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1 Introduction

Abstract. MR images and remotely sensed images share similar image
structures and characteristics because they are acquired remotely as
image sequences by spectral channels at different wavelengths. As a
result, techniques developed for one may be also applicable to the other.
In the past, we have witnessed that some techniques that were devel-
oped for magnetic resonance imaging (MRI) found great success in re-
mote sensing image applications. Unfortunately, the opposite direction is
yet to be investigated. In this paper, we present an application of one
successful remote sensing image classification technique, called or-
thogonal subspace projection (OSP), to magnetic resonance image clas-
sification. Unlike classical image classification techniques, which are de-
signed on a pure pixel basis, OSP is a mixed pixel classification
technique that models an image pixel as a linear mixture of different
material substances assumed to be present in the image data, then es-
timates the abundance fraction of each individual material substance
within a pixel for classification. Technically, such mixed pixel classifica-
tion is performed by estimating the abundance fractions of material sub-
stances resident in a pixel, rather than assigning a class label to it as
usually done in pure-pixel-based classification techniques such as a
minimum-distance or nearest-neighbor rule. The advantage of mixed
pixel classification has been demonstrated in many applications in re-
mote sensing image processing. The MRI experiments reported in this
paper further show that mixed pixel classification may have advantages
over the pure pixel classification. © 2002 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1479710]

Subject terms: classification; detection; MR images; orthogonal subspace projec-
tion (OSP); unsupervised orthogonal subspace projection (UOSP).
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actions of the nuclei with their surrounding molecular en-

Nuclear magnetic resonanéMR) has recently developed vironment and thpse betweenn close nucllei. It pro.duces a
as a versatile technique in many fields such as chemistry,S€quence of multiple spectral images of tissues with a va-
physics, and engineering because its signals provide richfety of contrasts, usmg.thre(.—:‘ magnetic resonance param-
information about material structures concerning the nature €ters: spin-lattic¢T1), spin-spin(T2), and dual echo-echo
of a population of atoms, the structure of their environment, Proton density(PD). By appropriately choosing the pulse
and the way in which the atoms interact with environnent. sequence parameters—the echo tifii&) and repetition
When NMR is applied to human anatomy, the signals can time (TR)—a sequence of images of an anatomical area can
be used to measure the nuclear spin density and the interbe generated by using pixel intensities that represent char-
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acteristics of different types of tissues throughout the se- substances. The OSP improves the performance of mixed
quence. As a result, magnetic resonance imagMel) pixel classification by eliminating undesired material sub-
becomes a more useful image modality than x-ray comput- stances via orthogonal projection before the classification
erized tomographyX-ray CT) when it comes to analysis of  of desired material substances takes place. Unfortunately,
soft tissues and organs, since the information about T1 andin order for the OSP to be effective, complete knowledge of
T2 offers a more precise picture of tissue functionality than the background material substances is required for the lin-
that produced by X-ray C%. ear mixture model. In many practical applications, obtain-
MRI shares many image structures and characteristicsing such information is very difficult, if not impossible. To
with remotely sensed imagery. The images are acquired re-mitigate this problem, extending the OSP to an unsuper-
motely as image sequences by spectral channels at differen¥ised OSPUOSB is highly desirable. One idea, recently
specific wavelengths. Most importantly, they produce a se- developed in Ref. 7 and referred to as desired-target detec-
quence of images that explore the spectral properties andtion and classificatiofDTDCA), uses a target generation
correlation within the sequence so as to improve image Process to extract a set of unknown signal sources from the
analysis. One unique feature that multispectral MR images image background that could be used in the linear mixture
and remote sensing images have in common is spectramodel. This approach seems particularly attractive for MRI
properties characterized by an image pixel that are gener-applications. . .
ally not explored in classical image processing. Since vari- _ TWo advantages can be gained from such a UOSP. First,
ous material substances can be identified by different wave-it d0€s not require image background knowledge. That is
lengths, an MR or remote sensing image pixel is actually a VY useful for MR image classification, where many un-
pixel vector, of which each component represents an imagek”OW” signal sources that may result from various struc-
pixel acquired by a specific spectral band. So, in order to Urés of human tissues cannot be characterized and identi-

capture such spectral characterization, a general approach i%i? b3f/ visual inspectioa prioriHThes_e sig?]al sources ma31|
to model a pixel vector as a linear mixture of material sub- différ from one image to another. Since they are generally

stances assumed to be resident in the pixel and then unmi%é”kn‘?wn’ they must_bedextracted glrecrfly fr%m the image
the mixture to find material substances of interest. This lin- dat& In an unsupervised manner. Another advantage Is an

ear unmixing process is usually referred to as mixed pixel improvement in c_IaSS|f|cat|on resulting from elimination of
analysis undesired material substances that are extracted by the

