 ,t2 ,...,tp21%,
which may include natural or background targets. Since
are only interested in the desired targettp , all other targets
will be considered as interferers totp . In this case, a logica
approach is to eliminate the interfering effects caused
the undesired targetst1 ,t2 ,...,tp21 prior to detectingtp . As
a result of elimination of these undesired target signatu
1548 Optical Engineering, Vol. 41 No. 7, July 2002
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the detectability oftp can be improved. This is the mai
idea of the OSP approach. In order to do so, the OSP s
ratestp from $t1 ,t2 ,...,tp%.

Let d5mp be the signature of the desired targettp , and
U5@m1 m2 ¯ mp21# be the undesired-target signa
ture matrix represented byt1 ,t2 ,...,tp21 . Using these defi-
nitions, Eq.~1! can be reexpressed as

r5dap1Ug1n, ~2!

where

g5~a1,a2, . . .ap21!T.

Here, without loss of generality, we assume that the des
target consists of a single targettp . The reason for separat
ing U from M is that it allows us to design an orthogon
subspace projector to annihilateU from the pixelr prior to
detection. One such orthogonal subspace projector was
rived by Harsanyi and Chang4 and given by

PU
'5I2UU#, ~3!

whereU#5(UTU)21UT is the pseudoinverse ofU. The no-
tation U

' in PU
' indicates that the projectorPU

' maps the
observed pixelr into the orthogonal complement of^U&,
denoted bŷ U&'.

Applying PU
' in Eq. ~3! to Eq. ~2! results in a new spec

tral mixture model

PU
'r5PU

'dap1PU
'n, ~4!

where the undesired signatures inU have been eliminated
and the original noisen has been suppressed toPU

'n.
Operating on Eq.~4! with a vectorxT results in a stan-

dard signal detection problem given by

xTPU
'r5xTPU

'dap1xTPU
'n. ~5!

A commonly used criterion to measure detection perf
mance specified by Eq.~5! is the SNR, which is defined by
the ratio of signal energy to noise energy. According to E
~5! the signal and noise energies can be obtained from
variance ofxTPU

'dap and the variance ofxTPU
'n, respec-

tively. The resulting SNR is given by

SNR~x!5
@xTPU

'dap#@xTPU
'dap#T

E@~xTPU
'n!~xTPU

'n!T#
5

ap
2~xTPU

'd!~dTPU
'x!

xTPU
'E@nnT#PU

'x

5
ap

2~xT@PU
'ddTPU

'#x!

s2~xTPU
'x!

~6!

where the noise is assumed to be white with variance gi
by s2.

It has been shown that maximizing Eq.~6! over x is
equivalent to finding the maximum eigenvalue of the fo
lowing generalized eigenvalue problem3,17:

~s2PU
'!21~ap

2@PU
'ddTPU

'# !x5lx. ~7!

Since the detection problem specified by Eq.~4! presents a
two-class classification problem, the rank of the matrix
the left of Eq.~7! is one. This implies that the only nonzer
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Wang et al.: Unsupervised orthogonal subspace . . .
eigenvalue is the maximum eigenvalue that also solves
~7!. The solution to maximizing Eq.~6! overx is known as
a matched filterMd and given by

Md~x!5kd for some constantk, ~8!

where the matched signal is the desired signatured. Sub-
stituting Eq.~8! into Eq. ~6! yields

lmax5SNR~d!5max
x

$SNR~x!%

5~ap
2s22!

~dTPU
'd!~dTPU

'd!

dTPU
'd

5S a

s D 2

dTPU
'd. ~9!

It turns out thatx5kd with l5(ap /s)2dTPU
'd also satis-

fies Eq.~7!. Based on the approach outlined by Eqs.~5! to
~9!, an OSP classifier, denoted bydOSP, can be obtained by

dOSP~r !5MdPU
'r5dTPU

'r , ~10!

wherex5d with k51 in Eq. ~7!.
The classifierdOSP in Eq. ~10! is implemented by an

undesired-signature rejecterPU
' followed by a matched fil-

ter Md . More precisely, if we want to detect a target si
natured in a mixed pixel, we first applyPU

' to Eq. ~2! to
eliminateU, then use the matched filterMd to extract thed
from Eq. ~4!.

