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Abstract

Recently oblique projection has been studied for many applications in signal processing. In this paper, the concept of
oblique projection is applied to develop an algorithm for hyperspectral image classi"cation. Compared with the
orthogonal subspace projector (OSP), it can be found that OSP is a priori classi"er but the oblique subspace projection
classi"er will be referred to a posterior. As a consequence, the oblique subspace projector (OBP) can be thought of as
a generalized classi"er including OSP. Furthermore, the estimation error from the OBP can be evaluated by applying the
Neyman}Pearson detection theory to the corresponding receiver operating characteristic (ROC) curve so the accuracy of
the classi"cation can be calculated thereafter. Finally, some computer simulations using real airborne visible infrared
image spectrometer (AVIRIS) data are accomplished to justify and compare the e!ectiveness of the above algorithms.
( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The primary strength of multispectral/hyperspectral
imagery is the utilization of multiple bands to provide
information in detail on various materials contained in
image pixels. In Earth remote sensing problems, the
estimate of the fractions of endmembers resident in an
image pixel is often important and useful, e.g., to crop
production and damage assessment. Unlike being repre-

sented by light intensities for visual images, each pixel
of multispectral/hyperspectral images is assumed to be
a mixture of spectral re#ectances resulting from di!erent
materials residing in the pixel. Detection and classi"ca-
tion of minerals of interest from a mixed pixel are gener-
ally di$cult and often present a challenging problem.

To resolve the mixed pixel classi"cation problem, sev-
eral researchers have investigated the scale and linearity
of the mixture. The macrospectral mixture [1] model
assumes no interaction between materials and treats a
mixed pixel as a linear combination of signatures resident
in the pixel with relative concentrations. In micro-
scopic or the intimate mixture [2,3] model, the mixing
is generally non-linear with a second-order e!ect. As
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a consequence, many surface materials mix in a non-
linear fashion but linear unmixing techniques, while at
best an approximation, appear to work well in many
circumstances [4]. In this work, the linear spectral mix-
ture model is adopted to imply a novel linear classi"ca-
tion technique.

Recently, an orthogonal subspace projection (OSP)
method was proposed for hyperspectral image classi"ca-
tion [5]. The idea is to null out or eliminate all unwanted
signatures and interferences by projecting the image of
interest into the orthogonal complement of the undesired
signature space, then using a matched "lter to extract the
desired signatures from the projected image. Since there
is no explicit assumption on the knowledge about the
signatures [5], the OSP was developed as a priori linear
spectral mixture model. Experimental results in Ref. [5]
show the replacement of the true abundances by their
estimates obtained by the OSP method.

The major problem for a priori model is that the signal
may be corrupted by the channel or system noise. If there
was no other method to deal with the noise, the estimate
result could not be so correct. In order to alleviate this
problem, a posterior least-squares orthogonal subspace
projection approach [6] was developed where the true
abundance of signatures was estimated and obtained by
the criterion of the least-squares error. The least-squares
estimator is an orthogonal projection matrix which maps
the image of interest into both the desired and undesired
signature spaces. The utilization of this matrix operator
coupled with the OSP process can form a novel classi"er
to replace the original OSP.

In recent literatures [7,8], Behrens and Scharf showed
that a least-squares orthogonal projection matrix can be
further decomposed into two oblique projection ma-
trices; one of which maps observations into the desired
signature space while the other maps into the undesired
signature space. However, unlike the least-squares ortho-
gonal projection matrix [6], these two oblique projection
matrices is not necessarily orthogonal.

A major di!erence between the OSP and OBP method
is that the former utilizes complete knowledge of signa-
ture abundance whereas the latter does not. Conse-
quently, the OBP needs an estimation process with errors
coming from the noise. Interestingly, these two methods
yield two classi"ers of the same form with only a scalar
di!erence. The quantity of this scalar will serve as an
indication to the accuracy of the estimation. What is
more important is that this quantity can be interpreted as
the correlation between the desired signature and the
undesired signatures. Restated, it tells of the similarity
between the desired and undesired signatures. The higher
this quantity is, the less similar the desired and undesired
signatures.