Many linear unmixing methods have been proposed for YOSP- I? order to evtaluate thedpertfo(;maﬁce otfhthe UOSP, Ia
remote sensing image classification in the past. One early>€''€S O! EXperiments are conducted wnere the commonly

example is the orthogonal subspace projectioSP ap- used c-means method is used for comparison.

proach, which has shown great success in hyperspectral The fema!'”der of th|s paper 1S organlzed.as follows.
image classificatiod:” It was derived from an eigenimag- Section 2 briefly describes a linear spectral mixture model

: - s : : that will be used in the OSP. Section 3 presents the OSP
ing approaclf '3 which is based on the ratio of a desired : . :
feature energy to undesired feature energies, a criterionaszgi%icg’ rfg”g\;\tlgdabsyeﬁir:aes %?S:feer\r/ilr?]eeit(s)?cljr me?f?)(r::%%mcdré
similar to the signal-to-noise ratiBNR). More recently, P P P

Soltanian-Zadeh et al. developed a constrained criterion foranaly3|s. Section 6 concludes with some remarks.

MRI to characterize brain issues for 3-D feature

representatiofi? It was based on the ratio of the interset

distance to intraset distance subject to a constraint that eaci2  Linear Spectral Mixture Model

class center must be aligned along some predetermined di-A multispectral MR image can be considered as an image
rections. Their idea was further polished and improved by cube where the third dimension is a spectral dimension
Du and Chang? who referred to it as linear constrained specified by TR/ITE parameters. As a result, each image
distance-based discriminant analydi€DA) in hyperspec-  pixel is actually a column vector, of which each component
tral image classification and target detection. They showed corresponds to a specific TR/TE value. In many occasions,

that Soltanian-Zadeh et al.'s approach and LCDA could be the intrapixel spectral correlatiofi.e., spectral correlation
viewed as a constrained version of the OSP. In the OSP, theamong the components within a single pixel vertmay
noise in the linear mixture is assumed to be additive but not uncover crucial information that cannot be provided by in-
necessarily Gaussian. However, if the additive noise is terpixel spatial correlation, that is, spatial correlation
Gaussian, the OSP is reduced to the well-known Gaussianamong sample vectors. In traditional spatial-based image
maximum-likelihood estimatiof? processing the techniques are generally developed to ex-

All these examples provide evidence that the OSP ap- plore interpixel spatial correlation rather than intrapixel
proach may find its application in MR image classification. spectral correlation. Consequently, they may not be effec-
In this paper, we revisit this approach and further expand its tive for the latter purpose. In order to take into account the
ability in MR image classification. In particular, we con- inherent spectral properties present in an MR image pixel
sider an unsupervised version of OSP that does not requirevector, a general approach, called linear unmiﬁghﬁ‘,
image background knowledge. Its effectiveness will be which has been widely used for mixed pixel classification
evaluated by a series of experiments using phantom andin remote sensing, may be applicable. It models an image
real MR images. pixel vector as a linear mixture of substances that are as-

The idea of the OSP is to assume that therepanmeate- sumed to be present in the pixel, then unmixes the image
rial substances present in the image data, which are categopixel by finding the abundance fraction of each of these
rized into two classes, one containing desired material sub-substances in the pixel. More precisely, linear unmixing can
stances, and another consisting of undesired materialbe briefly described as follows.
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Suppose that a multispectral MR image is acquired.by the detectability oft, can be improved. This is the main
spectral bands that are specified by a set of values of TR/TEjdea of the OSP approach. In order to do so, the OSP sepa-
parameters. We further assume that therepatistinct sub- ratest, from {t;,t,,... t}.
stances present in the MR image, which are referred to as Letpdzmp be the sigpnature of the desired targgt and
targets dﬁn.OtEd bytl'tzé:“'tp with Tl.’mZ""’mP&r;prﬁ' U=[my; m, -~ m,_;] be the undesired-target signa-
senting their corresponding spectral signaturesrLe the ;.6 matriy represented ty,t,,... t, ;. Using these defi-
spectral signature of a multispectral MR image pixel vector nitions, Eq.(1) can be reexpressed as
v. A linear unmixing method modelsas a linear combina- ' =0 P
tion of my,m,,...,m, with appropriate abundance fractions r=da,+Uy+n, 2
specified byay,a;,...,a,. That is,

where
r=Ma+n, (1)
v=(aq,ay, .. .ap,l)T.
wheren can be interpreted as an uncorrelated noise with

varlanceqz or as a measurement error. Herg anlx1 target consists of a single targgt The reason for separat-
column pixel vector, antl anL X p spectral signature ma-  jnq"y from M is that it allows Us to design an orthogonal
trix, expressed agm; m, -+ my], wherem; is an subspace projector to annihildtefrom the pixelr prior to
LX1 column vector represented by the spectral signature detection. One such orthogonal subspace projector was de-
of the j'th target, t;, resident in the pixelv, and & rived by Harsanyi and Chafgnd given by

