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A PosterioriLeast Squares Orthogonal Subspace
Projection Approach to Desired Signature

Extraction and Detection
Te-Ming Tu, Chin-Hsing Chen, and Chein-I Chang,Senior Member, IEEE

Abstract—One of the primary goals of imaging spectrometry in
earth remote sensing applications is to determine identities and
abundances of surface materials. In a recent study, an orthogonal
subspace projection (OSP) was proposed for image classification.
However, it was developed for ana priori linear spectral mixture
model which did not take advantage ofa posterioriknowledge of
observations. In this paper, ana posteriorleast squares orthogonal
subspace projection (LSOSP) derived from OSP is presented on
the basis of an a posteriori model so that the abundances of
signatures can be estimated through observations rather than
assumed to be known as in thea priori model. In order to evaluate
the OSP and LSOSP approaches, a Neyman–Pearson detection
theory is developed where a receiver operating characteristic
(ROC) curve is used for performance analysis. In particular,
a locally optimal Neyman–Pearson’s detector is also designed
for the case where the global abundance is very small with
energy close to zero a case to which both LSOSP and OSP
cannot be applied. It is shown through computer simulations
that the presented LSOSP approach significantly improves the
performance of OSP.

Index Terms—A priori (pr); A posterior(ps); detection power,
false alarm probability, least-squares estimate, Neyman–Pearson
(N–P) detectors, orthogonal subspace projection, ROC curve.

I. INTRODUCTION

GOVERNMENT agencies, both civilian and military, are
placing a higher reliance upon remotely sensed image

data as an information source crucial to decision making
and planning. The fields of geology, geography, and agri-
culture have a strong history of exploitation of multispectral
image data for analysis and classification of earth surface
attributes. The use of high spatial resolution airborne and
satellite sensors improves the capability of identification and
discrimination of endmembers (materials), particularly for
endmembers with very similar spectral signatures. Hyper-
spectral imaging spectrometry is a new technology for earth
remote sensing applications from airborne and spaceborne
platforms. One major advantage of hyperspectral imagery over
multispectral imagery is that the former images a scene using
as many as 200 contiguous bands as opposed to the latter
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using only four–seven discrete bands. As a result, hyperspec-
tral data permit the expansion of detection and classification
activities to targets previously unresolved in multispectral
images. More precisely, a hyperspectral image acquired by
an imaging spectrometer such as airborne visible infrared
imaging spectrometer (AVIRIS) [2]–[3] using contiguous 10
nm wide spectral bands of a spectral coverage ranging from
0.4 to 2.5 m produces sufficient resolution for the direct
identification of endmembers with diagnostic features, whereas
a multispectral image such as acquired by the multispectral
scanner (MSS) and thematic mapper (TM) cannot resolve these
features because their spectral bandwidths are 100–200 nm
and not contiguous.

Despite the vast information provided by imaging spectrom-
eters, a major problem which arises in hyperspectral image
analysis is that scene pixels are generally mixed linearly or
nonlinearly by component surface endmembers or spectral re-
flectances of endmembers [4]–[6]. In a recent study [7], [8], an
orthogonal subspace projection (OSP) approach was proposed
as a classification technique for image pixels which are linearly
mixed. The idea was to apply an OSP classifier to eliminate all
unwanted endmembers and interferences within a pixel, then
use a matched filter to extract the desired endmember present
in that pixel. Therefore, OSP can be viewed as a subpixel scale
version of the simultaneous diagonalization filter developed in
[9]. Although there is no explicit assumption made in [7] on the
knowledge about the signatures (a signature will be referred
to as the spectral reflectance of an endmember hereafter), OSP
was developed based on an understanding that the signatures
and abundances were known and completed described in ana
priori (abbreviated by hereafter) spectral mixture model
specified by (3) below. However, in earth remote sensing
problems such as crop production and damage assessment,
estimating the fractions of endmembers resident in a mixed
pixel can be very important and useful. Fortunately, the OSP
can be still applied to this case where the true abundances
are replaced by their estimates [8]. This was actually done for
experiments in [7] where the true endmembers were directly
extracted from the images themselves.