4 Unsupervised Orthogonal Subspace
Projection Approach

According to Eqs.~1! and ~2!, the OSP classifier require
complete knowledge of the p target signatures
m1 ,m2 ,...,mp in the target signature matrixM , which are
assumed to be present in the image data. With the us
thesep target signatures the image data can be represe
by their linear combinations via Eq.~1! with relative abun-
dance fractionsa1 ,a2 ,...,ap . This knowledge must also
include background information. Unfortunately, in reali
obtaining these background signatures is nearly imposs
a priori, and they must be obtained directly from the ima
data in an unsupervised procedure. In this section we
scribe an unsupervised OSP, which is derived from the
DCA in Ref. 7 as follows.

Since the desired target signatured is provideda priori,
we use it as an initial target signature, then employ an
thogonal subspace projectorPd

' to project all image pixel
vectors into the orthogonal complement space, denoted
^d&', that is orthogonal to the space^d& linearly spanned
by d. The maximum length of a signature vector in^d&'

that corresponds to the maximum orthogonal project
with respect tod will be selected as a first potential targ
signature, denoted bym1 . The reason for this selection i
that the selectedm1 will have the most-distinct feature
from d in the sense of orthogonal projection, becausem1

has the largest magnitude of projection in^d&' produced by
Pd

' . Then an OSP classifierdOSP5dTPU
' with U5m1 is
.

f
d

-

y

applied to the image via Eq.~10!. If the target signatured
appears in the resulting image,d is declared to be detecte
and classified. Otherwise, a new orthogonal subspace
jector P@dm1#

' using Eq.~3! is applied to the original image

It projects all image pixel vectors to the space^d,m1&
' that

is orthogonal tod andm1 . Once again, the signature vect
with maximum length in^d,m1&

' will be selected as a
second target signature, denoted bym2 . Then an OSP clas
sifier dOSP5dTP@m1m2#

' , using U5@m1 m2# as the

undesired-target signature matrix in Eq.~2!, is applied to
the image. If the resulting image does not detect the ta
signatured, the above procedure will be repeated to find
third target signaturem3 , a fourth target signaturem4 , etc.,
until the target signatured is detected. Such a process
called atarget generation process~TGP!.

Since we do not know how many target signatur
should be generated, the OSP classifier used in the T
must be applied every time new target signature is gen
ated. Additionally, the TGP should not rely on visual i
spection to determine when the procedure must be te
nated. Fortunately, this situation can be avoided provid
that there exists a reliable stopping rule to determine h
many generated target signatures are sufficient for ta
detection and classification. In the following, such a cri
rion can be also derived from the concept of OSP. It
based on the orthogonal correlation between the target
natured and the projection operatorPU

' .
Let Ui5@m1 m2 ¯ mi # be thei ’th target-signature se

used for the OSP classifier in thei ’th stage. We then define
the orthogonal projection correlation index~OPCI! by

h i5dTPUi

' d. ~11!

Since Ui 21,Ui , we haveh i5dTPUi

' d<h i 215dTPUi 21

' d

for all i’s. This implies that the sequence$dTPUi

' d% is

monotonically decreasing ini. Thus the OPCI sequenc
$h i% is monotonically decreasing ini. Using this property
as a stopping criterion, the TGP can be summarized as
lows.

Target generation process (TGP).

1. Initial condition: Select an initial target signature o
interest, denoted byd. Let « be a prescribed erro
threshold. Seti 50 andU05B.

2. Find orthogonal projections of all image pixels wi
respect tod, by applyingPd

' via Eq. ~3! to all image
pixel vectorsr in the image.

3. Find a first target signature, denoted bym1 , by

m15arg$max
r

@~Pd
'r !T~Pd

'r !#%. ~12!

Set i 51 andU15m1 .

4. If h15dTPU1

' d,«, go to step 8. Otherwise, seti to

i 11 and continue.

