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Abstract

Fisher's linear discriminant analysis (LDA) is a widely used technique for pattern classi"cation problems. It employs
Fisher's ratio, ratio of between-class scatter matrix to within-class scatter matrix to derive a set of feature vectors by
which high-dimensional data can be projected onto a low-dimensional feature space in the sense of maximizing class
separability. This paper presents a linear constrained distance-based discriminant analysis (LCDA) that uses a criterion
for optimality derived from Fisher's ratio criterion. It not only maximizes the ratio of inter-distance between classes to
intra-distance within classes but also imposes a constraint that all class centers must be aligned along predetermined
directions. When these desired directions are orthogonal, the resulting classi"er turns out to have the same operation
form as the classi"er derived by the orthogonal subspace projection (OSP) approach recently developed for hyperspectral
image classi"cation. Because of that, LCDA can be viewed as a constrained version of OSP. In order to demonstrate its
performance in hyperspectral image classi"cation, Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) and
HYperspectral Digital Imagery Collection Experiment (HYDICE) data are used for experiments. ( 2000 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Constrained energy minimization (CEM); Linear constrained distance-based discriminant analysis (LCDA); Linear dis-
criminant analysis (LDA); Orthogonal subspace projection (OSP); Unsupervised LCDA (ULCDA); Unsupervised CEM (UCEM);
Unsupervised LDA (ULDA); Unsupervised OSP (UOSP)

1. Introduction

Remotely sensed images generally consist of a set of
co-registered images taken at the same time by di!erent
spectral channels during data acquisition. Consequently,
a remote sensing image is indeed an image cube with each
image pixel represented by a column vector. In addition,
due to a large area covered by an instantaneous "eld of
view of remote sensing instruments, an image pixel vector
generally contains more than one endmember (sub-
stance). This result in a mixture of endmembers resident
within the pixel vector rather than a pure pixel con-
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sidered in classical image processing. So, standard image
processing techniques are not directly applicable.

Many mixed pixel classi"cation methods have been
proposed such as linear unmixing [1}8]. One of principal
di!erences between pure and mixed pixel classi"cation is
that the former is a class membership assignment pro-
cess, whereas the latter is actually endmember signature
abundance estimation. An experiment-based compara-
tive study [9] which showed that mixed pixel classi"ca-
tion techniques generally performed better than pure
pixel classi"cation methods. Additionally, it has been
also shown that if mixed pixel classi"cation was con-
verted to pure pixel classi"cation, Fisher's linear dis-
criminant analysis (LDA) [10] was among the best. It
becomes obvious that directly applying pure pixel-based
LDA to mixed pixel classi"cation problems may not be
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an e!ective way to best utilize LDA. In magnetic reson-
ance imaging (MRI) applications [11], Soltanian-Zadeh
et al. recently developed a constrained criterion to char-
acterize brain issues for 3-D feature representation. The
Soltanian-Zadeh et al.'s criterion is the ratio of the inter-
distance (IED) to intra-set distance (IAD) [12] subject to
a constraint that each class center must be aligned along
some predeterimined directions. In order to arrive at an
analytic solution, Soltanian-Zadeh et al. further made an
assumption of white Gaussian noise based on which IED
can be reduced to a constant. As a result, maximizing
the ratio of IED to IAD is reduced to minimizing IAD.
However, the white Gaussian noise assumption may not
be valid in hyperspectral images since it has been demon-
strated [8,13] that unknown interference such as back-
ground signatures, clutters in hyperspectral imagery were
more severe and dominant than noise which may result
in non-Gaussianity and nonstationarity. As a matter of
fact, we will show in this paper that such assumption is
not necessary and can be removed by a whitening pro-
cess. By modifying Soltanian-Zadeh et al.'s approach
a linear constrained distance-based discriminant analysis
(LCDA) is developed in this paper for hyperspectral
image classi"cation and target detection. Two important
aspects resulting from LCDA are worth being men-
tioned. One is to show that minimizing IAD is equivalent
to minimizing the trace of the data sample covariance
matrix &. In this case, a whitening process can be de-
veloped to decorrelate the & without making Gaussian
assumption. Another is to show that after such a whiten-
ing processing is accomplished, LCDA can be simply
carried out by orthogonal subspace projection (OSP)
[1,7]. In the light of classi"cation, LCDA can be viewed
as a constrained version of OSP. As will be shown in
experiments, LCDA performs signi"cantly better than
OSP.