=(a1,a2,...,ap)T is apXx1 abundance column vector as- " "

sociated withr, in which «; is the abundance fraction con-  Pu=1=UU", ©)

tributed byt; to r. The model represented by Bd) isa whereU*=(UTU) “!UT is the pseudoinverse &f. The no-
linear regression form, which assumes that the spectral S'g_tationt in P, indicates that the projectdPl, maps the

naturer is a linear mixture op distinct spectral signatures b d pixer into th h | | t o0
my,M,,...,m, with unknown mixing coefficients ~ OPSEVEC PIXET nio he orthogonal complemen o),
denoted by(U)".

al,az,...,ap. . 1o .

The problem described by E@l) is called the mixed Applying Py in Eq. (3) to Eq.(2) results in a new spec-
pixel classification problem. A method that solves such a fral mixture model
problem, gengrally ref_e-r_red to dmear unmixing finds the PLr=Pida,+Pn, (4)
unknown mixing coefficientsq, ,a5,...,a, from the spec- P
tral signaturer of the image pixel vectow. Since linear  \here the undesired signaturestinhave been eliminated
unmixing classifies a mixed pixel according to its esti- 514 the original noise has been suppressedRgn.
mated mixing coefficient&, ,a,,...,a, fromr, the result- Operating on Eq(4) with a vectorx results in a stan-

ing images are a set @f abundance-fraction images, each dard signal detection problem given by
of which is a gray-scale image with gray scales represent-

ing estimated abundance fractions of a particular target xTPtr=xTPbdap+xTPﬁn. (5)
present in each pixel vector of the image. In this case, the

mixed pixel classification is performed by a set pf A commonly used criterion to measure detection perfor-
abundance-fraction images represented by the mixing coef-mance specified by E@5) is the SNR, which is defined by
ficients a4,a5,...,a, estimated fromr. So, technically the ratio of signal energy to noise energy. According to Eq.
speaking, linear unmixing is an abundance-fraction estima- (5) the signal and noise energies can be obtained from the
tion technigue and is more than just a classification tech- variance ofxTPdeap and the variance ok"P{n, respec-
nique. Compared to mixed pixel classification, the classical tively. The resulting SNR is given by

spatial-based image classification can be viewed as pure

pixel classification that assigns class membership on a pure [X"Pyda,[X"Pyda,]”  ad(x"Pid)(d"Pyx)

pixel basis. The resulting image is basically a classification SNR(x) = E[(XP5n) (X" PLn)T] TPl E[nnT]Pix

map rather than a gray-scale image. v v v v

Here, without loss of generality, we assume that the desired

a5 (X"PHddTPy]x)
3 Orthogonal Subspace Projection Approach - o2(XTPx) ©)

The OSP approach is a linear unmixing method that has o ) _ _ )
shown great success in mixed pixel classification. It was wherze the noise is assumed to be white with variance given
recently developed by Harsanyi and Ché&rgdivides a set by o*.

of the p targets of interestit, ,t,,... t,} into a desired tar- It has been shown that maximizing E(f) over x is
get, sayt,, and a set of undesired targeft,,to,....tp—1}, equivalent to finding the maximum g envalue of the fol-
which may include natural or background targets. Since we /0Wing generalized eigenvalue probl

are only interested in the desired targgt all other targets (UZPﬁ)’l(ag[PtddTPt])x:)\x. @

will be considered as interfererstg. In this case, a logical

approach is to eliminate the interfering effects caused by Since the detection problem specified by E).presents a
the undesired targets,t,,...,t, ; prior to detecting, . As two-class classification problem, the rank of the matrix on
a result of elimination of these undesired target signatures,the left of Eq.(7) is one. This implies that the only nonzero
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eigenvalue is the maximum eigenvalue that also solves Eq.applied to the image via Eq10). If the target signature

(7). The solution to maximizing Eq6) overx is known as
a matched filteM 4 and given by

M 4(X) = kd for some constantk,

8

where the matched signal is the desired signatur8ub-
stituting Eq.(8) into Eq. (6) yields

N max= SNR(d) =max SNR(x) }

(o , (dTPyd)(d"Pyd)
=\a, o

P d"Pyd

2

o
= (—) d™Pd. 9

g
It turns out thatx= xd with A= (a,/0)?d"Pyd also satis-
fies Eq.(7). Based on the approach outlined by E@.to
(9), an OSP classifier, denoted Bysp, can be obtained by
Sosd ) =MyPyr=d"Pyr, (10)
wherex=d with k=1 in Eq. (7).

