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A PosterioriLeast Squares Orthogonal Subspace
Projection Approach to Desired Signature
Extraction and Detection

Te-Ming Tu, Chin-Hsing Chen, and Chein-I Charggnior Member, IEEE

Abstract—One of the primary goals of imaging spectrometry in using only four—seven discrete bands. As a result, hyperspec-
earth remote sensing applications is to determine identities and tral data permit the expansion of detection and classification

abundances of surface materials. In a recent study, an orthogonal 4jyities to targets previously unresolved in multispectral
subspace projection (OSP) was proposed for image classification..

However, it was developed for ara priori linear spectral mixture 'mages' .More precisely, a hyperspecFraI |magfa 'acqglred by
model which did not take advantage ofa posterioriknowledge of @n imaging spectrometer such as airborne visible infrared
observations. In this paper, ana posteriorleast squares orthogonal imaging spectrometer (AVIRIS) [2]-[3] using contiguous 10
subspace projection (LSOSP) derived from OSP is presented on nm wide spectral bands of a spectral coverage ranging from
the basis of ana posteriori model so that the abundances of 0.4 to 2.5u:m produces sufficient resolution for the direct

signatures can be estimated through observations rather than identificati fend b ith di tic feat h
assumed to be known as in the priori model. In order to evaluate lkaentlication or endmembers wi lagnostic reatures, whereas

the OSP and LSOSP approaches, a Neyman—Pearson detectior® Multispectral image such as acquired by the multispectral
theory is developed where a receiver operating characteristic scanner (MSS) and thematic mapper (TM) cannot resolve these

(ROC) curve is used for performance analysis. In particular, features because their spectral bandwidths are 100-200 nm
a locally optimal Neyman—Pearson’s detector is also designed and not contiguous.

for the case where the global abundance is very small with D ite th tinf fi ided by i . t
energy close to zero a case to which both LSOSP and OSP espite the vast information provided by imaging spectrom-

cannot be applied. It is shown through computer simulations €ters, @ major problem which arises in hyperspectral image
that the presented LSOSP approach significantly improves the analysis is that scene pixels are generally mixed linearly or
performance of OSP. nonlinearly by component surface endmembers or spectral re-
Index Terms—A priori (pr), A posterior(ps), detection power, flectances of endmembers [4]—[6]. In a recent study [7], [8], an
false alarm probability, least-squares estimate, Neyman—Pearson orthogonal subspace projection (OSP) approach was proposed
(N-P) detectors, orthogonal subspace projection, ROC curve.  as a classification technique for image pixels which are linearly
mixed. The idea was to apply an OSP classifier to eliminate all
|. INTRODUCTION unwanted endm_embers and interferen_ces within a pixel, then
) . . use a matched filter to extract the desired endmember present
OVERNMENT agencies, both civilian and military, ar& that pixel. Therefore, OSP can be viewed as a subpixel scale
placing a higher reliance upon remotely sensed imaggsion of the simultaneous diagonalization filter developed in
data as an information source crucial to decision makifg) although there is no explicit assumption made in [7] on the
and planning. The fields of geology, geography, and agfinowledge about the signatures (a signature will be referred
culture have a strong history of exploitation of multispectrgl, o5 the spectral reflectance of an endmember hereafter), OSP
image data for analysis and classification of earth surfages geveloped based on an understanding that the signatures
attributes. The use of high spatial resolution airborne angy anundances were known and completed describedan an
satellite sensors improves the capability of identification a’iﬁ{iori (abbreviated bypr hereafter) spectral mixture model
discrimination qf endmembgrs (materials)_, particularly foépecified by (3) below. However, in earth remote sensing
endmembers with very similar spectral signatures. HyP&ltohiems such as crop production and damage assessment,
spectral imaging spectrometry is a new technology for earlaiimating the fractions of endmembers resident in a mixed
remote sensing applications from airborne and spacebomieq| can be very important and useful. Fortunately, the OSP
platforms. One major advantage of hyperspectral imagery OV&f, pe still applied to this case where the true abundances
multispectral imagery is that the former images a scene USIRG repjaced by their estimates [8]. This was actually done for
as many as 200 contiguous bands as opposed to the Iaég‘?ﬁeriments in [7] where the true endmembers were directly

. . . . . Extracted from the images themselves.
Manuscript received March 17, 1995; revised April 16, 1996. This wor hi iori (abbreviated b
was supported by the National Science Council in Taiwan for Grant 84-2213- /N this paper, we present & posteriori (abbreviated by

E-006-086 (Chang) and Grant 85-2213-E-006-066 (Tu and Chen). ps hereafter) least squares orthogonal subspace projection

T.-M. Tu and C.-H. Chen are with the Department of Electrical Engineerin i i i i
National Cheng Kung University, Tainan 70101, Taiwan, R.O.C. QLSO.SP) approach from a Slgnal processmg p0|_nt of view.

C.-l Chang is with the Remote Sensing Signal and Image Processifly Signal processing, a standard signal model is generally
Laboratory, the Department of Computer Science and Electrical Engineerigtgscribed by
University of Maryland Baltimore County, Baltimore, MD 21228 USA.

Publisher Item Identifier S 0196-2892(97)00974-1. r=x-+n Q)

0196-2892/97$10.0Q1 1997 IEEE



128 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 1, JANUARY 1997

where r is an observationg is the signal of interest andin the signature space to reduce data dimensionality. Since
n is additive noise. In many practical applications, what isSOSP operates now on the noise-reduced observations, it
most useful is the observation from which a certain amount significantly improves on the OSP approach in [7], which was
information can be retrieved to be used for prediction. So, developed to be applied to the observation space.

we can predict the signal on the basis of the observation priorin order to evaluate the performance of OSP and LSOSP,
to data processing and substitute it for the true signal in (B),signal detection model making use of the Neyman—Pearson
the difference between the predicted signal, denotedt Bpd theory is developed where the receiver operating characteristic
the observation is the one that needs to be processed and(ROC) curve is used for performance analysis with the false
usually referred to as the prediction error which is caused by alarm probability measured by the estimation error (or predic-
inaccurate prediction plus the noise. ketlenote the resulting tion error) and the detection power represented by the accuracy
prediction error, i.e.t = r — %, (1) can be reexpressed as of the estimation. Two advantages can be gained by the LSOSP
approach. One is that the SNR is improved by a factor of the
ratio of the data dimensionality to that of the signature space.