5. Find thei ’th target signaturemi generated by thei ’th
stage, i.e.,
1549Optical Engineering, Vol. 41 No. 7, July 2002
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Wang et al.: Unsupervised orthogonal subspace . . .
mi5arg$max
r

%@~P~dUi 21!
' r !T~P~dUi 21!

' r !#%, ~13!

whereUi 215@m1 m2 ¯ mi 21# is the target signa-
ture set generated at the (i 21)st stage.

6. Calculate OPCIh i5dTPUi

' d using Eq. ~11!, and

compare it with the prescribed threshold«.

7. Stopping rule: If h i.«, go to step 5. Otherwise, con
tinue.

8. At this stage, the TGP is terminated, and t
undesired-target signature matrixUi generated at this
point containsi target signatures, which will be use
in Eq. ~2!. It should be noted that each cycle fro
step 5 to step 7 generates one target signature
time.

The error threshold« in step 7 is generally chosen em
pirically. It is generally determined by the classifier use
such as OSP. An alternative to selection of« is to set the
number of targets needed to be generated in the TGP
use this number in step 7 to terminate the TGP. Which
is a better stopping criterion is determined by applicatio
and users’ preference.

Now, incorporating the TGP into the OSP, a UOSP c
be implemented as follows.

UOSP algorithm.

1. Selectd to be the target signature for the desir
target.

2. Use d as the initial target signature in the TGP
generate an undesired-target signature matrix,
noted byUi .

3. Use the OSP to classifyd. It should be noted tha
when we do so, any target signature other thand will
be considered to be an undesired-target signa
with respect tod, no matter whatd is. Thus, the
generated target signature matrixUi will be the U
used in Eq. ~10!. Now, apply the OSP classifie
dOSP5dTPUi

' to all image pixel vectorsr , and the

resulting image will show only the target signatured,
with all target signatures inUi being nulled out.

Several comments are noteworthy:

1. Although the UOSP uses Eq.~11! to determine the
number of targets required to generateUi , this num-
ber can be predetermined in some applications.
example, in MRI, we can preset this number to t
total number of bands minus one. This is because
orthogonal subspace requires an exclusive dimen
to accommodate one specific target signature. If t
target signatures are extracted in the same orthog
subspace, these two cannot be discriminated fr
one another by the OSP classifier. As a conseque
the total number of target signatures that can be
fectively discriminated by the OSP classifier cann
exceed the total number of spectral bands that
used to acquire image data. Unlike hyperspectral
agery with hundreds of spectral bands, a multisp
1550 Optical Engineering, Vol. 41 No. 7, July 2002
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tral MR image has only a few spectral bands. In th
case, instead of determining the error threshold«, it
is easy to preset the number of target signatures
quired to be generated in the TGP by the number
spectral bands, as shown by experiments in the
lowing section.

2. The performance of the UOSP is significantly a
fected by the knowledge of the desired target sign
tured. If that is contaminated, the matching ability i
the matched filter in the OSP will be greatly reduce
and so will the classification.

3. It should be noted that the described UOSP is
signed to classify one target signature at a time
varying the desired-target signatured. However, it
can also be implemented to classify multiple targ
signatures simultaneously by replacingd in Eq. ~10!
with a desired-target signature matrixD that consists
of all the target signatures needing to be classified

5 Experiments

In this section, we present two sets of experiments, one
computer-generated phantom images and another on
MR images. The phantom image experiments enable u
conduct a quantitative study and error analysis for t
UOSP, while the real MRI experiments allow us to asse
its utility and effectiveness in medical diagnosis.

In order to evaluate performance of the UOSP, t
widely used c-means method18 ~also known as k-means
method! is used for comparative analysis. The reason
select the c-means method is that it is also an unsuperv
algorithm, but is a spatial-based pattern classification te
nique. In order to make a fair comparison, the implemen
c-means method always designates the desired-target s
ture d as one of its class means and hasd fixed during
iterations. Other than that, the c-means method is p
formed in the same fashion as does ISODATA described
Ref. 18.