One of advantages of LCDA is to use a constraint to
steer class centers of interest along desired directions,
generally orthogonal directions. Such constraint allows
us to separate di!erent classes as farther as possible. The
idea of using direction constraints is not new and has
been found in various applications, minimum variance
distortionless response (MVDR) beamformer in array
processing [14,15], chemical remote sensing [16] and
constrained energy minimization (CEM) in hyperspectral
image classi"cation [17}19]. Of particular interest is
a comparative study between LCDA and CEM since
CEM has shown success in some practical applications.
The advantage of CEM over LCDA is that CEM is
designed for detection of a particular target and only
requires knowledge of the desired target to be detected
and classi"ed. So, it is very sensitive to noise. On the
other hand, LCDA needs a complete knowledge of target
signatures of interest, but can do much better classi"ca-
tion than CEM using direction constraints when two
targets have very similar signatures in which CEM can

generally detect one of them, but not both. Furthermore,
the advantage of using CEM in unknown image scenes
diminishes when LCDA and CEM are extended to their
unsupervised versions where the exact target knowledge
is not available.

This paper is organized as follows. Section 2 brie#y
reviews Fisher's LDA and CEM. Section 3 describes
LCDA in detail. In particular, an algorithm to implement
LCDA is also provided in this section. Section 4 extends
LCDA, LDA, CEM and OSP to their unsupervised ver-
sions. Section 5 conducts experiments using airborne
visible/infrared imaging spectrometer (AVIRIS) and
HYperspectral Digital Imagery Collection Experiment
(HYDICE) data to evaluate the performance of LCDA
and ULCDA in comparison with LDA, CEM and OSP.
Finally, Section 6 draws some conclusions.

2. Fisher's linear discriminant analysis and constrained
energy minimization

In this section, we brie#y review Fisher's linear dis-
criminant analysis (LDA) and constrained energy mini-
mization (CEM) approaches which will be used in
comparison with LCDA.

2.1. Fisher's linear discriminant analysis (LDA)

Let Rd and Rp be d- and p-dimensional vector spaces,
respectively, with p)d. Let MC
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denote c classes of
interest where C

k
"Mxk

1
, xk

2
,2, xk

Nk
N"Mxk

j
NNk
j/1

is the kth
class and contains N

k
patterns and the jth pattern in

class C
k
, denoted by xk

j
"(xk

1j
xk
2j2

xk
dj

)5 is a d-dimen-
sional vector in the space Rd. Let N"N

1
#2#N

c
be

the total number of training patterns. From Fisher's
discriminant analysis [10], we can form total, between-
and within-class scatter matrices as follows.
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From Eqs. (1)}(3)
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are all
data training samples. The Fisher's discriminant analysis
is to "nd a d](c!1) weight matrix="[w
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that projects all data samples x3$ in an Rd space into
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y in a low-dimensional feature space Rp in such a manner
that all projected data samples y's yield the best-possible
class separability by

y"=5x (5)

with

y
k
"w5

k
x for 1)k)c!1, (6)

where w
k

is the kth column vector with dimensionality
d]1 in = and y"(y

1
y
2
2y

N
)5.

Using Eqs. (2) and (3) we can de"ne similar within- and
between-class scatter matrices for the projected samples
y given by (5) as follows:
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Substituting Eqs. (2), (3), (5) and (6) into Eqs. (7) and (8)
results in

SI
W
"=5S

W
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In order to "nd an optimal linear transformation matrix
= in the sense of class separability, we use Fisher's
discriminant function ratio, called Raleigh quotient
which is the ratio of the between-class scatter to within-
class scatter as follows:
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where D ) D is the determinant of a matrix. The optimal
solution to Eq. (11), denoted by
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can be found by solving following generalized eigenvalue
problem:
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corresponding to the eigenvalue j
k
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eigenvectors, MwH
k
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form a set of Fisher's linear dis-
criminant functions which can be used in Eq. (6) as

y
k
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k
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It should be noted that since there are c classes, only
c!1 eigenvalues, denoted by Mj

i
Nc~1
i/1

are nonzeros. Each
eigenvalue j

i
generates its own eigenvector wH

j
. By means

of these eigenvector MwH
i
Nc~1
i/1

we can de"ne a Fisher's

discriminant analysis-based optimal linear transforma-
tion ¹H via Eqs. (5), (12) and (14) by

y"¹H(x)"(=H
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)5x. (15)

For more details, we refer to Ref. [10].