If the prediction can be made perfectly in (2), will be This is particularly significant for remote sensing imagery
zero, but this case does not occur in general, particulaM§ere the data dimensionality is generally much larger than
not in real world applications in remote sensing due to that of the signature space. The second advantage is that noise
variety of unknown noise and unexpected interferences suctefi€cts are reduced substantially by projecting the observation
effects from the atmosphere. In such a case, a goodness-off the signature space whereby the Neyman—Pearson’s de-
prediction technique is necessary. This can be accomplished®gtion power is increased significantly. Computer simulations
designing good estimators in some sense of optima]ity_ If v%iOW that for a desired Signature with abundance less than
can estimate the signal completely from the observation, th&, LSOSP improves OSP performance. For the case where a
estimation error (prediction errofb must be Orthogona| to the pixel contains a very small fraction of a desired Signature, and
estimated signat. Then# will be completely unpredictable Where OSP and LSOSP are not directly applicable, the locally
and contains no information which can be retrieved from tHPtimal Neyman—Pearson detector developed in [11] and [12]
observation. As a consequenés;an be modeled by a randomis adopted for weak signature detection.

noise. On the other hand, #i is not orthogona| to:i-7 it This paper is Organized as follows. Section Il is the prObiem
means tha# is still correlated withé and both#t and# must Statement and formulation where a linear spectral mixture
share same information to some extent. This correlation furtigpdel is described. Section Il presents a least squares esti-
implies that the estimator used f@iis not optimal and a better mation approach to convertya linear spectral mixture model
estimator may exist. Accordingly, the model given by (1) willo ps linear spectral mixture. Section IV describes LSOSP
be called g signal model, while (2) will be referred to aga approach and applies it to the model. In order to evaluate
signal model. Thé: can be thought of a@ posterioriestimate. LSOSP and OSP, Section V derives Neyman—Pearson (N-P)
It should be noted that g signal model is useful when thetheories for thepr andps models as well as a locally optimal
observation process is not available in the beginning of ddterP theory for weak signature detection. Section VI presents
processing. Using a statistical model agya signal model Simulation results for the performance analysis of LSOSP and
is a common practice in the signal processing communitpSP approaches. Section VI includes a brief conclusion.
However, the importance of ar model will considerably

diminish if the number of observed samples is increased. In II. PROBLEM STATEMENT AND FORMULATION

this situation, aps model begins to show its dominance and In hyperspeciral image analysis, the spatial coverage of
tends to replace ther model. As the observation process '

continues on, theps model may eventually take over theeach pixel generally encompasses multiple materals. In such a

pr model. Consequently, methods usingpa model wil case, the spectral signature of the pixel is an admixture of the

subsequently improve those based opramodel. This is the specral signatures of these endmembers and the identification

: X of a target signature of interest within such a mixed pixel
main focus to be addressed in our paper. requires a detection technique at subpixel scale. In image
The objective of the proposed LSOSP is to take the aboled q P ' 9

approach and produce an optimal estimator for signat Jeocessing, many techniques have been developed for pixel-

abundances of interest based on minimizing the least squa gamxel processing, but not particularly for subpixel analysis.

error. Although LSOSP is derived from OSP, their underlyin'&S a result, most of the”.‘ are not mr_‘ned@tely apphcable. F_or
. . ; glxample, the matched filter/correlation filter widely used in
concepts are fundamentally different as described previous

because the former is based ompalinear spectral mixture cgmmunlcatlons/&gnal processing [13] cannot be directly used

) . ; in mixture analysis. In this paper, we only consider the linear
model, while the latter usesya linear spectral mixture model. ) )
LSOSP is used to find the best linear least squares estimaté %?ctral mixture model described below [4}-{8], [14], [15]
the abundance of a desired signature. It first decomposes the | )
observation space into a signature space and a noise spacd-inear Mixture Model for
then projects the observation into the signature space. AdMyltispectral/Hyperspectral Images
result of this projection, the noise effects are greatly reducedLet ; be al x [ column vector and denote th¢h pixel
and the original signal-to-noise ratio (SNR) is improved. In th@ a hyperspectral image wheieis the number of bands.

following stage, OSP is used to eliminate undesired signatusssume thaf\/ is al x p matrix and made up gf endmembers

r=%+(r—3%)=%+n. 2
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denoted by(m;,ms,---,m,) wherel >p andm; is anl x [
column vector representing the spectral reflectance ofjtthe
endmember. Lety; be ap x [ nonrandom column vector
given by (i1, aua, -+, aip)t and «;; denote the fraction

of the jth endmember present in pixe}. A linear spectral
mixture model similar to (1) for a hyperspectral image pixel
r; assumes that; is a linear combination of endmembers
with the weight coefficients designated by abundance vector
a; = (i1, aya, -, @)t plus noisen;. More specifically,

<> T oxx

r, = Mo; +n; 3)
wheren, is anl x 1 column vector representing additive white =~ <d> = desired signature space <{/> = undesired signature space
Gaussian noise with zero mean and covariance matfix <M> = <Ud> = entire signature space

and ! is thel x [ identity matrix.
<A4> = orthogonal complement space of <AM>

Ill. A POSTERIORMODEL Fig. 1. Relationship betweepr model andps model.
When the model (3) is used, it generally assumes that the
abundancey; is known a priori. This is a Bayes approach
which has important theoretical interest. However, in ma
st be estimated fom e Sheervaton vetotn doing so,  SIUAIES estimate. is optimal, as mentioned previously in
. 2~ the introductionz;s and ;s must be orthogonal.
one approach is to use a least squares error estimation give

s model are represented by two solid vectors and two dashed
ectors respectively. It is also worth noting that since the least

in [10] to convert thepr model (3) tops model similar to (2). et

Let &(r) be the estimate o based on the observation Py =MM*# (8)
vector r where the subscript is suppressed and the “hat” Py =(I - Py) (9)
symbol, “A” is used to indicate an “estimate.” Then the least
squares error is given by where [ is an identity matrix.