In this paper, we present ana posteriori (abbreviated by
hereafter) least squares orthogonal subspace projection

(LSOSP) approach from a signal processing point of view.
In signal processing, a standard signal model is generally
described by

(1)
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where is an observation, is the signal of interest and
is additive noise. In many practical applications, what is

most useful is the observation from which a certain amount of
information can be retrieved to be used for prediction. So, if
we can predict the signal on the basis of the observation prior
to data processing and substitute it for the true signal in (1),
the difference between the predicted signal, denoted byand
the observation is the one that needs to be processed and is
usually referred to as the prediction error which is caused by an
inaccurate prediction plus the noise. Letdenote the resulting
prediction error, i.e., (1) can be reexpressed as

(2)

If the prediction can be made perfectly in (2), will be
zero, but this case does not occur in general, particularly
not in real world applications in remote sensing due to a
variety of unknown noise and unexpected interferences such as
effects from the atmosphere. In such a case, a goodness-of-fit
prediction technique is necessary. This can be accomplished by
designing good estimators in some sense of optimality. If we
can estimate the signal completely from the observation, the
estimation error (prediction error) must be orthogonal to the
estimated signal Then will be completely unpredictable
and contains no information which can be retrieved from the
observation. As a consequence,can be modeled by a random
noise. On the other hand, if is not orthogonal to it
means that is still correlated with and both and must
share same information to some extent. This correlation further
implies that the estimator used foris not optimal and a better
estimator may exist. Accordingly, the model given by (1) will
be called a signal model, while (2) will be referred to as a
signal model. The can be thought of asa posterioriestimate.
It should be noted that a signal model is useful when the
observation process is not available in the beginning of data
processing. Using a statistical model as a signal model
is a common practice in the signal processing community.
However, the importance of a model will considerably
diminish if the number of observed samples is increased. In
this situation, a model begins to show its dominance and
tends to replace the model. As the observation process
continues on, the model may eventually take over the

model. Consequently, methods using a model will
subsequently improve those based on amodel. This is the
main focus to be addressed in our paper.

The objective of the proposed LSOSP is to take the above
approach and produce an optimal estimator for signature
abundances of interest based on minimizing the least squares
error. Although LSOSP is derived from OSP, their underlying
concepts are fundamentally different as described previously
because the former is based on a linear spectral mixture
model, while the latter uses a linear spectral mixture model.
LSOSP is used to find the best linear least squares estimate of
the abundance of a desired signature. It first decomposes the
observation space into a signature space and a noise space,
then projects the observation into the signature space. As a
result of this projection, the noise effects are greatly reduced
and the original signal-to-noise ratio (SNR) is improved. In the
following stage, OSP is used to eliminate undesired signatures

in the signature space to reduce data dimensionality. Since
LSOSP operates now on the noise-reduced observations, it
significantly improves on the OSP approach in [7], which was
developed to be applied to the observation space.

In order to evaluate the performance of OSP and LSOSP,
a signal detection model making use of the Neyman–Pearson
theory is developed where the receiver operating characteristic
(ROC) curve is used for performance analysis with the false
alarm probability measured by the estimation error (or predic-
tion error) and the detection power represented by the accuracy
of the estimation. Two advantages can be gained by the LSOSP
approach. One is that the SNR is improved by a factor of the
ratio of the data dimensionality to that of the signature space.
This is particularly significant for remote sensing imagery
where the data dimensionality is generally much larger than
that of the signature space. The second advantage is that noise
effects are reduced substantially by projecting the observation
into the signature space whereby the Neyman–Pearson’s de-
tection power is increased significantly. Computer simulations
show that for a desired signature with abundance less than
5%, LSOSP improves OSP performance. For the case where a
pixel contains a very small fraction of a desired signature, and
where OSP and LSOSP are not directly applicable, the locally
optimal Neyman–Pearson detector developed in [11] and [12]
is adopted for weak signature detection.

