
  
Abstract—Independent component analysis (ICA) has shown 

success in many applications. This paper investigates a new 
application of the ICA in endmember extraction and abundance 
quantification for hyperspectral imagery. An endmember is 
generally referred to as an idealized pure signature for a class 
whose presence is considered to be rare. When it occurs, it may 
not appear in large population. In this case, the commonly used 
principal components analysis (PCA) may not be effective since 
endmembers usually contribute very little in statistics to data 
variance. In order to substantiate our findings, an ICA-based 
approach, called ICA-based abundance quantification algorithm 
(ICA-AQA) is developed. Three novelties result from our 
proposed ICA-AQA. First, unlike the commonly used least 
squares abundance-constrained linear spectral mixture analysis 
(ACLSMA) which is a 2nd order statistics-based method, the 
ICA-AQA is a high order statistics-based technique. Second, due 
to the use of statistical independence it is generally thought that 
the ICA cannot be implemented as a constrained method. The 
ICA-AQA shows otherwise. Third, in order for the ACLSMA to 
perform abundance quantification, it requires an algorithm to 
find image endmembers first then followed by an abundance-
constrained algorithm for quantification. As opposed to such a 
two-stage process, the ICA-AQA can accomplish endmember 
extraction and abundance quantification simultaneously in one-
shot operation. Experimental results demonstrate that the ICA-
AQA performs at least comparably to abundance-constrained 
methods. 
 

Index Terms— Abundance-constrained linear spectral mixture 
analysis (ACLSMA). Abundance quantification. Endmember 
extraction. FastICA. High order statistics-based IC prioritization 
algorithm (HOS-ICPA). Independent components (ICs). IC 
prioritization. Independent component analysis (ICA). ICA-
based endmember extraction algorithm (ICA-EEA). ICA-based 
abundance quantification algorithm (ICA-AQA). Initialization 
driven-based IC prioritization algorithm (ID-ICPA). Virtual 
dimensionality (VD).  

I. INTRODUCTION 

yperspectral imaging has recently emerged as a very 
active area in remote sensing [1]. Many applications of 
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statistical signal processing techniques to hyperspectral 
imaging have been documented in [2]. Two major issues are 
of interest in remotely sensed imagery and are not encountered 
in classical two-dimensional (2D) image processing, which 
are subpixel targets and mixed pixels. A subpixel target is 
generally referred to a target with size smaller than a pixel 
resolution and therefore, is embedded in a single pixel. 
Accordingly, a subpixel target cannot be identified spatially 
by visual inspection. A mixed pixel occurs due to high 
spectral resolution or low spatial resolution when more than 
one material substance present in a pixel, in which case these 
substances are considered to be mixed linearly or nonlinearly 
in the pixel. Because of that, traditional pure pixel-based 
image processing techniques are generally not applicable to 
mixed pixel analysis. Unfortunately, due to the use of high 
spectral resolution by hyperspectral imaging sensors, a 
hyperspectral image pixel is most likely to be mixed by 
several substances or contain a subpixel target. As a result, the 
presence of pure pixels is rather rare, but provides critical 
information in data analysis, such as rare minerals in geology, 
rare species in agriculture and ecology, toxic waste in 
environmental monitoring, drug trafficking in law 
enforcement, vehicles in combat field, etc., all of which 
appear either at subpixel scale or in a mixed pixel rather than a 
pure pixel. Consequently, extracting pure pixels from a 
hyperspectral image presents a great challenge and has 
become increasingly important in hyperspectral data 
exploitation. However, there is a distinction between pure 
pixel and pure signature. Based on the definition given in [3], 
an endmember is an idealized, pure signature for a class. So, 
an endmember is a pure signature, but is not necessary to be a 
pure pixel. This is because a pure signature may come from a 
data base or spectral library which has been calibrated. So, it 
does not have to appear as a pixel in real data. When it does, it 
is called pure pixel. This implies that it may have many pure 
pixels which are specified by the same pure signature. Since 
the term “endmember” has been widely used in the remote 
sensing community, it will be used throughout this paper to 
indicate pure signature supposedly extracted by an 
endmember extraction algorithm (EEA). When an endmember 
extracted by an EEA as a pixel, it is referred to as endmember 
pixel. 