N T N From (5), (8) and (9)x;s and#nrs can be expressed by
E=(r - Ma(r))"(r — M&(r)) é&rs = M#r andfzs = Par, respectively. TheP,; and

= trace [(r — Mé(r))(r — Mé(r))"]. (4) P, defined by (8), and (9), are projection operators which
project the observation vecterinto the signature space and
noise space respectively. It is shown in [10] that these two
operators are symmetric and idempotent. More importantly,
ars(r) = M#r (5) they are orthogonal. In other words, the signature space and

2 Nl AT ) noise space projected by, and P, are orthogonal and one
whereM* = (M~ M)~ M" is the pseudo inverse dfl. We 5 the orthogonal complement to the other. More detail of this
would like to point out that (5) was also derived in [8]. can be found in [10].

As a result, the model in (3) can be equivalently stated asy;q,, applying Py to (3) results in
the following model

Differentiating F with respect to&(r) and setting to zero
yields the optimal least squares estimatexof

Pyr=Moa+ Pyn
=Ma+ M(érs — a)+ Pynirs (due to(7))
=Ma+ Me (10)
=%rs (sinceirs = Mérs and Pyfips =0) (11)

r=Ma+n
=Maérs(r)+nLs(r) (6)

where

fiLs(r) =r— Mayps(r) = M(a—aps(r)) +n. (7) wheres = a5 — a is the estimation error term arféy; anni-

Since all estimates are made based on the observatitigtesnzs because’y Py = 0 and P, J\{ﬁ_LS = Py Pan = 0.
vectorr, 7 is included in the above notations of estimates fgurthermore, from [10f = érs — & is unbiased and its
indicate that they are functions of the observation veetor covariance matrix is given by
However, unless some cases need to be specified|l be Eleel] = Ella _ A _ T
omitted throughout the rest of the paper to simplify notations. [ee”] Q[(aLg( )_la)(aLS(T) o]

According to [10], the model described by (3) is called Bayes =0 (M7 M)~ (12)
model orpr model because it requirgs information. On the  gjncey, s Gaussian, so i1 from (11) with the probability
othe_r hand, if we _Iel%Ls(r) = Mars(r), the mod_el in (6) is istribution given byN(PyMa,o2Py) = N(Ma, o2 Py)
equivalent to that in (2), and thus the model (6) will be referre\gherePMM — M. Similarly, from (9) and (11) the estimate

to asps model because no knowledgecfs required, only the ¢ \he noises, ¢ has the Gaussian probability distribution
observation vector. The relationship between the: model

and theps model is illustrated in Fig. 1 whereza model and a N(PsMa,o*Py) = N(0,0%Py). (13)
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It is important to notice that the estimat®y,s is unbiased, where the notatioi,, is used to simplify the notatiofiz, s ,(r)
i.e., E[#rs(r)] = Ma. In particular, the variance af;s is and indicates the estimate of the abundance of jké
given by signature. It is worth noting that the estimate of the noise,
fips IS a combination of the signature estimation eraand

var(rs) = El(#rs(r) - Ma)" (#r5(r) - Ma)] the noise projection of into (M).

=traceE[#s(r) — Ma)(&Ls(r) — Ma)T] So, the first stage is to eliminate the uninteresting signatures
=o2p (14) which are contained i/, then followed by a second stage
using a matched filter to pick up the desired signatliréhe
wherep is the dimension of the signature space. suppression of undesired signalss accomplished by an OSP
If we define the SNR for a random vectdr as operator Pogp given by
SNR — [mean(V)[* [mean(V)] 15) Posr=(I - UU#) whereU# is the pseudo inverse bf
var(V) 1)

then the SNR for in the pr model of (3) is given by

Mot [Ma]  [Ma]t[Ma]
SNRyr = tracefo2l] o021

which maps the desired signatudeinto a space orthogonal
to the space spanned by the uninteresting signaturés in
other words,Posp annihilates all undesired signatures.

Applying P, to (10) renders
where| is the dimension of the observation space [10; pp. pplying Fosr to (10)

379-380]. Similarly, the SNR for the estimatér,s in the ps Posp Pyt = Posp Py (Mo + Me)

(16)

model is given by = PospPu(dag, + Uy) + PospPvuMe
SNR.. — [Ma]T[Ma] _ [Ma]'[Ma] 17) = Py Posp(day, + Uy) + Py PosrMe  (22)
" trace[cf?PM] o2 p It can be shown thatank (Posppjw) = rank (PJ\IPOSP) and
where the last equality follows from (14). PospPy = Py Posp. In addition, Posp Py is symmetric
As aresult, the ratio of th8NR,,, to SNR,,. can be obtained and idempotent.
by In order to find a vector which maximizes the SNR defined

by (15), we applyz to (22) and obtain
SNR,:  [Ma]'[Mal/o® -p 1 8 - r r
SNR,,  [MalT[Mal/oc? -1 p (18) z PospPyur =z~ PospPuday, +° PospMe  (23)