To evaluate the performance and the estimation error
for an OBP, a signal detection model is developed by
making use of the Neyman}Pearson theory [9,10] and

the receiver operating characteristic (ROC) curve. In this
model, the false alarm probability represents a measure-
ment of the estimation error and the detection power
represents the accuracy of the estimation. Finally, some
computer simulations using real airborne visible infrared
image spectrometer (AVIRIS) data are accomplished to
justify and compare the e!ectiveness of the above algo-
rithms.

2. Problem model and formulation

In multispectral/hyperspectral image analysis, the spa-
tial coverage of each pixel generally encompasses mul-
tiple materials. That means, the spectral signature of the
pixel is an admixture of the spectral signatures of these
endmembers. To study the subpixel processing tech-
niques, the linear spectral mixture model [11] described
below is generally considered.

¹ypographic conventions: Throughout this paper, vec-
tors are denoted by boldface lowercase letters, matrices
by boldface uppercase, and superscripts T, !1 denote
transpose and matrix inverse, respectively. I denotes the
identity matrix.

2.1. Linear mixture model for multispectral/hyperspectral
images

Let r (x, y) be an l]1 column vector denoting the
values of a pixel spatially located at the position (x, y) in
a multispectral/hyperspectral scene where l is the number
of bands. Assume that M is an l]p matrix denoted by
(m1, m2,2 , mp) where mi is an l]1 column vector repre-
sented by the spectral signature of the ith material.
Also let a (x, y) be a p]1 column vector given by
(a

1
(x, y), a

2
(x, y),2 , a

p
(x, y))T where p is the number of

materials and a
i
(x, y) denotes the fraction of the ith

signature present in r (x, y). A linear mixture model for
the hyperspectral image pixel r (x, y) can be described by

r (x, y)"Ma (x, y)#n (x, y), (1)

where n (x, y) is an l]1 column vector representing addi-
tive white Gaussian noise with zero mean and variance
p2 I and I is an l]l identity matrix.

2.2. A priori model versus a posterior model

The model described by Eq. (1) assumes that the spec-
tral signatures M and a are known as a priori. However,
it is often the case where the abundance fraction of
spectral signatures, a"(a

1
, a

2
,2 , a

p
)T, is generally not

known. Therefore, in practice, a must be estimated from
the observation vector r. Here after, the spatial notation
(x, y) for r and a is suppressed and the &&hat'' symbol, &&'''
is used to indicate an &&estimate'' value.
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Fig. 1. Relationship between the a priori and a posterior models.
SdT"desired signature space SUT"undesired signature
space, SMT"SUdT"entire signature space, SAT"ortho-
gonal complement space of SMT.

To formulate the estimator, Eq. (1) is rewritten as
follows:

r"Ma#n"d a
p
#Uc#n (2)

"MaL #n;"d aL
p
#UcL#n; , (3)

where d is the desired signature vector represented by
the column vector mp, U is an l](p!1) matrix given by
U"(m1,m2,2 ,mp!1) and c is a vector which contains
the "rst (p!1) components of a, c"(a

1
, a

2
,2, a

p~1
)T.

The expression in Eq. (2) di!ers from that in Eq. (3) in the
sense that the former adopts the complete knowledge of
a. However, the latter has no prerequisite knowledge so
the true a is replaced by an estimate aL resulting from the
observation vector r.

Using a statistical model to describe an observation is
a conventional practice in the signal processing commun-
ity. However, the advantage of using a priori (pr) model is
signi"cantly diminished when the number of observed
samples is increased. Under this circumstance, the model
described by Eq. (3), a posterior (ps) observation model,
begins to show its dominance and tends to replace the pr
model in Eq. (2). As the observation process proceeds
with, the ps model eventually takes over the pr model.
Consequently, algorithms using the ps model generally
perform better than those based on a pr model. Restated,
the information given by the ps model provides a better
understanding than the pr model and facilitates the
knowledge about the signal.

To convert the pr model to a ps model, let

P
M
"MMd, (4)

P
A
"(I!P

M
), (5)

where Md
"(MTM )~1 MT is the pseudo-inverse of

M and I is an identity matrix. Then, MaL and nL given in
Eq. (3) can be obtained as follows:

MaL "P
M

r and nL "P
A
r.