2.2. Constrained energy minimization (CEM ) [17]

An approach similar to direction constraints, called
constrained energy minimization (CEM) [17}19] was
previously developed for detection and classi"cation of
a desired target. It used a "nite impulse response (FIR)
"lter to constrain the desired signature by a speci"c gain
while minimizing the "lter output power. The idea of
CEM arises in minimum variance distortionless response
(MVDR) in array processing [14,15] with the desired
signature interpreted as the signals arrived from a desired
direction. It can be derived as follows.
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¸]¸ sample autocorrelation matrix of S.
Minimizing Eq. (18) with the "lter response constraint
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The solution to Eq. (19) was shown [17] and called
constrained energy minimization (CEM) classi"er with
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the weight vector wH given by

wH"
R~1

LCL
d

d5R~1
LCL

d
. (20)

3. Linear constrained distance-based discriminant
analysis

In Fisher's discriminant analysis, the discriminant
functions are generated based on the Fisher's ratio with
no constraints on directions of these discriminant func-
tions. In many practical applications, a priori knowledge
can be used to constrain desired features along certain
directions to minimize the e!ects of undesired features.
As discussed in Section 2.2 CEM constrains a desired
signature with a speci"c gain so that its output energy
is minimized. In MRI [11], Soltanian-Zadeh et al. con-
strained normal tissues along prespeci"ed target posi-
tions so as to achieve a better clustering for visualization.
In this section, we follows a similar idea [11] to derive
a constrained discriminant analysis for hyperspectral
image classi"cation.

First of all, assume that a linear transformation ¹ is
used to project a high-dimensional data space into
a low-dimensional space using the ratio of the average
between-class distance to average within-class distance
as the criterion for optimality [11] and given by
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where the global mean k and local mean k
k

of the kth
class were de"ned in the previous section. Now suppose
that there are p classes of particular interest with p)c
which are denoted by MC

k
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without loss of generality.
We can implement Eq. (21) subject to constraint that the
desired class means Mk
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directions Mt
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. What we seek here is to "nd an
optimal linear transformation ¹H which maximizes
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Eqs. (21) and (22) outline a general constrained optimi-
zation problem which can be solved numerically. Like
Eq. (15) we can view the linear transformation ¹ in
Eq. (22) as a matrix transform which is speci"ed by a
weight matrix=
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Since the numerator given by Eq. (25) is a constant,
maximizing Eq. (24) is reduced to minimizing Eq. (26),
namely
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It should be noted that the term in the bracket in
Eq. (27) turns out to be S

W
. From Eq. (4) minimizing

S
W

is equivalent to minimizing S
T
. So, if let & denote the

sample covariance matrix of all training samples, then

S
T
"N )&. (28)

Since N is a constant, using Eq. (28) we obtain the
following equivalent problem by substituting Eq. (28)
into Eq. (27):

min
W

trace(=5&=) subject to w5
i
k
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ik
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Now all problems are reduced to how we can "nd a
matrix A which decorrelates and whitens the covariance
matrix & into an identity matrix so that the Gram}
Schmidt orthogonalization procedure can be employed
to further orthogonalize all A5k

k
's. Assume that there

exists such a matrix A. Eq. (29) can be further reduced to
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a very simple optimization problem given by
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where Mk(
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is the orthogonal vectors resulting from
applying Gram}Schmidt orthogonalization procedure to
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. Surprisingly, the solution speci-

"ed by Eq. (32) turns out to be the orthogonal subspace
projection classi"er [7]. So, the classi"er wH
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"k( 5
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in
LCDA can be viewed as a constrained version of the
OSP classi"er.