It is worth noting that the result of (18) is significantWhere ¥ PospPyUy = 0 due to PospPyUy =
It simply says that theps model can produce a greaterPMPOSPU’Y = 0. )
improvement upon SNR than that pf model, provided that  The SNRs, is given by
l>_p. This is ce_rtainly_ true_ fqr remote sensing imagery in ($TPOSPPMd)Oé:,2,(dTPJI\;Pgspiﬂ)
which the data dimensionality is usually much larger than that SNRs, = T - T T
of the signature space. (@7 Posp Py M) Elee? |(M™ Py Fogpe)

_ 04_1,2, .’L'TPOSPP]wddTPJEPgSP.’L'
IV. LEAST SQUARES SUBSPACE PROJECTION 0?2 27 Posp Par M(MT M)~ MT P Pdspx
2
Despite the SNR improvement by an amount 4f by (18) _ ap g PospPudd” Py Poopt (24)
via converting from a» model to aps model, the data dimen- 02 g Posp Py P Plspx

sionality was not reduced by thes projection operatof’y;. | here the second equality of (24) is true from (12).

However, this can be achieved by the OSP method proposeq|,yimizing (24) turns out to be a generalized eigenvalue
by Harsanyi and Chang in [7] to simultaneously reduce d%‘?‘oblem [16]-[17]
dimensionality and suppress unwanted or interfering signatures .
while enhancing the desired signature. PospPydd' Py PSspx = APosp Py Py Pospz.  (25)
In order to illustrate the above idea, we rewriiéx in the . .
. The solution to (25) is given by
following form
z = rd. (26)
Ma = day, + Uy (29)
) ) ) _ Without loss of generality, lek = 1. The maximum eigen-
where d is the desired signature assumed without loss Qe At max i Obtained by

generality to be the column vecten,,U is anl x (p —

1) matrix given byU = (m;,mg,---m,_;), and vy is a a3 d' Posp Pydd’ P PSspd

. . A )\& max —
vector which contain the firstp — 1) components ofx,y = P o dTPospPMPf\}Pgspd
(a1, a9, ,ap—1)T. Therefore, theps model (4) can be o2
rewritten as follows =—2d" PospPud (27)
g
r=Mars +nLs where the second equality follows froRusp Pa Pl Plep =

=db, +Uqps +hLs (20) PospPu.
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Comparing (27) to the SNR given in [7], review the N—P detection theory in Section V-A, then develop
9 T T 7 9 the N-P detector and locally optimal N-P detector for LSOSP
ap d” Pospdd” Pospd g pospd.  (28) I Section V-B. Finally, the same theory is applied to OSP
0% d"PospPlqpd o? in Section V-C.

Equation (27) is obtained by replacinfosr in (28) by ]

Posp Py where theps projector Py is introduced in (27) A- N-P’s Detection Theory

to account for the estimation aof,. It is easy to see that A detection problem is generally described as a binary
FPospPyd = Pyd and)\&p,max = )\ozp,max which Imp“es that hypotheSiS teSting

the ps least squares projectdty; does not alter the maximum

)\oz p,Mmax —

eigenviaue of (25). Ho: Z =n~po(2)
The operation solving equation (25) is called the matched Versus
filter, denoted byM,;, a linear filter widely used in commu- Hi: Z=s+n~p(z) (32)
nication systems which is an inner product of a vee@avith
an another vectoy, i.e., whereZ is an observable random variableis a target signal

and n is noise.
Mg(v) = (dv) = d'v. (29) The hypothesigi, is called the null hypothesis, representing
From (27) and (28) the matched filter designed by (29) foise only andH, is the alternative hypothesis indicating the
exactly the same as one obtained in [7]. presence of a target signalplus the noise The decision of
By coupling theps projector Py, given by (8) and the OSP detecting a target signal is made based on an observation
operator Posp by (21) with the matched filtetM g by (29), # generated by the random variahte governed by one of

the final desired linear operataPy can be derived by two probability density functiongo(z) andp:(z) depending
upon which hypothesis is true. An optimal detector is generally

Pg = MgPospPr,q= dT(I - UU#)MM# and determined by criteria such as cost functions and prior proba-
Pyr= ¢'r = [d" (I — UU*)MM*]r. (30) b||_|t|§s assomated_ with _the_ hypotheses. If both are not knawn
priori, an alternative criterion is needed in this case. The N-P
The operatorPy given by (30) achieves a, b and ¢ SNRapproach is one which adopts the false alarm probahitty
improvement by making use of’,; b) undesired signal as a criterion measure defined as the probability of declaring
removal and desired signal enhancement by OSP operatwr presence of a target when there is actually no target, i.e.,
Posp and c) data dimensionality reduction by the matchetie detector declare®; when H, is true. A counterpart of

filter M. the false alarm probability is the probability of detection or
As a matter of fact, the estimate of,, &, can be obtained detection power,’p which is defined as the probability of
from (20) and (30) as follows detecting a target when the target is actually present, i.e., the

T . T . detector declare&l/; when H; is true. The performance of a

Pgqr =d” PospPydéy, = d” Pospddy, (due t0(20)) N—P’s detector is generally evaluated based on an ROC curve,
R Pgr d* Posp Py a graph of the false alarm probabilityr plotted versus the

T & Pospd  d Posrd detection powerPp. . .

d” PospPyn It is known that the optimal detector yielded by the N-P

————— (due to(19)). (31) approach turns out to be a likelihood ratio test with the
d” Posrd following form

From (27), (28), and (31), OSP and LSOSP are equivalent to

the spectral linear unmixing approach specified by (3)-(5). It 1 (declaringHd;) if L(z) = pi(2) >T

is worth noting that a similar result was also derived in [8].