P
M

and P
A

de"ned by Eq. (5) are the projection operators
which project the observation vector r into the signature
and the noise space and can be referred to a ps signature
and noise projector [12], respectively. The relationship
between a pr model and a ps model is illustrated in Fig. 1.
It is noted that these two projectors are symmetric, idem-
potent, and orthogonal. In other words, the signature
space and the noise space projected by P

M
and P

A
are

orthogonal complements of each other. More discussions
on the characteristics of projection can be found in
Ref. [12].

3. Oblique subspace projection

Recall that a ps signature projector P
M

de"ned by
Eq. (4) which projects an observation vector r into the

signature space SMT (i.e. SUdT) is an orthogonal projec-
tor. However, a recent study [7,8] shows that the ortho-
gonal projector P

M
can be decomposed into a sum of two

oblique projectors as follows:

P
M
"E

dU
#E

Ud
, (6)

E
dU
"d (dT Po

U
d)~1 dT Po

U
, (7)

E
dU
"U (UT Po

d
U)~1 UT Po

d
(8)

where E represents oblique operations and Po

U
is de"ned

by

Po

U
"(I!UUd). (9)

Po

U
maps an observation vector r into a space which is

orthogonal to that spanned by undesired signatures U.
In other words, Po

U
annihilates all undesired signatures.

More precisely, E
dU

is a projection matrix with range
space SdT and null space SUT, but they are not necessar-
ily orthogonal. In other words, the oblique projection
operator E

dU
projects the observation vector r into the

desired signature space SdT and nulls the undesired sig-
natures space SUT as depicted in Fig. 2. Thus,

E
dU

d"d; E
dU

U"0. (10)

Similarly, E
Ud

maps r into the undesired signature space
SUT and annihilates the desired signature space SdT. So
E
Ud

d"0 and E
Ud

U"U. Applying E
dU

to Eqs. (2) and
(3) yields

E
dU

r"da
p
#E

dU
n (11)

"da;
p
#E

dU
n;"daL

p
. (12)

Note that Eq. (12) follows from the fact that
E
dU

n;"E
dU

P
A
r"0.

By the detection theory [9,10], Eq. (11) represents
a standard detection problem where the signal da

p
is

corrupted by the white noise E
dU

n. The signal-to-noise
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Fig. 2. Oblique subspace projection.

energy ratio (SNR) chosen as a criterion for classi"cation
is given by

SNR"

E
s

E
n

, (13)

where E
s

and E
n

are energies of the signal and noise,
respectively.

To "nd a vector which maximizes the SNR de"ned by
Eq. (13), a matched "lter x is applied to Eq. (11) and
obtains

xT E
dU

r"xT da
p
#xT E

dU
n. (14)

Eq. (14) is indeed equivalent to maximize the following
generalized eigenvalue problem:

jaL
p
, max"max

x
SNR

"max
x

xT da2
p
dT x

xT E
dU

E [nnT] ET
dU

x
(15)

"

a2
p

p2

xT ddT xc

xT E
dU

ET
dU

x
.

The solution is given by

x"jd (16)

which yields the maximum eigenvalue

jaL
p
, max"

a2
p

p2
(dT Po

U
d). (17)

Note that jaL
p, .!9

is determined by dT Po

U
d which is in

turn determined by Po

U
d. However, Po

U
d is the projection

of d onto the space S;To. This means that j
max

is simply
the inner prduct of d and Po

U
d, Sd, Po

U
dT, which is the

correlation of d and Po

U
d. Therefore, the more d corre-

lates with Po

U
d, the less the correlation of d with U, and

the beter the discrimination of d from ;. Later, we will
shown that ja(

p
, max is also closely related to the estimation

error in Eq. (24) which implies that the higher the ja(
p
, max ,

the smaller the estimation error. Thus, the accuracy of
estimation is also determined by the magnitude of ja(

p
, max .

Applying Eq. (16) with j"1 to Eq. (14) results in

dT E
dU

r"dT da
p
#dT E

dU
n (18)

and

dTE
dU

r"dT daL
p
. (19)

By equating Eqs. (18) and (19), the estimated signature
aL
p

resulting from the oblique projector E
dU

can be ex-
pressed as a sum of the true a

p
and an error correction

term dT EdU
n/dT d. That is,

aL
p
"

dT E
dU

r

dT d
"a

p
#

dT E
dU

n

dT d
. (20)

The estimation error resulting from Eq. (20) is given by

e"aL
p
!a

p
"

dT E
dU

n

dT d
"

dT Po

U
n

dT Po

U
d

. (21)