The classifierdpgp in Eg. (10) is implemented by an
undesired-signature rejectBy; followed by a matched fil-
ter My. More precisely, if we want to detect a target sig-
natured in a mixed pixel, we first apphPy; to Eq. (2) to

eliminateU, then use the matched filtét to extract thed
from Eq. (4).

4 Unsupervised Orthogonal Subspace
Projection Approach

According to Eqgs(1) and (2), the OSP classifier requires
complete knowledge of thep target signatures
my,m,,...,m, in the target signature matriM, which are

appears in the resulting image js declared to be detected
and classified. Otherwise, a new orthogonal subspace pro-
jectorPfdml] using Eq.(3) is applied to the original image.

It projects all image pixel vectors to the spdcem,)* that

is orthogonal tad andm;. Once again, the signature vector
with maximum length in(d,m;)* will be selected as a
second target signature, denotednby. Then an OSP clas-
sifier Sosp=d"Pjin m,, USing U=[m; m,] as the
undesired-target signature matrix in Eg), is applied to

the image. If the resulting image does not detect the target
signatured, the above procedure will be repeated to find a
third target signaturens, a fourth target signatuma,, etc.,

until the target signaturd is detected. Such a process is
called atarget generation proces§ GP).

Since we do not know how many target signatures
should be generated, the OSP classifier used in the TGP
must be applied every time new target signature is gener-
ated. Additionally, the TGP should not rely on visual in-
spection to determine when the procedure must be termi-
nated. Fortunately, this situation can be avoided provided
that there exists a reliable stopping rule to determine how
many generated target signatures are sufficient for target
detection and classification. In the following, such a crite-
rion can be also derived from the concept of OSP. It is
based on the orthogonal correlation between the target sig-
natured and the projection operatcﬁ?ﬁ,.

Let U;=[my; m, --- m;] be thei’th target-signature set
used for the OSP classifier in tih stage. We then define
the orthogonal projection correlation indéRPCI) by

ni=d'Pyd. (11

SinceU;_,CU;, we haveni=dTPﬁids ni_l=dTPﬁi d

-1

for all i's. This implies that the sequencl’Pyd} is

assumed to be present in the image data. With the use ofmonotonically decreasing in Thus the OPCI sequence
thesep target signatures the image data can be represented »;} is monotonically decreasing in Using this property

by their linear combinations via E@l) with relative abun-
dance fractionsy;,as,...,a,. This knowledge must also
include background information. Unfortunately, in reality,

as a stopping criterion, the TGP can be summarized as fol-
lows.

obtaining these background signatures is nearly impossible 7arget generation process (TGP).

a priori, and they must be obtained directly from the image
data in an unsupervised procedure. In this section we de-
scribe an unsupervised OSP, which is derived from the DT-
DCA in Ref. 7 as follows.

Since the desired target signaturés provideda priori,
we use it as an initial target signature, then employ an or-
thogonal subspace projectBy to project all image pixel
vectors into the orthogonal complement space, denoted by
(dy*, that is orthogonal to the spacd) linearly spanned
by d. The maximum length of a signature vector ()"
that corresponds to the maximum orthogonal projection
with respect tad will be selected as a first potential target
signature, denoted by, . The reason for this selection is
that the selectedn; will have the most-distinct features
from d in the sense of orthogonal projection, becaose
has the largest magnitude of projection( @)* produced by
P;. Then an OSP classifiefosp=d P}, with U=m, is

1.

3.

Initial condition: Select an initial target signature of
interest, denoted byl. Let ¢ be a prescribed error
threshold. Set=0 andUy=.

. Find orthogonal projections of all image pixels with

respect tad, by applyingPy via Eq.(3) to all image
pixel vectorsr in the image.
Find a first target signature, denotedray, by

my=argma{ (Pgr)"(Pgr)1}. 12

If 771=dTPtld<s, go to step 8. Otherwise, seto

i+1 and continue.

. Find thei’th target signaturen; generated by thigth

stage, i.e.,

Optical Engineering, Vol. 41 No. 7, July 2002 1549
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m;=argmax{(P(gy,_ 1" (Piau,_,N1} (13
r
whereU;_;=[m; m, --- m;_4] is the target signa-
ture set generated at the<(1)st stage.
6. Calculate OPCIm=dTPﬁid using Eq. (11), and
compare it with the prescribed thresheld

7. Stopping rulelf 7;>¢, go to step 5. Otherwise, con-
tinue.

8. At this stage, the TGP is terminated, and the
undesired-target signature matti generated at this
point containg target signatures, which will be used
in EQ. (2). It should be noted that each cycle from
step 5 to step 7 generates one target signature at &
time.