5.1 Computer Simulations for Phantom Experiments

The computer-generated phantom images shown in Fig
have five bands, each of which has the same size (
3256) and was made up of six overlapped ellipses with
radiance spectral signatures shown in Fig. 2. The total nu

Fig. 1 Five bands of computer-generated phantom images.
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Wang et al.: Unsupervised orthogonal subspace . . .
ber of image pixels is 65,536. These ellipses repres
structure areas of three interesting cerebral tissues co
sponding to gray matter~GM!, white matter~WM!, and
cerebral spinal fluid~CSF!. From the periphery to the cen
ter are the background~BKG!, GM, WM, and CSF. The
gray-level values of these areas in each band were s
lated in such a fashion that these values reflect the ave
values of their respective tissues in the real MR ima
shown in Fig. 9. Table 1 tabulates the values of the par
eters used by the MRI pulse sequence and the gray-l
values of the tissues of each band used in the experime
A zero-mean Gaussian noise was added to the phan
images in Fig. 1 so as to achieve various SNRs rang
from 5 to 20 dB. In order to apply the UOSP to the
phantom images, the desired target signatured was speci-
fied by one of three target signatures of our interest~GM,
WM, and CSF! shown in Fig. 2. Since there are five ban
that can be used for orthogonal projection, four other
known signatures were also generated by the TGP in
UOSP for elimination, to improve detection performanc
They are shown in Fig. 3, where the pixel labeled1 was
selected as the desired target pixel specified byd, and the
four pixels labeled with squares are specified by the ta
signatures generated by the TGP. Since there are cons
able changes in performance between SNR55 dB and
SNR520 dB, both sets of results will be presented in th
paper for illustration.

Figures 4~a! and ~b! show the UOSP-classification re
sults on GM, WM, and CSF for SNR55 and 20 dB, re-
spectively. Similarly, Figs. 5~a! and~b! show the classifica-
tion results on GM, WM, and CSF produced by t
c-means method for SNR55 and 20 dB, respectively
Comparing Fig. 4 with Fig. 5, the UOSP performed sign
cantly better than the c-means method. In particular, in
case of SNR520 dB the UOSP classified GM, WM, an
CSF almost 100% correctly, whereas the c-means me

Fig. 2 Spectra of the five bands in Fig. 1.

Table 1 Gray-level values used for the five bands of the test phan-
tom in Fig. 1.

Band MRI parameter TR/TE BKG GM WM CSF

1 2500 ms/25 ms 3 207 188 182

2 2500 ms/50 ms 3 219 180 253

3 2500 ms/75 ms 3 150 124 232

4 2500 ms/100 ms 3 105 94 220

5 500 ms/11.9 ms 3 95 103 42
t
-

-
e

-
l
.

t
r-

d

still has difficulty discriminating GM from WM. As a mat-
ter of fact, according to our experiments the c-mea
method was not stable until the SNR reached 45 dB. So
classification maps in Fig. 5 were actually the average
classification maps resulting from 40 implementations
the c-means method. As a result, the images have ran
dots in the regions of BKG and CSF. This implies that t
c-means method had difficulty with classification of BK
and CSF. However, even in the case of SNR545 dB, the
results produced by the c-means method were only com
rable to that in Fig. 4~b! produced by the UOSP for SNR
520 dB. This is due to the fact that the UOSP took adva
tage of its mixed pixel classification capability.

In some practical applications, the knowledge of the d
sired target signatured used in the UOSP may not be a
accurate as we desire. In order to see how this affects
UOSP performance, we conducted the same experimen
were done for Fig. 4, but the desired target signatured was
contaminated by mixing it with 5% and 10% BKG signa

Fig. 3 Five target pixels used in UOSP, with 1 indicating the de-
sired target pixel at spatial coordinate (70, 115) and squares indicat-
ing four unknown target pixels generated by the TGP at the spatial
coordinates (100, 92), (107, 168), (155, 99), and (157, 117).