This paper is organized as follows. Section II is the problem
statement and formulation where a linear spectral mixture
model is described. Section III presents a least squares esti-
mation approach to convert a linear spectral mixture model
to linear spectral mixture. Section IV describes LSOSP
approach and applies it to the model. In order to evaluate
LSOSP and OSP, Section V derives Neyman–Pearson (N–P)
theories for the and models as well as a locally optimal
N–P theory for weak signature detection. Section VI presents
simulation results for the performance analysis of LSOSP and
OSP approaches. Section VII includes a brief conclusion.

II. PROBLEM STATEMENT AND FORMULATION

In hyperspectral image analysis, the spatial coverage of
each pixel generally encompasses multiple materals. In such a
case, the spectral signature of the pixel is an admixture of the
specral signatures of these endmembers and the identification
of a target signature of interest within such a mixed pixel
requires a detection technique at subpixel scale. In image
processing, many techniques have been developed for pixel-
by-pixel processing, but not particularly for subpixel analysis.
As a result, most of them are not immediately applicable. For
example, the matched filter/correlation filter widely used in
communications/signal processing [13] cannot be directly used
in mixture analysis. In this paper, we only consider the linear
spectral mixture model described below [4]–[8], [14], [15].

A. Linear Mixture Model for
Multispectral/Hyperspectral Images

Let be a column vector and denote theth pixel
in a hyperspectral image whereis the number of bands.
Assume that is a matrix and made up of endmembers
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denoted by where and is an
column vector representing the spectral reflectance of theth
endmember. Let be a nonrandom column vector
given by and denote the fraction
of the th endmember present in pixel A linear spectral
mixture model similar to (1) for a hyperspectral image pixel

assumes that is a linear combination of endmembers
with the weight coefficients designated by abundance vector

plus noise More specifically,

(3)

where is an column vector representing additive white
Gaussian noise with zero mean and covariance matrix
and is the identity matrix.

III. A POSTERIORIMODEL

When the model (3) is used, it generally assumes that the
abundance is known a priori. This is a Bayes approach
which has important theoretical interest. However, in many
real world applications, are generally not known and
must be estimated from the observation vectorIn doing so,
one approach is to use a least squares error estimation given
in [10] to convert the model (3) to model similar to (2).

Let be the estimate of based on the observation
vector where the subscript is suppressed and the “hat”
symbol, “ ” is used to indicate an “estimate.” Then the least
squares error is given by

(4)

Differentiating with respect to and setting to zero
yields the optimal least squares estimate of

(5)

where is the pseudo inverse of We
would like to point out that (5) was also derived in [8].

As a result, the model in (3) can be equivalently stated as
the following model

(6)

where

(7)

Since all estimates are made based on the observation
vector is included in the above notations of estimates to
indicate that they are functions of the observation vector
However, unless some cases need to be specified,will be
omitted throughout the rest of the paper to simplify notations.
According to [10], the model described by (3) is called Bayes
model or model because it requires information. On the
other hand, if we let the model in (6) is
equivalent to that in (2), and thus the model (6) will be referred
to as model because no knowledge ofis required, only the
observation vector The relationship between the model
and the model is illustrated in Fig. 1 where a model and a

Fig. 1. Relationship betweenpr model andps model.

model are represented by two solid vectors and two dashed
vectors respectively. It is also worth noting that since the least
squares estimate is optimal, as mentioned previously in
the introduction, and must be orthogonal.

Let

(8)

(9)

where is an identity matrix.
From (5), (8) and (9) and can be expressed by

and , respectively. The and
defined by (8), and (9), are projection operators which

project the observation vector into the signature space and
noise space respectively. It is shown in [10] that these two
operators are symmetric and idempotent. More importantly,
they are orthogonal. In other words, the signature space and
noise space projected by and are orthogonal and one
is the orthogonal complement to the other. More detail of this
can be found in [10].