A comment on LCDA is noteworthy. Despite the fact
that two criteria used in LDA and LCDA look similar
where both calculate a ratio of a measure of between class
to a measure of within class, there are di!erences between
LDA and LCDA. In LDA, it uses the scatter matrices
derived from between class and within class while LCDA
makes use of inter-distance between classes and intra-
distance within classes to arrive the criterion speci"ed by
Eq. (21). Another di!erence also noted in [11] is that the
number of the discriminant functions resulting from
LDA is one less than the total number of classes of
interest, p, whereas the number of projection vectors used
in LCDA is the same number of classes of interest, p.
Most signi"cantly, LCDA can be viewed as a variation of
OSP as shown above but LDA is not.

4. Implementation of LCDA using a whitening process

As mentioned, in order to reduce the optimization
problem given by Eq. (29) to the one speci"ed by Eq. (30),
we need to "nd the matrix A. In Ref. [11], Soltanian-
Zadeh et al. made the white Gaussian noise assumption
for MRI to arrive at Eq. (30). As a matter of fact, we

can "nd the matrix A without making such an as-
sumption.

Assume that Mj
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are the eigenvalues of the sample
covariance matrix & or the total scatter matrix S
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, multiplying both sides
of Eq. (34) by "~1@2 results in
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From Eq. (35), we obtain the desired matrix A for Eq. (29)
which is given by

A"Q"~1@2 (36)

so that A5&A"I.
Using Eqs. (36) and (32) we can solve the linear con-

strained Euclidean distance-based discriminant analysis
optimization problem speci"ed by Eq. (30) as follows:

Algorithm to Implement LCDA

1. Find the cluster centers Mk
k
Np
k/1

of p-classes and the
total scatter matrix S

T
or covariance matrix &.

2. Find the eigenvalues Mj
i
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i/1

and their corresponding
eigenvectors Mv
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of S
T

or & to form the unitary
matrix Q"[v

1
v
2
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] and the diagonal matrix
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.
3. Form the desired matrix A"Q"~1@2 using Eq. (36).
4. Find the A-transformed cluster centers MA5k

i
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i/1

where for each i with 1)i)p.
5. Apply the Gram}Schmidt orthogonalization proced-

ure to orthogonalize MA5k
i
Np
i/1

to produce their cor-
responding orthogonal vectors Mk(

i
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i/1

.
6. The linear constrained discriminant Euclidean dis-

tance-based analysis optimization problem speci"ed
by Eq. (30) can be solved by wH

i
"k( 5

i
PM
U

with PM
U

given
by Eq. (33). This step is the classi"cation step where
wH
i

is used to classify data samples into the ith class.

5. Unsupervised LCDA

LCDA described in Section 3 requires training samples
to generate data sample covariance matrix &. In order to
extend LCDA to unsupervised LCDA many unsuper-
vised clustering methods can be used for this purpose,
for instance, ISODATA, K-means clustering [10,12].
In hyperspectral image classi"cation, we can design an
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Fig. 1. An AVIRIS image scene.

unsupervised LCDA by taking advantage of an algo-
rithm, called target generation process (TGP) used in the
automatic target detection and classi"cation algorithm
[21}23].

The idea of TGP can be brie#y described as follows. It
is "rst initialized by selecting a pixel vector with the
maximum length as an initial target denoted by T

0
. We

then employ an orthogonal subspace projector PMT0
via

Eq. (33) with ;"T
0

to project all image pixel vectors
into the orthogonal complement space of ST

0
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.
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Otherwise, TGP is continued to search for a second target
by applying PM

(T0T1)
again to the image. The pixel vector
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is small
enough and less than a prescribed threshold.

The objective of TGP is to generate a set of potential
targets in an unknown image without any prior know-
ledge. Because of that each TGP-generated target may
not be a real target and could be its neighboring pixel
vectors due to interfering e!ects. In order to produce a
robust signature matrix M, several metrics can be used
for this purpose such as Euclidean distance (ED) [10],
spectral angle (SA) [1], spectral information divergence
(SID) [24,25]. Assume that MT

k
Nc
k/1

is the set of targets
generated by TGP and m(x, y) is a metric to measure the
closeness of two samples x and y. Then for each
1)k)c the training class of T

k
, denoted by C

i
com-

prises all pixel vectors with distance from T
j
measured by

m( ) , ) ) less than a prescribed threshold e. That is

C
k
"MxkDm(xk, T

k
)(eN, (37)

where e is a prescribed distance threshold. It should be
noted that T

k
is included in its own class C

k
. By virtue of

these training classes MC
k
Nc
k/1

, ULCDA can be imple-
mented by LCDA.