Let

qT
NOBP

"

qT
OBP

dTd
"

dT E
dU

dT d
"

dT Po

U
dT Po

U
d

(22)

be the normalized oblique subspace projection (NOBP)
which equals the oblique subspace projection (OBP),
qT

OBP"dT EdU, normalized by the factor dT d. Then
Eq. (20) becomes

aL
p
"

dT Po

U
r

dT Po

U
d
"qT

NOBP
r"a

p
#qT

NOBP
n. (23)

The variance of e is therefore obtained by

var [e]"p2 qT
NOBP

q
NOBP

"

p2

dT Po

U
d

. (24)

Eq. (24) states that the estimation error of aL
p
!a

p
is

inversely proportional to dT Po

U
d. In other words, the

smaller the estimation error, the higher the dT Po

U
d is.

That also represents less correlation between the desired
and the undesired signatures and hence implies a better
discriminability of d from ;. As a consequence, Eq. (24)
can be used as an indication to the accuracy of the
estimation of a

p
. This fact will be justi"ed by following

experiments via a ROC analysis in Neyman}Pearson's
detection theory.

Finally, it points out that since the OSP method is
a priori model, there is no estimation involved in the
derivation of this model. However, OBP is derived based
on the least-squares orthogonality principle so an estima-
tion error was introduced into Eq. (21). By comparing
qT
OBP

in Eq. (22) with qT
OSP

in Ref. [1] and noting that
qT
OSP

"dT Po

U
, Eq. (22) can be rewritten as

qT
NOBP

"

qT
OBP

dT d
"

qT
OSP

sT Po

U
d
. (25)
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By Eq. (25) all three projectors qT
NOBP

, qT
OBP

, and qT
OSP

will
have identical classi"cation performance when qT

OBP
and

qT
OSP

are normalized by a distinct normalization factor
dTd and dT Po

U
d, respectively. Hence, we will discuss the

performance of qT
NOBP

only in the following sections.

4. Estimation error evaluated by ROC analysis

In this section, the performance of the proposed classi-
"er NOBP is evaluated by the estimation error of the
abundance. In this analysis, the estimation is cast as a
detection problem where the true abundance of the de-
sired signature is viewed as a signal corrupted by a noise,
i.e. the estimation error. As a result, the accuracy of
estimation can be described in terms of the detection
performance, which in turn can be evaluated by a re-
ceiver operating characteristics (ROC) curve in the
framework of Neyman}Pearson's detection theory
[9,10]. The area under ROC curve provides the measure-
ment of detectability useful for error analysis.

Based on Eq. (23), a binary hypothesis testing problem
can be formulated as follows:

H
0
: z"qT

NOBP
n+p

o
(z),

(26)
H

l
: z"a

p
#qT

NOBP
n+p

1
(z),

where the hypothesis H
0

represents the detection of the
noise n;"qT

NOBP
n and H

l
represents the detection of

a constant signal speci"ed by a
p
corrupted by the noise n; .

The observable random variable is represented by z, a
p
is

the target to detect, and n is a noise.
To declare the detection of a target signal is based on

an observation of z generated by one of two probability
density functions, p

o
(z) and p

l
(z), depending upon which

hypothesis is true. In the NOBP classi"er, these probabil-
ity density functions are given by

p
o
(z)"NA0,

p2

dT Po

U
dB ,

(27)

p
1
(z)"NAap,

p2

dT Po

U
dB ,

where N(x, y) represents a normal distribution of mean
x and variance y. By Eq. (24) the variance of the noise is
given as p2 qT

NOBP
q
NOBP

"p2/dT Po

U
d .

The Neyman}Pearson's detector for Eq. (26) is given
by

dI
NP

(z)"

G
1 (declaring H

1
) if z"qT

NOBP
r*q, then z"qT

NOBP
r ,

0 (declaring H
0
) if z"qT

NOBP
r(q, then z"0,

(28)

where

q"A
p2

dT Po

U
dB

1@2
'~1 (1!P

F
) (29)

is the threshold, '~1 is the inverse of Gaussian distribu-
tion and P

F
is the probability of the false alarm.

The probability of detection in Eq. (28), denoted by P
D
,

can be used to represent the accuracy of the estimation in
Eq. (23) in terms of estimation error given by the false
alarm probability P

F
.