Fig. 4 Classification results of the UOSP for images in Fig. 1 with
(a) SNR55 dB and (b) SNR520 dB.
1551Optical Engineering, Vol. 41 No. 7, July 2002
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tures, respectively. To be more specific, two contamina
desired signatures were used for the experiments. One
obtained by mixing 95% true signatured with 5% BKG
signature, and another was obtained by mixing 90% t
signatured with 10% BKG signature. Figures 6 and 7 sho
their respective results for SNR55 and 20 dB. As we can
see, the UOSP performance degraded slightly compare
Fig. 4. Nevertheless, comparing Figs. 6 and 7 with Fig. 5
still outperformed the c-means method.

Unlike the images generated by the c-means metho
Fig. 5, which were classification maps, the images gen
ated by the UOSP were gray-scale with the gray-level v
ues proportional to detected abundance fraction ofd. In
order to conduct a quantitative analysis and make a
comparison with the results of the c-means method,
need to convert the UOSP-generated abundance-frac
images into binary images. Here, we adopt an appro
proposed in Ref. 19, which used the abundance-frac
percentage as a cutoff threshold value for such convers

Fig. 5 Classification results of the c-means methods with (a) SNR
55 dB and (b) SNR520 dB.

Fig. 6 Classification results of the UOSP with a 5%-contaminated d
for the images in Fig. 1 with (a) SNR55 dB and (b) SNR520 dB.
1552 Optical Engineering, Vol. 41 No. 7, July 2002
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In other words, we first normalize the abundance fractio
of all the pixels in a UOSP-generated abundance-fract
image to the range@0,1#. More specifically, letr be the
image pixel vector andâ1(r ), â2(r ),...,âp(r ) be the esti-
mates of the abundance fractionsa1 , a2 ,...,ap produced
by applying the OSP in Eq.~10! to the image pixel vectorr .
Then for each estimated abundance fractionâ j (r ), its nor-
malized abundance fractionâ j (r ) can be obtained by

ã j~r !5

â j~r !2min
r

â j~r !

max
r

â j~r !2min
r

â j~r !
. ~14!

Suppose thata is used for the cutoff abundance-fractio
threshold value in percent. If the normalized abundan
fraction of a pixel is greater than or equal toa/100, then the
pixel is detected as a target pixel and is assigned a 1;
erwise, the pixel is assigned a 0, which means that the p
is not a target pixel because its spectral signature does
match the target signatured. Using this thresholding crite-
rion, we can actually tally the number of pixels that th
UOSP detected in its generated abundance-fraction ima
as follows.

First of all, we defineN(d), ND(d), and NF(d) to be,
respectively, the total number of pixels specified by t
desired target signatured, the total number of pixels tha
are the desired target signatured and are actually detected
as d by the UOSP, and the total number of false-ala
pixels that are not the desired target signatured but are
detected asd by the UOSP. The desired target signatured
can be chosen to be GM, WM, or CSF. Then the detect
rate and false-alarm rate can be defined by

RD~d!5
ND~d!

N~d!
, ~15!

RF~d!5
NF~d!

N2N~d!
, ~16!

Fig. 7 Classification results of the UOSP with a 10%-contaminated
d for images in Fig. 1 with (a) SNR55 dB and (b) SNR520 dB.
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Fig. 8 ROC curves generated by UOSP with SNR55 and 20 dB.

Table 2 Detection results of Fig. 4(a) with SNR55 dB.

Area a (%) N(d) ND(d) NF(d) RD(d) (%) RF(d) (%)

GM 5 9040 8398 14825 92.9 26.24

25 9040 5772 2800 63.85 4.96

50 9040 1370 157 15.15 0.28

WM 5 8745 8409 31388 96.16 55.27

25 8745 6216 5278 71.08 9.29

50 8745 1565 232 17.9 0.41

CSF 5 3282 3282 24012 100 38.57

25 3282 3282 364 100 0.58

50 3282 3279 0 99.91 0.00

Table 3 Detection results of Fig. 4(b) with SNR520 dB.