~

= Qp =00y +

Snp(z) = ¢ n (declaringHy) if L(z) = =7 (33)

V. NEYMAN-PEARSON DETECTION THEORY g?gzg
0 (declaringHy) if L(z) =

In the OSP method [7], the fractions of abundance of
spectral signaturega;,---,«,} are assumed to be known ) _ ) o )
and constant. However, in most of real casgs;,---,a,} where L(z)_dgﬂned in (33) is called a I|ke_I|hood ratio test
are unknown. Thus, thesiy;, -+, o, } need to be estimated OF test statistic and is a th_reshold_ determined k_)y the false
prior to application of the OSP method. Section Il suggestém probabilityPr. The 7 in (33) is the probability of the
the LSOSP method to usepa signature projector to producedetectoréNp(z) declaring H; when the I|keI|hood.rat|o test
&, the best least squares estimatexdbased on observations,L(z) equals the threshold. As a result, thefy (z) is called
to replace the truer in the OSP method. In this section, we? randomized detector.
develop a N-P detector to evaluate the performance of OSP
and LSOSP where the former is based on gheobservation B. A Posteriori Signal Detection Model for LSOSP
model given by (3) and the latter is based on femodel  Applying Py in (30) tor given by (6) or (20) yields
given by (6). The computer simulations in Section VI show
that LSOSP outperforms OSP. In the following, we first briefly z=q'r=q"dé&, +q"n. (34)
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Equation (34) represents a standard signal model withSaibstituting (40) into (41) yields

signal¢*'d&,, corrupted by the noise given b ' _ ool
gnalg' dé, corrupted by given by PD(éArP):l_q)(T Gpg d)
i =q'f, (34) IR
-1 &qud
wherenn = P4n, z and the noise: are scalars. =1-¢(¢7(1~a)~ A (42)

.Let Z be the random .variaple representing the observatiprp (42), we can see the detection power is determined by
# in (34). The hypothesis testing problem (32) becomes ¢, 4 fived false alarm probability, However, thes;, is in

Ho: Z =1~ po(2) turn determined byr+/qf P4q. Sinceos is a fixed constant,

the Pp is inversely proportional to the quantity Pagq.
versus D y prop q 4 Paq

Hi: Z=q"dé&, +7~pi(2) (36) B. Locally Optimal N-P’s Detectors

where the null hypothesi#l, and the alternative hypothesis _In_ th? hypothesis testing pr_oblem (36), the probability
H, represent noise alone and the presence of the estima%%“buuonpl(z) under hypothesi&/, depends on the strength

desired signature in the signature space respectiygl) of the desired S|gr_1atunep. If the S|gngl energy is very _small
andp, (z) are Gaussian distributions given by and _close to zero, i.ew, — 0, the solution given by (39) is not _
applicable. In order to account for weak signals, a composite

po(2) =N(0,0%¢" P4q) hypothesis testing problem described below is used to replace
pi(z) = N(g'da,, 0%q" Paq), (37) (35) (see [11]-12])
Hy: Z=n~ 2
and the estimated noise variance is given by 0 i~ polz)
versus
or = 0°q" Pag. (38) Hi: Z=0s+i~ pe(2) (43)

It should be noted that theoretically, the noise variamén Where the noise, is given in (35).¢ is a parameter controlling
(38) is zero becaus# is ps noise and wherPy operates on the energy of the signal or SNR and supposed to be very
#, the resultant nois& will be removed. This is due to the sSmall close to zero.
fact that (5) is the solution to an unconstrained least squaredn this case, we expand the detection powr in terms of
problem described by (3) and (4). In many applicationg, Taylor series about 0. Namely
however, there are constraints such as all abundances must dPp(6;6)
lie between 0 and 1, and add up to one [14], the lack of [Tua(é;0) = Pp(8;0)+6—75—
exact knowledge about signatures of endmembers, atmospheric .
effects, etc. As a result2 is generally very small but not zero. Since Pp(6;0) = Pr(8)astl — 0, Py(6;0) can be approxi-
Substituting (37) into (33) results in the following N—pmated by

+0(6%). (44
=0

detector OPH(5:0
. _ o Pp(6:0) zPF(5)+9[M } (45)
Snp(z) = { 1 (declaringd;) if z=¢"r>7 (39) 212 PR
0 (declaringHo) if z=g¢"r<7’ From (45), the maximum powePp(6;6) can be approxi-
where mately achieved by choosing a decision rdlavhich max-

imizes dPp(6;0)/96|¢=0. The optimal detector for (43) ob-
7 =097 (1 - a) (40) tained by maximizingdPp(6;6)/06|s—o is called a locally

) ] - . optimal N-P’s detector which can be expressed by
is the threshold obtained by specifying a particular false

alarm probabilitya given bya = [ po(z) dz and po(z) Ips(2)

given by (37). The notation® is the standard Gaussian 1 i OLe(z) _ 99 |40 > 7
dlstnbutlog with zero mean and unit variance glvenW) = Ginl() = a0 |, pol(z) (46)
Fo /2 dz and d1(y) is the inverse function of Ipe(z)

®(x) with ®(z) = y. It should be noted that since the 0 if OLgy(2) I P <r
observable random variablgin (36) is governed by Gaussian { 0 oo  po(2)

distributions given by (37), a N—P’s detector can be designe
by a nonrandomized detector as given by (39) without usi
a randomized detector as in (33).