The corresponding P
D

is given by

P
D

(dI
NP

)"1!' A
q!a

p

Jp2 qTPo

U
d)~1B

"1!' A'~1 (1!P
F
)!

a
p

Jp2 (dT Po

U
d)~1B.

(30)

Or equivalently,

P
D

(dI
NP

)"1!' A'~1 (1!P
F
)!Jja(

p
, maxB. (31)

Eq. (31) comes from Eq. (17). By Eq. (30), the detection
probability is a function of the estimation error
p2 (dT Po

U
d)~1, which is also the variance of the trans-

formed noise qT
NOBP

n in Eq. (24). The detection probabil-
ity can be expressed by a function of ja(

p
, max as in Eq. (31).

As a result, for a "xed false alarm probability P
F
, a small-

er p2 (dT Po

U
d)~1 will imply higher detection probability

P
D
. Or, a larger jaL

p
,.!9

can give a better detection. On the
other hand, for a "xed p2 (dT Po

U
d)~1, a smaller P

F
will

make a lower detection probability P
D
. These relation-

ships can be well explained by the receiver operating
characteristic (ROC) curve which is a plot of the detec-
tion probability P

D
versus the false alarm probability

P
F

based on Eqs. (30) and (31).

5. Experimental results

5.1. Experiment 1 (computer simulations)

The "rst experiment is conducted based on the "eld
spectrometer system (FSS) data having 60 spectral bands
[13]. The major parameters of the FSS data are listed in
Table 1. Since bands corresponding to the water absorp-
tion regions have no useful energy, they are removed
before processing. The other 56 bands are kept in this
study. In this experiment p"3 is considered and a"(a

1
,

a
2
, a

3
)T represents a spectral abundance vector corres-

ponding to a signature vector M"(m1, m2, m3). In this
test, m3 is set to be the desired signature with its asso-
ciated spectral abundance a3. ;"(m1, m2) is then set to
be the undesired signature vector. Three data sets are
used to evaluate the performance of the estimation error
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Fig. 3. Re#ectance spectra of (a) data set 1, (b) data set 2, and (c) data set 3.

Table 1
Parameters for the "eld spectrometer system

Number of bands 60

Spectral cover 0.4}2.4 lm
Altitude 60 m
IFOV (ground) 25 m

Table 2
Desired and undesired signatures for three distinct simulated
data sets

Data set Undesired signatures Desired signature

Data set-1 Oats and summer fallow Spring wheat
Data set-2 Spring wheat and summer Native grass

fallow
Data set-3 Spring wheat and grain Native grass

sorghum

given by Eq. (24) via ROC curves based on Eqs. (30) and
(31). Each data set contains three signatures from "ve
materials as listed in Table 2. Data set 1 contains three
distinct signatures as shown in Fig. 3a where spring
wheat is designated as the desired signature while oats
and summer fallow are undesired signatures. Data set
2 shown in Fig. 3b contains summer fallow and two other
signatures, spring wheat and native grass, with similar
spectral re#ectances where native grass is selected as the
desired signature. Data set 3 contains spring wheat, grain
sorghum and native grass whose spectral re#ectances are

nearly indistinguishable as shown in Fig. 3c, and native
grass is chosen to be the desired signature. Each data set
generates its own dT Po

U
d which measures the correlation

or spectral similarity between desired and undesired sig-
natures. All these three data sets are simulated based on
ground truth. One hundred pixels are simulated with
each pixel containing three di!erent signatures for vari-
ous spectral re#ectance abundances. In addition to these
three signatures, three white Gaussian noises are also
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Table 3
Abundance of 100 simulated pixels for three data sets

Pixel 1}20 (%) Pixel 21}40 (%) Pixel 41}60 (%) Pixel 61}80 (%) Pixel 81}100
(%)

Desired signature 1 5 10 15 20
Undesired signature 1 49.5 47.5 45 42.5 40
Undesired signature 2 49.5 47.5 45 42.5 40

Fig. 4. ROC curves for (a) data set 1, (b) data set 2, and (c) data set 3.

simulated and added to each pixel to generate three
distinct SNRs of 50 : 1, 30 : 1 and 10 : 1, respectively, using
the SNR de"ned in Ref. [5]. The content of these 100
pixels for each of the three data sets is given in Table 3. In
this table these 100 pixels are equally divided into "ve
classes, each contains 20 pixels, and all pixels in each
class contain the same amount of signature abundance.
For example, pixels in the "rst class contain 1% abund-
ance of the desired signature and 49.5% for each of the
two other undesired signatures.