Now applying to (3) results in

due to

(10)

since (11)

where is the estimation error term and anni-
hilates because and
Furthermore, from [10] is unbiased and its
covariance matrix is given by

(12)

Since is Gaussian, so is from (11) with the probability
distribution given by
where Similarly, from (9) and (11) the estimate
of the noise, has the Gaussian probability distribution

(13)
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It is important to notice that the estimator is unbiased,
i.e., In particular, the variance of is
given by

var

trace

(14)

where is the dimension of the signature space.
If we define the SNR for a random vector as

mean mean
var

(15)

then the SNR for in the model of (3) is given by

trace
(16)

where is the dimension of the observation space [10; pp.
379–380]. Similarly, the SNR for the estimator, in the
model is given by

trace
(17)

where the last equality follows from (14).
As a result, the ratio of the to can be obtained

by

(18)

It is worth noting that the result of (18) is significant.
It simply says that the model can produce a greater
improvement upon SNR than that of model, provided that

This is certainly true for remote sensing imagery in
which the data dimensionality is usually much larger than that
of the signature space.

IV. L EAST SQUARES SUBSPACE PROJECTION

Despite the SNR improvement by an amount of by (18)
via converting from a model to a model, the data dimen-
sionality was not reduced by the projection operator
However, this can be achieved by the OSP method proposed
by Harsanyi and Chang in [7] to simultaneously reduce data
dimensionality and suppress unwanted or interfering signatures
while enhancing the desired signature.

In order to illustrate the above idea, we rewrite in the
following form

(19)

where is the desired signature assumed without loss of
generality to be the column vector is an

matrix given by and is a
vector which contain the first components of

Therefore, the model (4) can be
rewritten as follows

(20)

where the notation is used to simplify the notation
and indicates the estimate of the abundance of the-th
signature. It is worth noting that the estimate of the noise,

is a combination of the signature estimation errorand
the noise projection of into

So, the first stage is to eliminate the uninteresting signatures
which are contained in then followed by a second stage
using a matched filter to pick up the desired signatureThe
suppression of undesired signalsis accomplished by an OSP
operator given by

where is the pseudo inverse of

(21)

which maps the desired signatureinto a space orthogonal
to the space spanned by the uninteresting signatures inIn
other words, annihilates all undesired signatures.

Applying to (10) renders

(22)

It can be shown that and
In addition, is symmetric

and idempotent.
In order to find a vector which maximizes the SNR defined

by (15), we apply to (22) and obtain

(23)

where due to

The is given by

(24)

where the second equality of (24) is true from (12).
Maximizing (24) turns out to be a generalized eigenvalue

problem [16]–[17]

(25)

The solution to (25) is given by

(26)

Without loss of generality, let The maximum eigen-
value is obtained by

(27)

where the second equality follows from
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Comparing (27) to the SNR given in [7],

(28)

Equation (27) is obtained by replacing in (28) by
where the projector is introduced in (27)

to account for the estimation of It is easy to see that
and which implies that

the least squares projector does not alter the maximum
eigenvlaue of (25).

The operation solving equation (25) is called the matched
filter, denoted by a linear filter widely used in commu-
nication systems which is an inner product of a vectorwith
an another vector i.e.,

(29)

From (27) and (28) the matched filter designed by (29) is
exactly the same as one obtained in [7].

By coupling the projector given by (8) and the OSP
operator by (21) with the matched filter by (29),
the final desired linear operator, can be derived by

and

(30)

The operator given by (30) achieves a, b and c SNR
improvement by making use of b) undesired signal
removal and desired signal enhancement by OSP operator

and c) data dimensionality reduction by the matched
filter

As a matter of fact, the estimate of can be obtained
from (20) and (30) as follows

due to

due to (31)

From (27), (28), and (31), OSP and LSOSP are equivalent to
the spectral linear unmixing approach specified by (3)–(5). It
is worth noting that a similar result was also derived in [8].

V. NEYMAN-PEARSON DETECTION THEORY

In the OSP method [7], the fractions of abundance of
spectral signatures are assumed to be known
and constant. However, in most of real cases,
are unknown. Thus, these need to be estimated
prior to application of the OSP method. Section III suggested
the LSOSP method to use a signature projector to produce

the best least squares estimate ofbased on observations,
to replace the true in the OSP method. In this section, we
develop a N–P detector to evaluate the performance of OSP
and LSOSP where the former is based on theobservation
model given by (3) and the latter is based on themodel
given by (6). The computer simulations in Section VI show
that LSOSP outperforms OSP. In the following, we first briefly

review the N–P detection theory in Section V-A, then develop
the N–P detector and locally optimal N–P detector for LSOSP
in Section V-B. Finally, the same theory is applied to OSP
in Section V-C.