As noted, an endmember represents a class, that is, finding 
endmembers is equivalent to finding different classes. Many 
endmember extraction algorithms (EEAs) have been 
developed for this purpose, for example, pixel purity index 
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(PPI) [4], N-finder (N-FINDR) algorithm [5], iterative error 
analysis (IEA) [6], automated morphological endmember 
extraction (AMEE) algorithm [7], minimum volume transform 
[8], convex geometry [9], convex cone analysis [10], vertex 
component analysis (VCA) [11] etc. All these approaches 
share one thing in common which is the use of convexity to 
determine endmembers. However, they all also suffer from 
one common drawback which is no guideline suggested to 
determine how many endmembers required to be generated.  

This paper presents a rather different approach, which uses 
statistical independence as a criterion as opposed to the 
convexity on which most EEAs are based. Our rationale is 
based on several observations. First of all, since distinct 
endmembers represent different classes, their statistical 
dependency must be least correlated. Second, due to the 
nature of endmembers as pure signatures the probability of the 
occurrence of endmembers is generally low. Third, when 
endmembers do occur, the spatial extent of their presence is 
usually very small. All these profiles seem to fit the strengths 
of the independent component analysis (ICA) [12] which uses 
mutual information to measure statistical independency. It is 
also well known that one of major applications for the ICA is 
blind source separation, which demixes a linear mixture of 
signal sources. If the signal sources to be demixed are 
interpreted as sources of pure signatures, its applicability to 
endmember extraction seems natural and justifiable.  

Applications of the ICA to solving linear mixing problems 
for remotely sensed imagery are not new, just name a few [13-
16]. However, most ICA-based approaches have mainly 
focused on separation of signal sources, but not on abundance 
quantification of signal sources. A second but rather important 
issue is determination of number of signal sources to be 
separated. To the authors’ best knowledge, this issue has been 
left open in the ICA and has not been really addressed in the 
past. Recently, the issue was investigated in [17] where a new 
concept introduced in [2,18], called virtual dimensionality 
(VD) to estimate the number of independent components (ICs) 
required to be generated for dimensionality reduction. 
Interestingly, a similar idea of using the VD to estimate 
number of endmembers was first explored in [19-21] for PPI 
[4] and N-FINDR [5] and VCA in [21].  The work in [17] was 
the first to use the VD to perform the ICA-based 
dimensionality reduction. Unlike the principal components 
analysis (PCA) which ranks its principal components in 
accordance with the magnitude of variances or eigenvalues, 
the ICA does not prioritize its generated ICs as does the PCA. 
More specifically, the ICs generated earlier are not necessarily 
more important or significant than those produced later on. 
This dilemma is caused by the fact that there is no criterion 
implemented to prioritize components in the way that the PCA 
uses the eigenvalues to prioritize its components. Because the 
ICA generally uses random vectors as initial projection 
vectors to initialize the algorithm, the order that ICs are 
generated is completely random.  

This issue is critical to endmember extraction because some 
ICs in which endmembers are present may be generated very 
last. In this case, all the ICs must be selected for endmember 
extraction in order to avoid missing of any possible 
endmember. Unfortunately, in hyperspectral image analysis, 