The error threshold in step 7 is generally chosen em-
pirically. It is generally determined by the classifier used,
such as OSP. An alternative to selectioneois to set the
number of targets needed to be generated in the TGP and
use this number in step 7 to terminate the TGP. Which one
is a better stopping criterion is determined by applications
and users’ preference.

Now, incorporating the TGP into the OSP, a UOSP can
be implemented as follows.

UOSP algorithm.

1. Selectd to be the target signature for the desired
target.

2. Used as the initial target signature in the TGP to
generate an undesired-target signature matrix, de-
noted byU; .

3. Use the OSP to classifg. It should be noted that
when we do so, any target signature other ttamill
be considered to be an undesired-target signature
with respect tod, no matter whatd is. Thus, the

(a) band 1

(c) band 3

(d) band 4

(e) band 5

Fig. 1 Five bands of computer-generated phantom images.

tral MR image has only a few spectral bands. In this

case, instead of determining the error threshgldt

is easy to preset the number of target signatures re-
quired to be generated in the TGP by the number of
spectral bands, as shown by experiments in the fol-
lowing section.

. The performance of the UOSP is significantly af-

fected by the knowledge of the desired target signa-
tured. If that is contaminated, the matching ability in
the matched filter in the OSP will be greatly reduced,
and so will the classification.

. It should be noted that the described UOSP is de-

signed to classify one target signature at a time by
varying the desired-target signatude However, it
can also be implemented to classify multiple target
signatures simultaneously by replacidgn Eq. (10)
with a desired-target signature matiixthat consists

of all the target signatures needing to be classified.

5 Experiments

Several comments are noteworthy:

1.

generated target signature mattik will be the U
used in Eq.(10). Now, apply the OSP classifier
Sosp= dTPﬁJi to all image pixel vectors, and the
resulting image will show only the target signatuke
with all target signatures it); being nulled out.

In this section, we present two sets of experiments, one on
computer-generated phantom images and another on real
MR images. The phantom image experiments enable us to
conduct a quantitative study and error analysis for the
UOSP, while the real MRI experiments allow us to assess
its utility and effectiveness in medical diagnosis.

In order to evaluate performance of the UOSP, the
widely used c-means methtd(also known as k-means
Although the UOSP uses E(l]) to determine the  method is used for comparative analysis. The reason to
number of targets required to generbkg this num- select the c-means method is that it is also an unsupervised
ber can be predetermined in some applications. For algorithm, but is a spatial-based pattern classification tech-
example, in MRI, we can preset this number to the nique. In order to make a fair comparison, the implemented
total number of bands minus one. This is because the c-means method always designates the desired-target signa-
orthogonal subspace requires an exclusive dimensionture d as one of its class means and thdixed during
to accommodate one specific target signature. If two iterations. Other than that, the c-means method is per-
target signatures are extracted in the same orthogona|f0l'med in the same fashion as does ISODATA described in
subspace, these two cannot be discriminated from Ref. 18.
one another by the OSP classifier. As a consequence, . . .
the total number of target signatures that can be ef- 5.1 Computer Simulations for Phantom Experiments
fectively discriminated by the OSP classifier cannot The computer-generated phantom images shown in Fig. 1
exceed the total number of spectral bands that are have five bands, each of which has the same size (256
used to acquire image data. Unlike hyperspectral im- X 256) and was made up of six overlapped ellipses with the
agery with hundreds of spectral bands, a multispec- radiance spectral signatures shown in Fig. 2. The total num-
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Fig. 2 Spectra of the five bands in Fig. 1.

ber of image pixels is 65,536. These ellipses represent
structure areas of three interesting cerebral tissues correig. 3 Five target pixels used in UOSP, with + indicating the de-
sponding to gray matefGM), white matter(Wi), and e O arbet piels generated by the TGP af the spata

; ; ; _ g four un
f;rz?:aaltﬁg'Ezlcﬂg'rcéﬁr?gk'gimg&? \F/)\?hr/:pgen%/ tCOStE_eTCﬁg coordinates (100, 92), (107, 168), (155, 99), and (157, 117).
gray-level values of these areas in each band were simu-
lated in such a fashion that these values reflect the average . e L
values of their respective tissues in the real MR images Still has difficulty discriminating GM from WM. As a mat-
shown in Fig. 9. Table 1 tabulates the values of the param-t€r Of fact, according to our experiments the c-means
eters used by the MRI pulse sequence and the gray-Ievelmeth(_)_d was not stable u_nt|l the SNR reached 45 dB. So the
values of the tissues of each band used in the experiments¢lassification maps in Fig. 5 were actually the average of

A zero-mean Gaussian noise was added to the phamomclassific:ation maps resulting from 40 implementations of
images in Fig. 1 so as to achieve various SNRs ranging 1€ ¢-means method. As a result, the images have random

from 5 to 20 dB. In order to apply the UOSP to these dots in the regions of BKG and CSF. This_ _imp_lies that the
phantom images, the desired target signatumeas speci- c-means method had difficulty with classification of BKG
fied by one of three target signatures of our inte(&m, and CSF. However, even in the case of SN&S dB, the
WM, and CSF shown in Fig. 2. Since there are five bands esults produced by the c-means method were only compa-
that can be used for orthogonal projection, four other un- rable to that in Fig. &) produced by the UOSP for SNR
known signatures were also generated by the TGP in the=20 dB. This is due to the fact that the UOSP took advan-
UOSP for elimination, to improve detection performance. tage of its mixed pixel classification capability.