Area a (%) N(d) ND(d) NF(d) RD(d) (%) RF(d) (%)

GM 5 9040 9040 13366 100 23.66

25 9040 9036 816 99.96 1.44

50 9040 7421 1 82.09 0.00

WM 5 8745 8745 30366 100 53.47

25 8745 8744 1063 99.99 1.87

50 8745 8094 1 92.56 0.00

CSF 5 3282 3282 8983 100 14.43

25 3282 3282 0 100 0.00

50 3282 3282 0 100 0.00

Table 4 Detection results of Fig. 5 produced by c-means method.

Area SNR N(d) ND(d) NF(d) RD(d) (%) RF(d) (%)

GM 5 9040 8708 6277 96.33 11.11

20 9040 9040 7489 100.00 13.26

WM 5 8745 8517 6201 97.39 10.92

20 8745 8745 9285 100.00 16.35

CSF 5 3282 2941 4003 89.61 6.43

20 3282 3166 4001 96.47 6.43
1553Optical Engineering, Vol. 41 No. 7, July 2002
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respectively, whereN is the total number of pixels in the
image.

Tables 2 and 3 tabulate the results of Fig. 4 for SN
55 and 20 dB, respectively, witha chosen to be 5%, 25%
and 50%. From these tables, when the abundance frac
cutoff threshold percentagea was set to be small,RD(d)
could be very high at the expense of highRF(d), as in the
case ofa55%. Conversely, ifa was set to be large,RD(d)
could be very low withRF(d) also low for GM and WM, as
in the case ofa550%. Our experiments showed that
good compromise fora ranged from 25% to 35%.

Table 4 tabulates the results produced by the c-me
method shown in Fig. 5 for SNR55 and 20 dB. Comparing
it with Tables 2 and 3, we see that the number of fal
alarm pixels produced by the c-means method was sig
cantly higher than that produced by the UOSP. For the c
of SNR55 dB, the c-means method yielded much high
detection rates than did the UOSP, at the expense of
high false-alarm rates. For the case of SNR520 dB, the
c-means method achieved 100% detection rates in clas
cation of GM and WM, but also produced more than 10
false-alarm rates. Compared to the c-means method,
UOSP also achieved nearly 100% detection rates w
false-alarm rates lower than 2%. As for CSF classificati
the UOSP achieved 100% detection rate with 0% fal
alarm rate, while the c-means method only reached 96.4
detection rate with 6.43% false-alarm rate. In order to
the overall performance of the UOSP using thea% thresh-
old criterion, we varieda from 100% down to 0%. For eac
a, we produced a pair (RF(d),RD(d)). In this case, the
receiver operating characteristic~ROC! curves for SNR
55 and 20 dB are plotted in Fig. 8, where the grap
labeled ~a! and ~b! are the detection results of GM an
WM, respectively. If we further define the detection rate
the area under an ROC curve,20 Table 5 tabulates the detec
tion rates produced by the UOSP for GM and WM wi
SNR55 and 20 dB. As we can see from these values,
performance of the UOSP improved when SNR was
creased. According to Tables 2 and 3, the detection res
for CSF were nearly 100%, and their ROC curves would
flat along the lineRD(d)51. So these curves were not plo
ted in Fig. 8.

5.2 Experiments on Real MR Images

In the following experiments, real MR images were us
for performance evaluation. They were acquired from
patients with normal physiology. One example is shown
Figs. 9~a! to 9~e! with the same parameter values as giv
in Table 1. Band 1 is the PD-weighted spectral image
quired by the pulse sequence TR/TE52500 ms/25 ms.

Table 5 Detection rates produced by the UOSP with SNR55 and
20 dB.

SNR (dB)

Detection rate

GM WM CSF

5 0.8711 0.8459 1.000

20 0.9841 0.9870 1.000
1554 Optical Engineering, Vol. 41 No. 7, July 2002
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Bands 2, 3, and 4 are T2-weighted spectral images acqu
by the pulse sequences TR/TE52500 ms/50 ms, 2500
ms/75 ms, and 2500 ms/100 ms, respectively. Band 5 is
T1-weighted spectral image acquired by the pulse seque
TR/TE5500 ms/11.9 ms. The tissues surrounding t
brain, such as bone, fat, and skin, were semiautomatic
extracted using interactive thresholding and masking.21 The
slice thickness of all the MR images is 6 mm, and the ax
sections were taken with a Ge MR 1.5T scanner. Bef
acquisition of the MR images the scanner was adjusted
prevent artifacts caused by the static and radio-freque

Fig. 9 Five-band real brain MR images used for experiments. (a)
TR/TE52500 ms/25 ms; (b) TR/TE52500 ms/50 ms; (c) TR/TE
52500 ms/75 ms; (d) TR/TE52500 ms/100 ms; (e) TR/TE
5500 ms/11.9 ms.