there are generally hundreds of spectral bands, each of which 
corresponds to a component image, but only tens of 
components may contain useful and important information 
such as endmembers. Under this circumstance, selecting 
appropriate ICs for data analysis becomes crucial. To cope 
with this problem, two algorithms developed in [17] are used 
for this purpose. One is called high order statistics-based IC 
prioritization algorithm (HOS-ICPA) which uses high order 
statistics to prioritize ICs. The other is called initialization 
driven-based IC prioritization algorithm (ID-ICPA) which 
implements a custom-designed initialization algorithm to 
produce an appropriate set of initial projection vectors in 
sequence so that the ICs can be generated by the ICA in the 
same order that the initial projection vectors are generated. 
With the use of such an initialization algorithm the random 
generation of ICs can be avoided. Unfortunately, since the 
main theme in [17] was focused on dimensionality reduction 
and endmember extraction was only used to demonstrate one 
of its potential applications, a detailed study and analysis on 
endmember extraction was not conducted in [17]. In order for 
the ICA to perform abundance quantification, the ICA must 
satisfy two constraints, abundance sum-to-one constraint 
(ASC) and abundance non-negativity constraint (ANC). 
However, it is known that due to the use of statistical 
independence as its source separation criterion the ICA-
generated results are scale invariant and may be also not 
necessarily positive, both of which violate the ASC and ANC. 
This is due to the fact that if the ICA is implemented as an 
abundance-constrained technique; otherwise, the endmembers 
will not be statistically independent. Because of that, using the 
ICA as an abundance quantifier is never thought to be 
possible. This paper takes up this challenging issue which was 
never addressed and investigated in the literature including 
[17] and shows otherwise.  

In general, abundance quantification cannot be 
accomplished by any EEA including those in [4-11]. This is 
because an EEA only identifies endmembers which are 
assumed to be pure. As a result, there is no need to estimate 
abundance rations of the extracted endmembers. In order for 
an EEA also to achieve abundance quantification of all pixels, 
an abundance quantification algorithm such as fully 
constrained least squares linear mixture analysis (LSMA) 
[2,20] must be implemented after endmembers are extracted. 
Compared to EEAs, our proposed ICA-based abundance 
quantification approaches can perform endmember extraction 
and abundance quantification simultaneously with no need of 
any additional abundance quantification algorithm. Its ability 
in abundance quantification can be derived from the same ICs 
selected for dimensionality reduction. Since each of 
endmembers represents a distinct class, all endmembers must 
be extracted in a separate and individual IC for discrimination 
and classification. Such a significant benefit cannot be gained 
by any EEA or abundance constrained LSMA. As a matter of 
fact, the use of the selected ICA-generated ICs to perform 
abundance quantification is similar to that of the LSMA to 
generate abundance fraction maps for each of image 
endmembers used in linear mixture model [2,22-23] except 
that the latter imposes constraints on abundance fractions.  



In order to substantiate the utility of our proposed ICA-
based approach in endmember extraction and abundance 
quantification, a set of synthetic images-based computer 
simulations is conducted to simulate various scenarios for 
quantitative analysis. Additionally, real hyperspectral image 
experiments are also performed to validate our proposed ICA-
based approach in real applications. 

The remainder of this paper is organized as follows. Section 
II briefly reviews the ICA and its application to linear spectral 
mixing problems in hyperspectral imagery. Section III 
develops two algorithms to prioritize ICs generated by the 
ICA. Section IV presents ICA-based algorithms for 
endmember extraction and abundance quantification. Section 
V and Section VI conduct computer simulations and real 
hyperspectral image experiments respectively to demonstrate 
the utility of our proposed ICA-based approach. Section VII 
concludes some remarks. Finally, an appendix on VD is 
included for completeness for those who are not familiar with 
and would like to learn more about the VD concept. 

II. INDEPENDENT COMPONENT ANALYSIS 

Independent component analysis (ICA) has been widely 
used in blind source separation. Its application to LSMA in 
remote sensing image processing has been shown to be 
promising [13-16]. In what follows, we briefly describe its 
concepts with application to the LSMA. 

Suppose that L is the number of spectral bands and r is an 
L-dimensional image pixel vector. Assume that there are p 

targets, pttt ,,, 21 �  present in an image scene. Let 

pmmm ,,, 21 �  denote their corresponding target signatures, 

which are generally referred to as digital numbers (DN). A 
linear mixture model of r models the spectral signature of r as 

a linear combination of pmmm ,,, 21 �  with appropriate 

abundance fractions specified by pααα ,,, 21 � . More 

precisely, r is an 1×L  column vector and M be an pL ×  

target spectral signature matrix, denoted by [ ]pmmm �21 , 

where mj is an 1×L  column vector represented by the 
spectral signature of the j-th target tj resident in the pixel 

vector r. Let T
p ][ 21 ααα �=�  be a 1×p  abundance column 

vector associated with r where αj denotes the fraction of the j-
th target signature mj present in the pixel vector r. A classical 
approach to solving a mixed pixel classification problem is 
linear unmixing which assumes that the spectral signature of 

the pixel vector r is linearly mixed by pmmm ,,, 21 � , the 

spectral signatures of the p  targets, pttt ,,, 21 �  as follows. 