A. N–P’s Detection Theory

A detection problem is generally described as a binary
hypothesis testing

versus

(32)

where is an observable random variable,is a target signal
and is noise.

The hypothesis is called the null hypothesis, representing
noise only and is the alternative hypothesis indicating the
presence of a target signalplus the noise The decision of
detecting a target signal is made based on an observation

generated by the random variable governed by one of
two probability density functions and depending
upon which hypothesis is true. An optimal detector is generally
determined by criteria such as cost functions and prior proba-
bilities associated with the hypotheses. If both are not knowna
priori, an alternative criterion is needed in this case. The N–P
approach is one which adopts the false alarm probability
as a criterion measure defined as the probability of declaring
the presence of a target when there is actually no target, i.e.,
the detector declares when is true. A counterpart of
the false alarm probability is the probability of detection or
detection power, which is defined as the probability of
detecting a target when the target is actually present, i.e., the
detector declares when is true. The performance of a
N–P’s detector is generally evaluated based on an ROC curve,
a graph of the false alarm probability plotted versus the
detection power

It is known that the optimal detector yielded by the N–P
approach turns out to be a likelihood ratio test with the
following form

declaring if

declaring if

declaring if

(33)

where defined in (33) is called a likelihood ratio test
or test statistic and is a threshold determined by the false
alarm probability The in (33) is the probability of the
detector declaring when the likelihood ratio test

equals the threshold As a result, the is called
a randomized detector.

B. A Posteriori Signal Detection Model for LSOSP

Applying in (30) to given by (6) or (20) yields

(34)
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Equation (34) represents a standard signal model with a
signal corrupted by the noise given by

(34)

where , and the noise are scalars.
Let be the random variable representing the observation
in (34). The hypothesis testing problem (32) becomes

versus

(36)

where the null hypothesis and the alternative hypothesis
represent noise alone and the presence of the estimated

desired signature in the signature space respectively.
and are Gaussian distributions given by

(37)

and the estimated noise variance is given by

(38)

It should be noted that theoretically, the noise variancein
(38) is zero because is noise and when operates on

the resultant noise will be removed. This is due to the
fact that (5) is the solution to an unconstrained least squares
problem described by (3) and (4). In many applications,
however, there are constraints such as all abundances must
lie between 0 and 1, and add up to one [14], the lack of
exact knowledge about signatures of endmembers, atmospheric
effects, etc. As a result, is generally very small but not zero.

Substituting (37) into (33) results in the following N–P
detector

declaring if
declaring if

(39)

where

(40)

is the threshold obtained by specifying a particular false
alarm probability given by and
given by (37). The notation is the standard Gaussian
distribution with zero mean and unit variance given by

and is the inverse function of
with It should be noted that since the

observable random variablein (36) is governed by Gaussian
distributions given by (37), a N–P’s detector can be designed
by a nonrandomized detector as given by (39) without using
a randomized detector as in (33).

For the given in (40) as a false alarm probability,
can be calculated as follows

(41)

Substituting (40) into (41) yields

(42)

In (42), we can see the detection power is determined by
for any fixed false alarm probability However, the is in
turn determined by Since is a fixed constant,
the is inversely proportional to the quantity

B. Locally Optimal N–P’s Detectors

In the hypothesis testing problem (36), the probability
distribution under hypothesis depends on the strength
of the desired signature If the signal energy is very small
and close to zero, i.e., the solution given by (39) is not
applicable. In order to account for weak signals, a composite
hypothesis testing problem described below is used to replace
(35) (see [11]–[12])

versus

(43)

where the noise is given in (35), is a parameter controlling
the energy of the signal or SNR and supposed to be very
small close to zero.