Experiments are conducted for each data set with
distinct SNRs as stated above. The resultant ROC curves
in terms of the variance of the estimation error and
jaL

p ,.!9
are shown in Fig. 4a}c, respectively. Herein, we

de"ne a measure called detection rate (DR), which calcu-
lates the area under an ROC curve as the e!ectiveness of
the detector. Obviously, DR always lies between 0.5 and
one. The worst case occurs when DR"0.5, i.e. P

D
"P

F
,

which implies that the detector is worthless. On the other
hand, the best case occurs only when DR"1, i.e. P

D
"1,
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Fig. 6. NOBP results with Neyman}Pearson's detector and P
F
"0.01 for desired signature being (a) red oxidized basaltic cinders, (b)

rhyolite, (c) dry playa lakebed, and (d) vegetation.

Table 4
Detection rate for three data sets with SNR"50, 30 and 10

DR a
p
/p"0.5 a

1
/p"0.3 a

1
/p"0.1

Data set-1 DR"1 DR"1 DR"1
Data set-2 DR"0.94 DR"0.61 DR"0.58
Data set-3 DR"0.81 DR"0.53 DR"0.52

Fig. 5. A subsection of the upper left corner of the LCVF scene.

regardless of the false alarm probability. In these "gures
it can be found that the detection performance degrades
as the SNR decreases. In addition, these "gures also show
that the detection capability depends upon the spectral
correlation between signatures. The more correlated the
spectra of signatures are, the more di$cult it is to detect
the signatures. As a conclusion, three factors a!ect the
detection performance, SNR, false alarm probability
P
F

and dT Po

U
d (or ja(

p
, max) which is a measure of the

spectral correlation between the desired and undesired
signatures. The detail DRs are listed in Table 4.

5.2. Experiment 2

In this experiment, an airborne visible/infrared imag-
ing spectrometer (AVIRIS) data set is used to compare

the performance of the NOBP approach (given by
Eq. (22)) and NOBP with Neyman}Pearson's detector
(given by Eq. (28)). Fig. 5 shows a subsection of an
AVIRIS scene of the lunar crater volcanic "eld (LCVF)
located in Northern Nye County, NV where 158 bands
were used. In order to use the Neyman}Pearson's de-
tector to obtain the fractional images, the variance of the
noise should be estimated. In this experiment, a &&shift
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Fig. 7. NOBP approach result for desired signature being (a) red oxidized basaltic cinders, (b) rhyolite, (c) dry playa lakebed, and (d)
vegetation.

di!erence'' approach [14] was adopted to estimate its
value and set P

F
"0.01. Figs. 6 and 7 summarizes the

experimental results. In these two "gures, the image
brightness (0}255) is proportional to abundance
(0}100%) of endmembers. That is, lighter pixels indicate
a higher abundance of the target signatures. Comparing
Fig. 6a}d to Fig. 7a}d, considerable improvements are
obviously witnessed, particularly in Fig. 6a, c, and d,
where the background is clearer and the estimated
abundance of the desired signatures are more accurate
than those in Fig. 7a, c, and d, respectively. These results
are consistent with known attributes of the scene deter-
mined by "eld measures [15].

6. Conclusions

In this paper, the concept of oblique subspace projec-
tion (OBP) is applied to the classi"cation in hyperspectral
images. It improves the orthogonal subspace projection
(OSP) method so that the abundance of signatures can be
estimated by the OBP method more accurately. Interest-
ingly, both OSP and OBP methods yield classi"ers of the

same form with a di!erence of a scalar quantity deter-
mined by the estimation error only. However, this
quantity is in turn mainly a!ected by the correlation
between the desired and undesired signatures. The higher
this quantity, the smaller the estimation error will be. The
estimation error of the NOBP is further evaluated by the
receiver operating characteristic (ROC) curve in the Ney-
man}Pearson detection theory. Experimental results
show that the NOBP with Neyman}Pearson s detector
can give accurate estimation and hence a good classi"er
for hyperspectral images.
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