r = Mαααα + n                                                              (1) 
where n is noise or can be interpreted as a measurement or 
model error. 

In order for the ICA to perform the mixed pixel 
classification specified by (1), we reinterpret the target 

signature matrix and abundance vector T
p ][ 21 ααα �=�  as 

mixing matrix and p abundance signal sources, denoted by 

pααα ,,, 21 �  respectively. There are two major differences of 

such interpretation from the linear mixture model used in the 

LSMA. One is that the p abundance fractions pααα ,,, 21 � , 

which are commonly assumed to be unknown and non-
random constants in the LSMA, are now assumed to be 
random parameters and statistically independent signal 
sources. Another is that at most one of these p signal sources 
is allowed to be Gaussian. A linear spectral mixture analysis 
implemented with these two assumptions was proposed in 
[14] and referred to as linear spectral random mixture analysis 
(LSRMA). 

When the ICA is implemented, it generally assumes that the 
mixing matrix is a square matrix. When the number of rows of 
a mixing matrix, L is less than the number of sources, p to be 
separated, (1) deals with an under-determined system where 
the ICA is referred to as over-complete ICA. On the other 
hand, if pL > , (1) represents an over-determined system. In 
this case, the ICA is referred to as under-complete ICA and 
generally requires a dimensionality reduction to produce a 
square unmixing matrix. A common practice is to apply a 
technique such as PCA to reduce data dimensionality from L 
to p. However, such an approach is generally not effective for 
hyperspectral imagery because the subtle information such as 
subpixel, anomalies may be lost in the course of 
dimensionality reduction. So, as an alternative, this paper 
takes another approach. Instead of reducing data 
dimensionality by any means, it prioritizes ICs in accordance 
with a criterion determined by a specific application. The idea 
of IC prioritization is new and was reported in [17]. In this 
paper, it will be briefly reviewed in Section III.  

Since we can interpret the L and p in a hyperspectral image 
as the number of bands and the number of abundance sources 

pααα ,,, 21 �  respectively with the assumption that pL >  is 

always true, the ICA has p under-complete bases that are used 

to uncover the p abundance signal sources, pααα ,,, 21 � . In 

this paper, the FastICA algorithm developed by Hyvarinen 
and Oja [24] will be used to find p ICs that correspond to the 

p abundance signal sources, pααα ,,, 21 � . In doing so, each 

spectral band image, is converted to a vector. More 
specifically, assume that a hyperspectral image cube has size 
of LNM ××  pixels where L is the number of spectral bands 
and MN is the size of each spectral band image. The 
hyperspectral image cube can then be represented by a data 
matrix X of size MNL ×  with L rows and MN columns. In 
other words, each row in the data matrix X is specified by a 
particular spectral band image. As a result, a total of L ICs can 
be generated by the FastICA. However, according to (1) only 
p ICs are of interest and the ICA must be implemented with 
under-complete bases. In this case, the deflation approach 
used in FastICA is applied to generate ICs one by one 
sequentially where each of ICs is produced by maximizing the 
negentropy measured by kurtosis. When each IC is generated 
by the FastICA, an initial projection vector is required for 
initialization where a general approach is to randomly 
generate a vector and use it as its initial projection vector. As 



a consequence, the ICs generated by the FastICA in different 
runs will not be necessary the same. In particular, an IC 
generated earlier does not necessarily imply that it is more 
important than the one generated later on. This dilemma will 
be resolved by introducing IC prioritization algorithms 
developed in Section III that can prioritize ICs by certain 
criteria. 