They are shown in Fig. 3, where the pixel labeledwas In some practical applications, the knowledge of the de-
selected as the desired target pixel specified pgnd the sired target signaturd used in the UOSP may not be as
four pixels labeled with squares are specified by the targetaccurate as we desire. In order to see how this affects the
signatures generated by the TGP. Since there are considerJOSP performance, we conducted the same experiments as
able changes in performance between SNRIB and were done for Fig. 4, but the desired target signatLiveas
SNR=20 dB, both sets of results will be presented in this contaminated by mixing it with 5% and 10% BKG signa-

paper for illustration.
Figures 4a) and (b) show the UOSP-classification re-
CSF
SNR =5 db
WM CSF

sults on GM, WM, and CSF for SNR5 and 20 dB, re-
spectively. Similarly, Figs. &) and(b) show the classifica-
tion results on GM, WM, and CSF produced by the
c-means method for SNR5 and 20 dB, respectively.
GM
(b) SNR = 20db

Comparing Fig. 4 with Fig. 5, the UOSP performed signifi-
cantly better than the c-means method. In particular, in the
case of SNR-20 dB the UOSP classified GM, WM, and
CSF almost 100% correctly, whereas the c-means method

WM

Table 1 Gray-level values used for the five bands of the test phan-
tom in Fig. 1.

Band MRI parameter TR/TE BKG GM WM CSF

2500 ms/25 ms
2500 ms/50 ms
2500 ms/75 ms
2500 ms/100 ms
500 ms/11.9 ms

207 188 182
219 180 253
150 124 232
105 94 220

95 103 42 Fig. 4 Classification results of the UOSP for images in Fig. 1 with
(a) SNR=5dB and (b) SNR=20 dB.

a b W NP
W W www
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WM CSF

WM
(a) SNR=5db

(a) SNR = 5db

WM
SNR=20db

CSF

(b) SNR = 20db

Fig. 7 Classification results of the UOSP with a 10%-contaminated
Fig. 5 Classification results of the c-means methods with (a) SNR d for images in Fig. 1 with (a) SNR=5 dB and (b) SNR=20 dB.
=5dB and (b) SNR=20 dB.

tures, respectively. To be more specific, two contaminated In other words, we first normalize the abundance fractio_ns
desired signatures were used for the experiments. One wa®f all the pixels in a UOSP-generated abundance-fraction
obtained by mixing 95% true signatuckwith 5% BKG image to the rang¢0,1]. More specifically, letr be the
signature, and another was obtained by mixing 90% true image pixel vector and(r), a(r),...,ap(r) be the esti-
signatured with 10% BKG signature. Figures 6 and 7 show mates of the abundance fractioas, a,,...,a, produced
their respective results for SNR5 and 20 dB. As we can by applying the OSP in Eq10) to the image pixel vectar.
see, the UOSP performance degraded slightly compared toThen for each estimated abundance fractég(r), its nor-

Fig. 4. Nevertheless, comparing Figs. 6 and 7 with Fig. 5, it malized abundance fractiai(r) can be obtained by

still outperformed the c-means method.

Unlike the images generated by the c-means method in aj(r)—mina;(r)
Fig. 5, which were classification maps, the images gener- _ r
ated by the UOSP were gray-scale with the gray-level val- &j(F)= maxa;(r)—mina;(r) 14
r r

ues proportional to detected abundance fractiord.ofn

order to conduct a quantitative analysis and make a fair

comparison with the results of the c-means method, we  Suppose thaa is used for the cutoff abundance-fraction

need to convert the UOSP-generated abundance-fractiorthreshold value in percent. If the normalized abundance

images into binary images. Here, we adopt an approachfraction of a pixel is greater than or equald.00, then the

proposed in Ref. 19, which used the abundance-fraction nixe| is detected as a target pixel and is assigned a 1; oth-

percentage as a cutoff threshold value for such conversion.gryise, the pixel is assigned a 0, which means that the pixel
is not a target pixel because its spectral signature does not
match the target signatuck Using this thresholding crite-
rion, we can actually tally the number of pixels that the
UOSP detected in its generated abundance-fraction images
as follows.