For thea given in (40) as a false alarm probabilityp,
can be calculated as follows

%ere 8Le(z)/06 is the partial derivative of the likelihood
ratio testLg (=) with respect t@. Substituting,, for § andg”'d
for s in (43) yields the following hypothesis testing problem
for weak signature,,.

oo HO: Z = ﬁ ~ po(z)
‘= / polz) dz versus
~ = Hy: Z=adplg d]+7~pi(z 47
Pp(onp) :/ p1(2) dz. (41) o 1 pla” d] p1(2) 47
T where is given by (34).
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From (47), the locally optimal N—P’s detector for a very

small signaturex,, (i.e., close to zero) is found by

SLNP(Z)
( Ipa, (2)
L4, (2 dbyp s = T
1 if f(7) :M:zqdeT
_ Ip  |a,=0 Po(2) i
- s, (2)
OLg, (2 dbyp |4 = T
o if PLal® P _&=0_ q¢'d__
\ 8ap Gp=0 po(Z) T
(48)
From (48) the false alarm probability is given by
a= [ ple) dz (49)
where
T 9\ ~L 2
qd T
This implies that
7 = 0,071 - a). (51)

In order to find the locally optimal
specified by (45) with 6 &,, we need calculate
8PD(6LNP;&],)/8&I,|&P=O as follows:

IPp (brnp; ép)

D6,
T
_4 4 -a,q dy?/203]

%

AT
(=i
O

T
T (e a—a)?/]
2mos

ap,=0

dz

Gp=0

(52)

The last equality of (52) follows from substituting (51) fef.

Placing (49) and (52) into (45) yields the locally optimal

detection power

T
(" d) o~ (/D@ (1-a))?

2w

Pp(8ixr;Gp) = a+ Gy . (53)

detection power
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TABLE |
PARAMETERS USED FOR FSS

Number of Bands 60
Spectral Cover 0.4-2.4 um|
Altitude 60m
TFOV (ground) 25m

where glsp = d¥ Posp is the operator developed in [7],
7 = ghgpn With variances2 = o2qLqpgosp andpo(z), p1(2)
are given by

po(z) = N(0, 0*gbspaosr)

pi(z) = N(qgspdo‘pv O'QQSSPQOSP)- (55)

The resulting N-P detector is given by

b i if z=¢q% 1
Fospxp(z) = { 1 (declaringH,) if z=ghgpr > 7

0 (declaringHy) if z = qhepr<7”
(56)
and

7" = on® (1 - a) (57)

with the threshold-"” obtained by specifying a particular false
alarm probabilitya given bya = [27 po(z) dz wherepg(z)
is given by (55). The corresponding detection power is

~ 7_// —« T d
Posp,p(bosp,np) =1 — @ (w)

om
T
=1- <1><<1>—1(1 —a) - —“Pq@spd>.
o
(58)
Analogous to (53), the locally optimal detection power for
(54) can be obtained similarly by

Posp.p(bosp,Lnr; ap)
T
—a+a, [Me—um(@—l(l—a»ﬂ C (59)
2mon
Comparing (58) with (42) and (59) with (53), LSOSP intro-
duces an extra noise annihilator operafty in (42) and (53)
which takes advantage of the knowledge abouty, based

From (53), we note that the locally optimal detection power i3n (6) or (20) to suppress noise while (58) and (59) only

also determined by the standard deviation of the ndisee.,

o, = 0+/q* P,q and the signal strengty’ d, the projection
of d by the LSOSPFy.

C. A Priori Signal Detection Model for OSP

Following the same approach given in Sections V-A and

B we obtain similar results for thegr signal model for OSP
without further derivations as follows

Ho: Z =mn~po(z)
versus
Hi: 7 = qbgpday, +7 ~ pi(2) (54)

relying ona,, and thepr information provided by the model
(3). This effect makes a significant difference in detecting
weak signatures which is shown in the computer simulations
in Section VI.

VI.

In this section, experiments are conducted by computer
simulations based on the field spectrometer system (FSS)
data which has 60 spectral bands [18]. No other effects
in actual remote sensing from sensors and atmosphere but
white Gaussian noise is simulated. Namely, the raw radiance
data collected by sensors are converted to reflectance data

COMPUTER SIMULATION RESULTS
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Fig. 2. (a) Reflectance spectra of data set 1. (b) Reflectance spectra of data set 2. (c) Reflectance spectra of data set 3.

by removing the effects of atmospheric transmission amulojecting observation vectors into the signature space where
scattering. The major parameters of the FSS data are listady a very small part of the noise is contributed to the
in Table I. Since bands corresponding to the water absorptisignature space significantly improves the detection power.
regions have no useful energy, they are removed prior Az a result, the desired signature with a small fraction of
processing which leaves 56 bands in this study. In [7] tlebundance can be picked up by the LSOSP method but not
OSP method failed to classify a signature with abundance ldgsthe OSP method. If the abundance is very small and close
5%. In Experiment 1, we consider the situation where the zero, the N-P detector cannot be applied. Instead, a locally
desired signature contains abundance less than 5%. It is fowptimal N-P’s detector needs to be implemented. Experiment
that in the N—P’s detection approach described in Section |1¥,examines this case.
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SIMULATIONS OF DESIRED AND UNDESIRED SIGNATURES FOR THREE DATA SETS

TABLE 1

135

é‘ 08 | -0 LSOSP  Pr=0.1; SNR=50
. © 06 ospP
Data set Undersired Signatures Desired Signature 3 £ 04

EL 0'2

Data set-1 oats and summer fallow spring wheat g '0 i
Z,

Data set-2| spring wheat and summer fallow native grass 1 11 21 31 41

Pixel's Number
Data set-3| spring wheat and grain sorghum native grass

(@

In the following experiments we consider= 3 anda = 5 1
(a1,a2,a3)t is a spectral abundance vector correspondingg 08 | - LSOSP  Pr=0.1; SNR=30
to a signature matrix}/ = (mq,m2,ms), with m3 as the g § 06 1 osp
desired signature angs as its associated spectral abundance'?é £ 04r
U = (my,m) is the undesired signature vector. Threes °2[ [ ‘ .
simulated data sets are used to test the proposed the LSOSP 0 ) 1 . 31 4l
and OSP methods. Each data set contains three signatures Pixel's Number
from five endmembers listed in Table Il. Data set 1 contains
three distinct signatures as shown in Fig. 2(a) where spring (b)

wheat is designated as the desired signature, and oats and
summer fallow are undesired signatures. Data set 2 showg
in Fig. 2(b) contains summer fallow and two signatures Withg

similar spectral reflectances, spring wheat and native grass, &
. N . . N
with native grass selected as the desired signature. Data sef

contains spring wheat, grain sorghum and native grass who%
spectral reflectances are nearly indistinguishable as shown h