In this case, we expand the detection power in terms of
a Taylor series about 0. Namely

(44)

Since as can be approxi-
mated by

(45)

From (45), the maximum power can be approxi-
mately achieved by choosing a decision rulewhich max-
imizes The optimal detector for (43) ob-
tained by maximizing is called a locally
optimal N–P’s detector which can be expressed by

if

if

(46)

where is the partial derivative of the likelihood
ratio test with respect to Substituting for and
for in (43) yields the following hypothesis testing problem
for weak signature :

versus

(47)

where is given by (34).
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From (47), the locally optimal N–P’s detector for a very
small signature (i.e., close to zero) is found by

if

if

(48)

From (48) the false alarm probability is given by

(49)

where

(50)

This implies that

(51)

In order to find the locally optimal detection power
specified by (45) with we need calculate

as follows:

(52)

The last equality of (52) follows from substituting (51) for
Placing (49) and (52) into (45) yields the locally optimal

detection power

(53)

From (53), we note that the locally optimal detection power is
also determined by the standard deviation of the noisei.e.,

and the signal strength the projection
of by the LSOSP

C. A Priori Signal Detection Model for OSP

Following the same approach given in Sections V-A and
B we obtain similar results for the signal model for OSP
without further derivations as follows

versus

(54)

TABLE I
PARAMETERS USED FOR FSS

where is the operator developed in [7],
with variance and

are given by

(55)

The resulting N–P detector is given by

declaring if
declaring if

(56)

and

(57)

with the threshold obtained by specifying a particular false
alarm probability given by where
is given by (55). The corresponding detection power is

(58)

Analogous to (53), the locally optimal detection power for
(54) can be obtained similarly by

(59)

Comparing (58) with (42) and (59) with (53), LSOSP intro-
duces an extra noise annihilator operator in (42) and (53)
which takes advantage of the knowledge about based
on (6) or (20) to suppress noise while (58) and (59) only
relying on and the information provided by the model
(3). This effect makes a significant difference in detecting
weak signatures which is shown in the computer simulations
in Section VI.

VI. COMPUTER SIMULATION RESULTS

In this section, experiments are conducted by computer
simulations based on the field spectrometer system (FSS)
data which has 60 spectral bands [18]. No other effects
in actual remote sensing from sensors and atmosphere but
white Gaussian noise is simulated. Namely, the raw radiance
data collected by sensors are converted to reflectance data
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(a)

(b)

(c)

Fig. 2. (a) Reflectance spectra of data set 1. (b) Reflectance spectra of data set 2. (c) Reflectance spectra of data set 3.

by removing the effects of atmospheric transmission and
scattering. The major parameters of the FSS data are listed
in Table I. Since bands corresponding to the water absorption
regions have no useful energy, they are removed prior to
processing which leaves 56 bands in this study. In [7] the
OSP method failed to classify a signature with abundance less
5%. In Experiment 1, we consider the situation where the
desired signature contains abundance less than 5%. It is found
that in the N–P’s detection approach described in Section IV,

projecting observation vectors into the signature space where
only a very small part of the noise is contributed to the
signature space significantly improves the detection power.
As a result, the desired signature with a small fraction of
abundance can be picked up by the LSOSP method but not
by the OSP method. If the abundance is very small and close
to zero, the N–P detector cannot be applied. Instead, a locally
optimal N–P’s detector needs to be implemented. Experiment
2 examines this case.
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TABLE II
SIMULATIONS OF DESIRED AND UNDESIRED SIGNATURES FORTHREE DATA SETS

In the following experiments we consider and
is a spectral abundance vector corresponding

to a signature matrix with as the
desired signature and as its associated spectral abundance.

is the undesired signature vector. Three
simulated data sets are used to test the proposed the LSOSP
and OSP methods. Each data set contains three signatures
from five endmembers listed in Table II. Data set 1 contains
three distinct signatures as shown in Fig. 2(a) where spring
wheat is designated as the desired signature, and oats and
summer fallow are undesired signatures. Data set 2 shown
in Fig. 2(b) contains summer fallow and two signatures with
similar spectral reflectances, spring wheat and native grass,
with native grass selected as the desired signature. Data set 3
contains spring wheat, grain sorghum and native grass whose
spectral reflectances are nearly indistinguishable as shown in
Fig. 2(c), with native grass chosen to be the desired signature.
All the three data sets are simulated based on ground truth.
50 pixels to be used in the experiments are simulated as
follows. Each pixel contains three different signatures with
various spectral reflectance abundances. White Gaussian noise
is also simulated and added to each pixel to generate three
SNR’s, 50:1, 30:1, and 10:1, respectively, with the SNR is
defined as 50% reflectance divided by the standard deviation
of the noise [7]. It should be noted that this defined SNR is
an accepted convention used in the remote sensing community
and is different from the SNR defined by (15).