First of all, we defineN(d), Np(d), andNg(d) to be,
respectively, the total number of pixels specified by the
desired target signaturd the total number of pixels that

M WM CSF are the desired target signatuteand are actually detected
i8) BNR=5db as d by the UOSP, and the total number of false-alarm
pixels that are not the desired target signatdrbut are
detected asl by the UOSP. The desired target signatdre
can be chosen to be GM, WM, or CSF. Then the detection
rate and false-alarm rate can be defined by

R (d) = ND_(d) (15)
WM D N(d) ’
(b) SNR=20db
Fig. 6 Classification results of the UOSP with a 5%-contaminated d Re(d)= Ld) (16)
for the images in Fig. 1 with (a) SNR=5 dB and (b) SNR= 20 dB. F N—N(d)’
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Table 2 Detection results of Fig. 4(a) with SNR=5 dB.

Area a (%) N(d) Np(d) Ne(d) Rp(d) (%) Re(d) (%)
GM 5 9040 8398 14825 92.9 26.24
25 9040 5772 2800 63.85 4.96
50 9040 1370 157 15.15 0.28
WM 5 8745 8409 31388 96.16 55.27
25 8745 6216 5278 71.08 9.29
50 8745 1565 232 17.9 0.41
CSF 5 3282 3282 24012 100 38.57
25 3282 3282 364 100 0.58
50 3282 3279 0 99.91 0.00

Table 3 Detection results of Fig. 4(b) with SNR=20 dB.

Area a (%) N(d) Np(d) Ne(d) Rp(d) (%) Re(d) (%)
GM 5 9040 9040 13366 100 23.66
25 9040 9036 816 99.96 1.44
50 9040 7421 1 82.09 0.00
WM 5 8745 8745 30366 100 53.47
25 8745 8744 1063 99.99 1.87
50 8745 8094 1 92.56 0.00
CSF 5 3282 3282 8983 100 14.43
25 3282 3282 0 100 0.00
50 3282 3282 0 100 0.00

Table 4 Detection results of Fig. 5 produced by c-means method.

Area SNR N(d) Np(d) Ne(d) Rp(d) (%) Re(d) (%)
GM 5 9040 8708 6277 96.33 11.11
20 9040 9040 7489 100.00 13.26
WM 5 8745 8517 6201 97.39 10.92
20 8745 8745 9285 100.00 16.35
CSF 5 3282 2941 4003 89.61 6.43
20 3282 3166 4001 96.47 6.43

1
S~ SNR=20

s Ry T VU PP SN S ok YT 2
0.0 002 003 004 005 006 007 008 009 0.1 o 001 002 003 004 005 006 007 008 009 O
false alarm rate fatse alarm rate

Fig. 8 ROC curves generated by UOSP with SNR=5 and 20 dB.
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Table 5 Detection rates produced by the UOSP with SNR=5 and
20 dB.

Detection rate

SNR (dB) GM WM CSF
5 0.8711 0.8459 1.000
20 0.9841 0.9870 1.000

respectively, wheré\ is the total number of pixels in the
image.

Tables 2 and 3 tabulate the results of Fig. 4 for SNR
=5 and 20 dB, respectively, with chosen to be 5%, 25%,
and 50%. From these tables, when the abundance fractiorrig. 9 Five-band real brain MR images used for experiments. (a)
cutoff threshold percentage was set to be smalRp(d) TR/TE=2500 ms/25 ms; (b) TR/TE=2500 ms/50 ms; (c) TR/TE
could be very high at the expense of high(d), as in the féggomrzfg‘r’gr:‘nz (d) TR/TE=2500 ms/100ms; (e) TR/TE
case ofa=5%. Conversely, ifh was set to be larg&p(d) R
could be very low withRg(d) also low for GM and WM, as
in the case ofa=50%. Our experiments showed that a _ ) )
good compromise foa ranged from 25% to 35%. Bands 2, 3, and 4 are T2-weighted spectral images acquired

Table 4 tabulates the results produced by the c-meansby the pulse sequences TR/FR2500 ms/50 ms, 2500
method shown in Fig. 5 for SNR5 and 20 dB. Comparing ~Ms/75 ms, and 2500 ms/100 ms, respectively. Band 5 is the
it with Tables 2 and 3, we see that the number of false- T1-weighted spectral image acquired by the pulse sequence
alarm pixels produced by the c-means method was signifi- TRITE=500 ms/11.9 ms. The tissues surrounding the
cantly higher than that produced by the UOSP. For the casebrain, such as bone, fat, and skin, were semiautomatically
of SNR=5dB, the c-means method yielded much higher extracted using interactive thresholding and maskirithe

detection rates than did the UOSP, at the expense of veryslice thickness of all the MR images is 6 mm, and the axial
high false-alarm rates. For the case of SNFO dB, the  Sections were taken with a Ge MR 1.5T scanner. Before

c-means method achieved 100% detection rates in classifi-2cauisition of the MR images the scanner was adjusted to
cation of GM and WM, but also produced more than 10% prevent artifacts caused by the static and radio-frequency
false-alarm rates. Compared to the c-means method, the