6. Experimental results

In this section, hyperspectral data will be used to
evaluate the performance of LCDA and ULCDA in

comparison with the results produced by OSP [7] and
CEM [17}19].

Example 1 (AVIRIS experiments). The AVIRIS data used
in the experiments were the same data considered in Ref.
[7]. It is a subscene of 200]200 pixels extracted from the
upper left corner of the Lunar Crater Volcanic Field in
Northern Nye County, Nevada shown in Fig. 1 where
"ve signatures of interest in these images are `red oxi-
dized basaltic cindersa, `rhyolitea, `playa (dry lakebed)a,
`shadea and `vegetationa. In this case, p"5 and d"224
is the number of bands. LCDA used constrained unit
vectors Mt

k
N5
k/1

in Eq. (22) to steer the "ve desired signa-
tures along "ve orthogonal directions. Fig. 2 shows re-
sults of LCDA, CEM and OSP where the images in the
"rst, second, third and fourth columns were produced
by LCDA, LDA, CEM and OSP, respectively. Images
labeled by (a), (b), (c) and (d) show targets: cinders,
rhyolite, playa and vegetation as targets, respectively,
and images labeled by (e) are results of the shade. The
images are arranged in such a fashion that their counter-
parts can be compared in parallel. As we can see from
Fig. 2, the results produced by LCDA and CEM are
comparable and both performed better than LDA and
OSP in detection and classi"cation of all "ve target
signatures, cinders, rhyolite, playa and vegetation, spe-
ci"cally, in classifying cinders, vegetation and shade.
Here, the LDA was carried out by performing LDA on
the image data then followed by a minimum-distance
classi"er used for class-membership assignment. Since it
worked as a pure pixel classi"er rather than a mixed pixel
classi"er to estimate target signature abundance as per-
formed by the other three the images produced by LDA
are binary as opposed to gray scale images produced by
LCDA, CEM and OSP. Therefore, it is not surprising to
see that LDA produced the worst results.

In order to see the performance of ULCDA, we ad-
opted SID [24,25] as a spectral metric to measure
the closeness or similarity of two pixel vectors in the
scene. The unsupervised clustering used in ULCDA was
the nearest neighboring rule (NNR) [10,12]. We also
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Fig. 2. Results of LCDA, LDA CEM and OSP. First column: (a) cinders classi"ed by LCDA; (b) rhyolite classi"ed by LCDA; (c) playa
classi"ed by LCDA; (d) vegetation classi"ed by LCDA; (e) shade classi"ed by LCDA. Second column: (a) cinders classi"ed by LDA; (b)
rhyolite classi"ed by LDA; (c) playa classi"ed by LDA; (d): vegetation classi"ed by LDA; (e) shade classi"ed by LDA. Third column (a)
cinders classi"ed by CEM; (b); rhyolite classi"ed by CEM; (c) playa classi"ed by CEM; (d) vegetation classi"ed by CEM; (e) shade
classi"ed by CEM. Forth column: (a) cinders classi"ed by OSP; (b) rhyolite classi"ed by OSP; (c): playa classi"ed by OSP; (d): vegetation
classi"ed by OSP; (e): shade classi"ed by OSP.
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Fig. 3. Results of ULCDA, CEM and UOSP with SID. First column: (a) cinders classi"ed by ULCDA; (b) rhyolite classi"ed by
ULCDA; (c) playa classi"ed by ULCDA; (d) vegetation classi"ed by ULCDA; (e) shade classi"ed by ULCDA. Second column: (a)
cinders classi"ed by ULDA; (b) rhyolite classi"ed by ULDA; (c) playa classi"ed by ULDA; (d): vegetation classi"ed by ULDA; (e) shade
classi"ed by ULDA. Third column: (a) cinders classi"ed by UCEM; (b): rhyolite classi"ed by UCEM; (c): playa classi"ed by UCEM; (d):
vegetation classi"ed by UCEM; (e): shade classi"ed by UCEM. Forth column: (a) cinders classi"ed by UOSP; (b): rhyolite classi"ed by
UOSP; (c) playa classi"ed by UOSP; (d) vegetation classi"ed by UOSP; (e) shade classi"ed by UOSP.
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Fig. 4. A HYDICE scene.