A. Experiment 1 (N–P’s Detection)

As shown in [7], when a desired signature has abundance
less than 5%, the OSP method failed to pick it up. In this
experiment, we will show that this case can be improved by
the LSOSP method. To do so we simulate 50 pixels for each
of the three data sets as given in Table III where the 50 pixels
are divided equally into five classes, each of which contains 10
pixels. The 10 pixels in each class contain the same amount of
signature abundance. For example, The pixels in the first class
contain 1% abundance of the desired signature and 49.5% for
each of two undesired signatures.

Three experiments (false alarm probabilities 0.1, 0.01,
and 0.001) are conducted, respectively, for each data set under
three different SNR’s. The results are shown in Figs. 3–5 for

and Table IV for 0.01 and 0.001. Fig. 3
is obtained for data set 1 for three different SNR’s, Fig. 3(a)
for SNR 50:1, Fig. 3(b) for SNR 30:1 and Fig. 3(c) for
SNR 10:1. Similarly, Figs. 4 and 5 are the results of data
sets 2 and 3, respectively. As we can see from these figures

(a)

(b)

(c)

Fig. 3. Simulation results for false alarm probability= 0.1 for data set
1. (a) Normalized output power versus pixel’s number for SNR= 50:1.
(b) Normalized output power versus pixel’s number for SNR= 30:1. (c)
Normalized output power versus pixel’s number for SNR= 10:1.

(a), (b), and (c), the detection performance degrades as the
SNR decreases. In addition, Figs. 3–5 show that the detection
capability also depends upon the spectral similarity between
signatures. The more similar the spectra of signatures, the more
difficult the signatures are to detect.

Since the LSOSP works more impressively than OSP for
low false alarm probabilities, we tabulate in detail the results
of 0.01 and 0.001 in Table IV. The columns of the table
show the three SNR’s, 50:1, 30:1 and 10:1 using the LSOSP
and OSP methods under two different false alarm probabilities

0.01 and 0.001. The numbers in each row represent the
number of pixels detected by the LSOSP and OSP methods.
For example, the row labeled by 1% under the data set 1
shows that the OSP method missed all pixels which contain 1%
desired signature abundance even in the case that the SNR is
very strong (50:1). This situation significantly improves using
the LSOSP method which detected all 10 pixels for SNR
50:1 and 30:1. In the case of SNR 10:1, it detected eight
pixels and only missed two pixels.

A more important factor that dominates the detection per-
formance is the similarity of signature spectra. This is shown
in Table IV for data set 3 where all three signatures are similar.
Neither of the OSP and LSOSP methods can detect the case
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TABLE III
ABUNDANCE FOR 50 SIMULATED PIXELS FOR THREE DATA SETS

TABLE IV
SIMULATIONS FOR FALSE ALARM PROBABILITY = 0.01 AND 0.001 FOR THREE DATA SETS

where the desired signature has 1% abundance even when the
SNR is as high as 50:1. Nevertheless, LSOSP improves its
performance rapidly as SNR increases. In other words, three
factors affect the detection performance, SNR, false alarm
probability and the spectral similarity between desired
and undesired signatures. The higher the SNR, the better the
detection; the smaller the false alarm probability, the worse the
detection; and the more similar the spectra, the more difficult
the detection.

This example clearly demonstrates that the LSOSP method
outperforms the OSP method in all experiments. In particular,
in an unknown environment, using knowledge may not be
reliable. Instead, knowledge based on observations will be
more realistic and provide better estimates for the environment.