UOSP also achieved nearly 100% detection rates with
false-alarm rates lower than 2%. As for CSF classification,
the UOSP achieved 100% detection rate with 0% false-
alarm rate, while the c-means method only reached 96.47%
detection rate with 6.43% false-alarm rate. In order to see
the overall performance of the UOSP using #% thresh-

old criterion, we variec from 100% down to 0%. For each

a, we produced a pairRg(d),Rp(d)). In this case, the
receiver operating characteristi®ROC) curves for SNR
=5 and 20 dB are plotted in Fig. 8, where the graphs
labeled (a) and (b) are the detection results of GM and
WM, respectively. If we further define the detection rate as
the area under an ROC cur¢®&Table 5 tabulates the detec-
tion rates produced by the UOSP for GM and WM with
SNR=5 and 20 dB. As we can see from these values, the
performance of the UOSP improved when SNR was in-
creased. According to Tables 2 and 3, the detection results
for CSF were nearly 100%, and their ROC curves would be
flat along the lineRp(d) =1. So these curves were not plot-
ted in Fig. 8.

©

5.2 Experiments on Real MR Images

In the following experiments, real MR images were used
for performance evaluation. They were acquired from ten
patients with normal physiology. One example is shown in Fig. 10 Targets generated by the TGP from Fig. 7. The cross rep-

Figs. 9a) to 9(e) with the same parameter values as given |esents the desired target d, and a solid square represents an un-
in Table 1. Band 1 is the PD-weighted spectral image ac- known target signature generated by the TGP. (a) d=GM; (b) d

quired by the pulse sequence TRABE500 ms/25 ms. =WM; (c) d=CSF.

(c) CSF
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CSF, are of major interest, and knowledge of them can be
generally obtained directly from the images. In our experi-
ments, the spectral signatures of GM, WM, and CSF used
for the UOSP were extracted directly from the MR images
and verified by experienced radiologists. Figure 10 shows
the spatial locations of the desired signatudesndicated

by a cross within a circle. The unknown target pixels gen-
erated by the TGP are indicated by solid squares, each of
which is circled. For example, the image in Fig.(40
shows three target pixels generated by the TGP uding
=GM; one (represented by a crosghat was the desired
target signature, and two othefsolid squares where
white and black were used to highlight these target pixels
for visual differentiation. Obviously, the TGP using differ-
ent target signatures generated different target pixels, as
demonstrated in Figs. ) and 1Qc). Figures 11a) to
11(c) show the classification results of the UOSP using the
five images in Figs. @) to 9e) and the targets generated in
Fig. 10. The images labeldd), (b), and(c) were produced,
respectively, by using GM, WM, and CSF as the desired
target signatured. For comparison, we also applied the

(©) CSF c-means method to Figs(d to 9e) to produce Figs. 12)
to 12c), where the classification maps of GM, WM, and
Fig. 11 Classification results of using UOSP for the image in Fig. 9. CSF are labeleda), (b), and(c), respectively. In compari-
(@) GM; (b) WM; (c) CSF. son with Figs. 12a) to 12(c), the UOSP performed signifi-

cantly better than did the c-means method.

It should be stressed that all the experimental results
magnetic fields and their gradients. All experiments were presented here were verified by experienced radiologists.
performed under the supervision of a neuroradiologist.

In order to enhance classification of these MR images, 6 Conclusion
the interfering effects resulting from tissue variability and -
characterization must be eliminated. However, to identify SJE%Z%Z”?:] S#?;S;%Zc?rrglje?rﬂggf Bclgsa;ﬁig%vnn ?tre(}ag a
the sources of this interference is nearly impossible unless, . .neq filter-based classifier and can be also considered
prior information is provided. On the other hand, in many .o "o aigenimage approach. The concept of using matched
MRI applications, the three cerebral tissues, GM, WM, and filters is not new and has been found in many applications
in pattern classificatio®?>However, its strength in classi-
fication of MR image sequences has not been exploited.

This paper presents a new application of an unsuper-
vised OSP(UOSP in MR image classification where no
prior knowledge of the image background is required. The
only required knowledge is the desired target signature that
needs to be classified. Since it is generally difficult to char-
acterize an MR image background due to tissues variabili-
ties and unknown signal sources, the UOSP is particularly
attractive and useful for MRI classification. In order to il-
lustrate the utility of the UOSP, a detailed study of simula-
tions was conducted. The results were further supported by
(@ GM () WM real MR images.
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