Fig. 10 Targets generated by the TGP from Fig. 7. The cross rep-
resents the desired target d, and a solid square represents an un-
known target signature generated by the TGP. (a) d5GM; (b) d
5WM; (c) d5CSF.



re

es,
d
ify
ess
ny
nd

be
ri-

sed
es
ws

n-
h of

g

els
r-
, as

the
in

ed
e

d

-

ults
ts.

t
a

ered
hed
ns

-
.
er-

o
he
that
ar-
bili-
rly

il-
la-

by

ce
0-

s.

ag-

ig-

Wang et al.: Unsupervised orthogonal subspace . . .
magnetic fields and their gradients. All experiments we
performed under the supervision of a neuroradiologist.

In order to enhance classification of these MR imag
the interfering effects resulting from tissue variability an
characterization must be eliminated. However, to ident
the sources of this interference is nearly impossible unl
prior information is provided. On the other hand, in ma
MRI applications, the three cerebral tissues, GM, WM, a

Fig. 11 Classification results of using UOSP for the image in Fig. 9.
(a) GM; (b) WM; (c) CSF.

Fig. 12 Classification results of using c-means method for the im-
ages in Fig. 9. (a) GM; (b) WM; (c) CSF.
CSF, are of major interest, and knowledge of them can
generally obtained directly from the images. In our expe
ments, the spectral signatures of GM, WM, and CSF u
for the UOSP were extracted directly from the MR imag
and verified by experienced radiologists. Figure 10 sho
the spatial locations of the desired signaturesd, indicated
by a cross within a circle. The unknown target pixels ge
erated by the TGP are indicated by solid squares, eac
which is circled. For example, the image in Fig. 10~a!
shows three target pixels generated by the TGP usind
5GM; one ~represented by a cross!, that was the desired
target signature, and two others~solid squares!, where
white and black were used to highlight these target pix
for visual differentiation. Obviously, the TGP using diffe
ent target signatures generated different target pixels
demonstrated in Figs. 10~b! and 10~c!. Figures 11~a! to
11~c! show the classification results of the UOSP using
five images in Figs. 9~a! to 9~e! and the targets generated
Fig. 10. The images labeled~a!, ~b!, and~c! were produced,
respectively, by using GM, WM, and CSF as the desir
target signatured. For comparison, we also applied th
c-means method to Figs. 9~a! to 9~e! to produce Figs. 12~a!
to 12~c!, where the classification maps of GM, WM, an
CSF are labeled~a!, ~b!, and~c!, respectively. In compari-
son with Figs. 12~a! to 12~c!, the UOSP performed signifi
cantly better than did the c-means method.

It should be stressed that all the experimental res
presented here were verified by experienced radiologis

6 Conclusion

Orthogonal subspace projection~OSP! has shown grea
success in hyperspectral image classification. It is
matched-filter-based classifier and can be also consid
as an eigenimage approach. The concept of using matc
filters is not new and has been found in many applicatio
in pattern classification.22,23However, its strength in classi
fication of MR image sequences has not been exploited

This paper presents a new application of an unsup
vised OSP~UOSP! in MR image classification where n
prior knowledge of the image background is required. T
only required knowledge is the desired target signature
needs to be classified. Since it is generally difficult to ch
acterize an MR image background due to tissues varia
ties and unknown signal sources, the UOSP is particula
attractive and useful for MRI classification. In order to
lustrate the utility of the UOSP, a detailed study of simu
tions was conducted. The results were further supported
real MR images.
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