0.8
0.6

é 0.4

0.2

------- LSOSP  Pr=0.1,SNR=10

— 08P

L

11

21

31

41

Fig. 2(c), with native grass chosen to be the desired signature.
All the three data sets are simulated based on ground truth.
50 pixels to be used in the experiments are simulated as ©

fOII(?WS. Each pixel contains three different .Slgnature.s Wi 1g. 3. Simulation results for false alarm probability 0.1 for data set
various spectral reflectance abundances. White Gaussian n@IS@) Normalized output power versus pixel's number for SNR50:1.
is also simulated and added to each pixel to generate thfe}eNormalized output power versus pixel’s number for SNR30:1. (c)
SNR’s, 50:1, 30:1, and 10:1, respectively, with the SNR igormalized output power versus pixel's number for SNRL0:1.

defined as 50% reflectance divided by the standard deviation

of the noise [7] It should be noted that this defined SNR (%_)' (b)' and (C), the detection performance degrades as the
an accepted convention used in the remote sensing COMMURINR decreases. In addition, Figs. 3-5 show that the detection
and is different from the SNR defined by (15). capability also depends upon the spectral similarity between

signatures. The more similar the spectra of signatures, the more
A. Experiment 1 (N-P’s Detection) difficult the signatures are to detect.

As shown in [7], when a desired signature has abundanceSince the LSOSP works more impressively than OSP for
less than 5%, the OSP method failed to pick it up. In thiew false alarm probabilities, we tabulate in detail the results
experiment, we will show that this case can be improved 8 Pr = 0.01 and 0.001 in Table IV. The columns of the table
the LSOSP method. To do so we simulate 50 pixels for eaghow the three SNR’s, 50:1, 30:1 and 10:1 using the LSOSP
of the three data sets as given in Table Ill where the 50 pixeigd OSP methods under two different false alarm probabilities
are divided equally into five classes, each of which contains I& = 0.01 and 0.001. The numbers in each row represent the
pixels. The 10 pixels in each class contain the same amounnaimber of pixels detected by the LSOSP and OSP methods.
signature abundance. For example, The pixels in the first cldsy example, the row labeled by 1% under the data set 1
contain 1% abundance of the desired signature and 49.5% $bows that the OSP method missed all pixels which contain 1%
each of two undesired signatures. desired signature abundance even in the case that the SNR is

Three experiments (false alarm probabilities = 0.1, 0.01, very strong (50:1). This situation significantly improves using
and 0.001) are conducted, respectively, for each data set uritier LSOSP method which detected all 10 pixels for SNR
three different SNR’s. The results are shown in Figs. 3-5 f60:1 and 30:1. In the case of SNR 10:1, it detected eight
Pr = 0.1 and Table IV for P = 0.01 and 0.001. Fig. 3 pixels and only missed two pixels.
is obtained for data set 1 for three different SNR’s, Fig. 3(a) A more important factor that dominates the detection per-
for SNR = 50:1, Fig. 3(b) for SNR= 30:1 and Fig. 3(c) for formance is the similarity of signature spectra. This is shown
SNR = 10:1. Similarly, Figs. 4 and 5 are the results of data Table IV for data set 3 where all three signatures are similar.
sets 2 and 3, respectively. As we can see from these figuMsither of the OSP and LSOSP methods can detect the case

Pixel's Number
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TABLE I
ABUNDANCE FOR 50 SMULATED PIXELS FOR THREE DATA SETS
% pixel 1-10 |pixel 11-20|pixel 21-30| pixel 31-40|pixel 41-50
Desired Signature 1% 5% 10% 15% 20%
Undesired Signature 1 | 49.5% 47.5% 45% 42.5% 40%
Undesired Signature 2 | 49.5% 47.5% 45% 42.5% 40%
TABLE IV

SIMULATIONS FOR FALSE ALARM ProBABILITY = 0.01 AND 0.001FOR THREE DATA SETS

PF=0.01 PF=0.001

% | SNR=50 SNR=30 SNR=10 SNR=50 SNR=30 SNR=10

LSOSP OSP [LSOSP OSP (LSOSP OSP [LSOSP OSP |[LSOSP OSP |LSOSP OSP

Data set 1

1%| 10 0 10 0 8 0 10 0 10 0 8 0

5%j 10 10 10 10 10 0 10 10 10 10 10 0

10%{ 10 10 10 10 10 10 10 10 10 10 10 9

15%j 10 10 10 10 10 10 10 10 10 10 10 10

20%| 10 10 10 10 10 10 10 10 10 10 10 10

Data set 2

1% 8 0 3 0 3 0 8 0 3 0 3 0

5%{ 10 9 10 0 10 0 10 0 10 0 10 0

10%|{ 10 10 10 7 10 0 10 10 10 0 10 0

15%{ 10 10 10 10 10 0 10 10 10 8 10 0

20%{ 10 10 10 10 10 0 10 10 10 10 10 0

Data set 3

1% 0O 0 0 0 0 0 0 0 0 0 0 0

5%j 10 0 3 0 0 0 10 0 3 0 0 0

10%) 10 3 10 0 2 0 10 0 10 0 2 0

15%j{ 10 10 10 1 3 0 10 9 10 0 3 0

20%j 10 10 10 9 9 0 10 10 10 2 9 0

where the desired signature has 1% abundance even when thkhis example clearly demonstrates that the LSOSP method
SNR is as high as 50:1. Nevertheless, LSOSP improves dtgtperforms the OSP method in all experiments. In particular,
performance rapidly as SNR increases. In other words, thi@ean unknown environment, using: knowledge may not be
factors affect the detection performance, SNR, false alafgliable. Insteadps knowledge based on observations will be
probability Pr, and the spectral similarity between desire§0"® realistic and provide better estimates for the environment.
and undesired signatures. The higher the SNR, the better the