used TGP, SID and NNR to extend LDA, OSP and
CEM to their unsupervised counterparts, referred to
as ULDA, UCEM and UOSP. The purpose of using
SID is to relax the sensitivity of knowledge used in
classi"cation. Since there is no prior knowledge about
signatures, the target pixel vectors generated by TGP
may not be true target vectors due to interference
and noise. Using SID in Eq. (37) allows us to group
pixel vectors whose signatures are similar and close to
desired target vectors and use their spectral signature
averages as target class centers. The results are shown
in Fig. 3. All the images are arranged in the same matter
as does Fig. 2. It is interesting to note that in Fig. 3,
except for ULDA that did much worse than LDA, the
classi"cation results obtained by ULCDA, UCEM
and UOSP are nearly the same as those obtained by
their counterparts in Fig. 2 even there is no a priori
signature knowledge is available. The reason for this is
that the a priori target signature information required for
mixed pixel classi"cation can be compensated by its
estimated abundance while ULDA does not have such an
advantage.

Example 2 (HYDICE experiments). In this example, a HY-
DICE scene was conducted to evaluate the performance
among LCDA, LDA, CEM and OSP and their unsuper-
vised counterparts. The considered scene is exactly the
same one used in [13] and reproduced in Fig. 4 with
1.5-m spatial resolution. Four vehicles of two di!erent
types are parked along the tree line labeled from top to
bottom by <

1
, <

2
, <

3
, <

4
and one man-made object

denoted by Obj is near the center of the scene. While the
top three<

1
,<

2
,<

3
belong to one type of vehicle denoted

by V1, the bottom vehicle <
4

belongs to another type of
vehicle denoted by V2. Of particular interest in this scene
is that the ground truth provides precise pixel locations
of all the four vehicles as well as the object so that we can
verify the detection and classi"cation results for each
target for di!erent methods. Fig. 5 shows the results of
LCDA, LDA, CEM and OSP with the images arranged
in the same fashion as those in Fig. 2. Images labeled by
(a), (b) and (c) show the target detection and classi"cation
of the Obj, V1 and V2, respectively. From Fig. 5 LCDA
performed better than LDA, CEM and OSP in overall
performance. An interesting "nding is that LDA actually
performed better than LCDA in detection of <

4
but did

not work as well as LCDA in detection of V1 and Obj
where many false alarms occurred in LDA detection. The
reason for this is that LDA is a pure pixel classi"cation
technique while LCDA is a mixed pixel classi"cation
method (So are CEM and OSP). As a result, the gray
level values of mixed pixels in the images generated by
LCDA re#ect the abundance fractions of a particular
detected target. Due to the fact that the spectral signature
of <

3
is very similar to that of <

4
, LCDA also detected

a very small fraction of <
3

while detecting<
4

in Fig. 5(c).

The same phenomena were found much worse in the
CEM-generated and OSP-generated images shown in
Fig. 5(b) and (c) where both methods had di$culty with
di!erentiating these two vehicles <

3
and <

4
. Unlike

CEM and OSP, LCDA did manage to mitigate this
problem by making use of constraints to steer <

3
and

<
4

in such a way that they both were forced to be
separated along orthogonal directions. Consequently,
a barely visible amount of abundance of <

3
was detected

and classi"ed in the LCDA-detected image in Fig. 5(c).
Furthermore, comparing the images in the "rst and third
columns of Fig. 5, we can see that CEM extracted more
abundance of <

3
than did LCDA in detection of <

4
.