B. Experiment 2 (Locally Optimal N–P Detection)

In Experiment 1, we found that both OSP and LSOSP
could not detect the existence of a signature with abundance
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(a)

(b)

(c)

Fig. 4. Simulation results for false alarm probability= 0.1 for data set
2. (a) Normalized output power versus pixel’s number for SNR= 50:1.
(b) Normalized output power versus pixel’s number for SNR= 30:1. (c)
Normalized output power versus pixel’s number for SNR= 10:1.

l% as shown in the row 1% of data set 3 of Table IV. In
this case, we turn to the locally optimal N–P’s detection
theory to derive a locally optimal detector for weak signatures.
Equations (53) and (59) are the powers of a locally optimal
N–P’s detectors for LSOSP and OSP respectively given that a
flase alarm probability is fixed at level In this experiment,
100 pixels are simulated as follows. Pixel one contains 0.01%
of the desired signature, pixel two contains 0.02%, pixel three
0.03%, etc. The other two undesired signatures evenly share
the remaining abundance. As the pixel number increases by 1,
the abundance of the desired signature is increased by 0.01%.
So, the hundredth pixel contains the largest abundance of the
desired signature, which is 1%. The ROC curves are plotted
for OSP and LSOSP in Fig. 6 with abundance ranging from
0.01% to 1% for 100 pixels, Fig. 6(a) for data set 1 with SNR’s

0.1, 1, 5, 10. 6(b) for data set 2 with SNR’s0.1, 1, 5, 10
and 6(c) for data set 3 with SNR’s 0.1, 1, 5, 10. It should be
noted that the diagonal line in the ROC plot represents the case
that the false alarm probability is equal to the detection power,
which is the lower bound to the detection power. This can be
seen from (53) or (59). The first term on the right in (53) is the
false alram probability and the second term is dominated by
two factors, (or and If (or then the

(a)

(b)

(c)

Fig. 5. Simulation results for false alarm probability= 0.1 for data set
3. (a) Normalized output power versus pixel’s number for SNR= 50:1.
(b) Normalized output power versus pixel’s number for SNR= 30:1. (c)
Normalized output power versus pixel’s number for SNR= 10:1.

ROC curve is the diagonal line. When or the
second term on the right in (53) or (59) always approaches
0, in which case, or
as expected. So, in the case of the weak signature detection,
we may anticipate that the corresponding ROC curves will be
slightly above this diagonal line as shown in Fig. 6, which
indicates that the locally optimal detection power will not be
as good as the case of strong signature detection. In Fig. 6,
we can see that LSOSP significantly improve OSP in all three
data sets, particularly, for data set 1, Fig. 6(a). It is also shown
in Fig. 6 that the spectral similarity between signatures plays
an important role in detection performance and the detection
power is directly proportional to the SNR as well as the false
alarm probability

VII. CONCLUSIONS

In this paper, a least squares orthogonal subspace pro-
jection (LSOSP) method is presented which is based on a

linear spectral mixture model. It is different from the
OSP in [7] derived from a linear spectral mixture model.
The advantage of LSOSP is that it estimates the desired
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(a) (b)

(c)

Fig. 6. ROC curves for locally optimal detection. (a) Data set 1. (b) Data set 2. (c) Data set 3.

signature abundance by projecting an observation into the
signature space while suppressing noise. As a result, the
effects incurred by noise are greatly reduced so as to improve
the OSP performance developed in [7]. The comparative
performance of OSP and LSOSP is evaluated by the ROC
analysis through the N–P detection theory. The computer
simulations demonstrate that LSOSP does perform better than
OSP in all cases. More details on comparative analysis of
OSP and LSOSP can be found in [19], [20]. Furthermore, in
the case where a signature is very weak and close to zero
or the SNR is very small, a locally optimal N–P’s detector
is also developed for OSP and LSOSP. Finally, some further
studies on subspace projection methods are currently under
investigation. For example, an analysis of the estimation errors
resulting from LSOSP is investigated in [21]. Also, an oblique
subspace projection approach is proposed in [19], [20], [22] as

an alternative to LSOSP where the oblique subspace projection
is not necessarily orthogonal as is LSOSP.
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