detection; the smaller the false alarm probability, the worse tRe Experiment 2 (Locally Optimal N—P Detection)

detection; and the more similar the spectra, the more difficultin Experiment 1, we found that both OSP and LSOSP
the detection. could not detect the existence of a signhature with abundance
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Fig. 4. Simulation results for false alarm probabiliy 0.1 for data set (©

2. (a) Normalized output power versus pixel's number for SNR50:1.
(b) Normalized output power versus pixel's number for SHR30:1. (c)
Normalized output power versus pixel's number for SNRL0:1.

Fig. 5. Simulation results for false alarm probability 0.1 for data set
3. (a) Normalized output power versus pixel's number for SNR50:1.
(b) Normalized output power versus pixel's number for SHR30:1. (c)
Normalized output power versus pixel's number for SNR10:1.

1% as shown in the row 1% of data set 3 of Table IV. In

this case, we turn to the locally optimal N-P’s detectio&OC curve is the diagonal line. When— 0 or a — 1, the
theory to derive a locally optimal detector for weak signatureg cond term on the right in (53) or (59) always ap;:)roaches
Equations (53) and (59) are the powers of a Iocall_y optimaf in which CasePD(SLNp;&p) — aor PD(SLNP;%) -4
N-P's detectors for. LSOSP and OSP respec;twely given tha&g expected. So, in the case of the weak signature detection,
flase alarm probability is fixed at level In this experiment, we may anticipate that the corresponding ROC curves will be
100 pixels are simulated as follows. Pixel one contains 0'0159f?ghtly above this diagonal line as shown in Fig. 6, which
of the desired signature, pixel two contains 0.02%, pixel thregicates that the locally optimal detection power will not be
0.03%, etc. The other two undesired signatures evenly shgteq,qq a5 the case of strong signature detection. In Fig. 6,
the remaining abundance. As the pixel number increases by, L . see that LSOSP significantly improve OSP in all three
the abundance of the desired signature is increased by 0.0, sets, particularly, for data set 1, Fig. 6(a). It is also shown
So, the hundredth pixel contains the largest abundance of {h&-jg 6 that the spectral similarity between signatures plays
desired signature, which is 1%. The ROC curves are plotigd] jmportant role in detection performance and the detection
for OSP and LSOSP in Fig. 6 with abundance ranging froghyer is directly proportional to the SNR as well as the false
0.01% to 1% for 100 pixels, Fig. 6(a) for data set 1 with SNR'§jarm probabilitya.
=0.1, 1, 5, 10. 6(b) for data set 2 with SNR:s0.1, 1, 5, 10

and 6(c) for data set 3 with SNRzs 0.1, 1, 5, 10. It should be

noted that the diagonal line in the ROC plot represents the case

that the false alarm probability is equal to the detection power,In this paper, as least squares orthogonal subspace pro-
which is the lower bound to the detection power. This can ljection (LSOSP) method is presented which is based on a
seen from (53) or (59). The first term on the right in (53) is thgs linear spectral mixture model. It is different from the
false alram probability: and the second term is dominated byYDSP in [7] derived from ar linear spectral mixture model.
two factors,d, (or a;,) anda. If &, =0 (or a;, = 0), thenthe The advantage of LSOSP is that it estimates the desired

VIl. CONCLUSIONS
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Fig. 6. ROC curves for locally optimal detection. (a) Data set 1. (b) Data set 2. (c) Data set 3.

signature abundance by projecting an observation into the alternative to LSOSP where the oblique subspace projection

signature space while suppressing noise. As a result, iRenot necessarily orthogonal as is LSOSP.

effects incurred by noise are greatly reduced so as to improve

the OSP performance developed in [7]. The comparative ACKNOWLEDGMENT

performance of OSP and LSOSP is evaluated by the ROCThe authors would like to thank Prof. D.A. Landgrebe

analysis through the N-P detection theory. The computef Purdue University who provided the FSS data and the

simulations demonstrate that LSOSP does perform better tlonymous reviewers' suggestions which greatly improved

OSP in all cases. More details on comparative analysis this paper’'s quality and presentation.

OSP and LSOSP can be found in [19], [20]. Furthermore, in

the case where a signature is very weak and close to zero

or the SNR is very small, a locally optimal N-P’s detector[1] G. vane and A. F. H. Goetz, “Terrestrial imaging spectroscoRgmote

is also developed for OSP and LSOSP. Finally, some further Sensing Eniviron vol. 24, no. 1, pp. 1-29, 1988. i

studies on subspace projection methods are currently und 2} Ig A Il_andgrebfe, ‘A perspective o_n the analysis of hyperspectral data,
roc. IGARSS '93 Symppp. 1362-1364, 1993.

investigation. For example, an analysis of the estimation errof§] W. M. Porter and H.T. Enmark, “A system overview of the airborne

resulting from LSOSP is investigated in [21]. Also, an oblique Yl"s'ge\//;]:e"’}rég.'mggmggigﬁfr\?vnﬁ;eéc(éyE;%ﬁ;%?gpﬁggﬁfgfuor%n_

subspace projection approach is proposed in [19], [20], [22] as tation Engineering, vol, 834, pp. 22-31, 1987.
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