Nevertheless, CEM and LCDA performed signi"cantly
better than OSP. In detection and classi"cation of V1,
LCDA also performed better than LDA, CEM and OSP
as shown in the images of Fig. 5. Although OSP also
correctly classi"ed V1, it also extracted some natural
background signatures, tree and road. On the contrary,
CEM nulled out all background signatures, but also
inevitably extracted some fraction of <

4
. Since the spec-

tral signature of Obj is very distinct from those of four
vehicles, OSP, CEM and LCDA performed well in this
case. These HYDICE experiments further demonstrate
that in discrimination of targets with similar spectral
signatures LCDA not only is superior to OSP, but also
performs slightly better than CEM.

As noted above, the spectral signatures of <
3

and
<
4

are very similar. So, when ULCDA, ULDA, UCEM
and UOSP were applied to the scene in Fig. 4, the results
were interesting. Since there is no a priori knowledge
about the targets, <

3
and <

4
were treated as di!erent

targets. As a results, four categories of targets, Obj,
V1(<

1
, <

2
), V1(<

3
), V2(<

4
) were detected in Fig. 6 where

the images are also arranged in the same way as those in
Fig. 5 but V1 has been split into two di!erent classes. As
shown in Fig. 6, ULCDA did not work as well as did
LCDA in Fig. 5, but still performed reasonably well in
general. ULDA did well in pulling out Obj and V1(<

3
),

but did poorly in detecting V1(<
1
, <

2
) and V2(<

4
) with

many false alarms. Of particular interest is UCEM where

Q. Du, C.-I. Chang / Pattern Recognition 34 (2001) 361}373 369



Fig. 5. Results of LCDA, LDA, CEM and OSP. First column: (a) Obj classi"ed by LCDA; (b) V1 classi"ed by LCDA; (c) V2 classi"ed by
LCDA. Second column: (a) Obj classi"ed by LDA; (b) V1 classi"ed by LDA; (c) V2 classi"ed by LDA. Third column: (a) Obj classi"ed by
CEM; (b) V1 classi"ed by CEM; (c) V2 classi"ed by CEM. Forth column: (a) Obj classi"ed by OSP; (b) V1 classi"ed by OSP; (c) V2
classi"ed by OSP.

UCEM did as well as ULCDA and its performance was
actually improved if <

3
was considered to be a separate

type of vehicle. For UOSP it performed well in the sense
of target detection, but its performance was slightly o!set
by extracting small abundance fractions of some back-
ground signatures.

7. Conclusion

Linear discriminant analysis has been well accepted
as a major technique in pattern classi"cation. It can
be also applied to hyperspectral image classi"cation
[9]. This paper presents a similar but di!erent approach
to LDA, called LCDA which replaces Fisher's ratio

with the ratio of inter-distance to intra-distance as a
criterion for optimality. The advantage of LCDA over
LDA is that it constrains the class centers along the
desired orthogonal directions. Consequently, all the
classes of interest are forced to separate, one must be
orthogonal to another. By means of this direction con-
straint LCDA can detect and classify similar targets. It is
particularly useful for very high spatial resolution hyper-
spectral imagery such as HYDICE [8] where the size
of targets ranges from 1 meter to 4 meters. Additionally,
LCDA and CEM can be extended to an unsupervised
mode for unknown image scenes when no a priori signa-
ture knowledge is available. The experimental results are
very impressive and almost as good as their supervised
counterparts.
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Fig. 6. Results of LCDA, LDA, CEM and OSP. First column: (a) Obj classi"ed by LCDA; (b): V1(<
1
,<

2
) classi"ed by LCDA;

(c): V1(<
3
) classi"ed by LCDA; (d): V2(<

4
) classi"ed by LCDA. Second column: (a) Obj classi"ed by LDA; (b) V1(<

1
,<

2
) classi"ed

by LDA; (c) V1(<
3
) classi"ed by LDA; (d): V2(<

4
) classi"ed by LDA. Third column: (a) Obj classi"ed by CEM; (b) V1(<

1
,<

2
) classi"ed

by CEM; (c) V1(<
3
) classi"ed by CEM; (d): V2(<

4
) classi"ed by CEM. Forth column: (a) Obj classi"ed by OSP; (b): V1(<

1
,<

2
) classi"ed

by OSP; (c) V1(<
3
) classi"ed by OSP; (d) V2(<

4
) classi"ed by OSP.
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