III. ALGORITHMS FOR PRIORITIZING ICS 

Since the number of spectral bands L in hyperspectral 
imagery is generally much greater than the number of 
endmembers, p, the ICA in this case is actually under-
complete ICA where the number of mixtures (i.e., 
observations) is much larger than the number of signal 
sources. As a result, how to find those ICs which contain 
endmembers is a key issue in endmember extraction. 
Furthermore, it should be noted that the FastICA-generated 
ICs are not necessarily arranged in order of information 
significance as the way that the principal components (PCs) 
are generated by the PCA or the MNF in accordance with 
decreasing magnitude of variances, eigenvalues or SNRs. 
Also the ICs generated by the FastICA in different runs 
generally appear in different orders. These issues are primarily 
due to the use of the initial projection unit vectors that are 
randomly generated by the Fast ICA to produce ICs. This 
implies that if the FastICA is repeated again, its produced ICs 
will appear in different orders. Under such circumstance, an 
endmember which appears in an early IC generated by one run 
may actually appear in a later IC generated by another run. 

In order to resolve the issue resulting from the nature of the 
random initial projection unit vectors, a concept of IC 
prioritization is proposed. It determines a priority score for 
each of the ICA-generated ICs according to its significance 
measured by a certain criterion. These priority scores are then 
used to rank all the ICs in order of their priorities. Two IC 
prioritization algorithms, called High Order Statistics-Based 
IC prioritization algorithm (HOS-ICPA) and Initialization 
Driven-based IC prioritization algorithm (ID-ICPA) are 
developed for this purpose. In the HOS-ICPA, we consider 
each generated IC as a random variable. In this case, we 
assume that the i-th ICi can be described by a random variable 
ζi with values specified by the gray level value of the n-th 

pixel in the ICi, denoted by i
nz . In light of this interpretation, 

the FastICA-generated ICs can be ranked and prioritized by 
priority scores measured by high-order statistics-based criteria 
derived from the random variable ζi. By contrast, the ID-ICPA 
takes a complete opposite approach. In order to remove the 
random nature caused by the initial projection unit vectors 
used by the FastICA, the ID-ICPA implements a particularly-
designed initialization algorithm to produce an appropriate set 
of initial projection vectors in sequence for the FastICA. 
Consequently, the priority scores for the ICs generated by the 
ID-ICPA are always ranked by the sequential order that the 
initial projection vectors are generated.  

 
 
 

A. High Order Statistics-Based IC Prioritization (HOS-ICPA) 
The idea of the HOS-ICPA is to first determine the number 

of ICs needed to be retained, p which can be estimated by the 
VD. It then prioritizes the FastICA-generated ICs according to 
a high-order statistics criterion to select the first p prioritized 
ICs.  
High Order Statistics-Based IC-Prioritized Algorithm (HOS-
ICPA) 
1 Find VD to determine the number of ICs required for 

FastICA to generate, p. 
2 Implement the FastICA to produce all ICs where each ICi 

uses a randomly generated unit vector as an initial 
projection vector to produce the final desired projection 
vector for the ICi. 

3 For each ICi calculate its priority score based on the 
following high-order statistics that combines 3rd and 4th 
orders of statistics for ζi.  

( )[ ] ( )[ ]2423 348/112/1)IC( −+= iiicorepriority_s κκ     (2) 

where [ ] ( )� =
==

MN

n

i
nii z

MN
E

1

333 1ζκ  and 

[ ] ( )� =
==

MN

n

i
nii z

MN
E

1

444 1ζκ  are sample means of 3rd 

and 4th orders of statistics in the ICi. 
4 Prioritize the { }iIC  in accordance with the 

priority_score(ICi). 
5 Select the p ICs with p highest priority scores. 

It should be noted that in (2) the priority score for each 
FastICA-generated IC is determined by only the third and 
fourth order statistics. Any statistics higher than four can be 
also used to calculate priority scores. However, based on our 
experience and experiments, such higher statistics do not offer 
significant advantages over the one used in (2).   

 
B. Initialization Driven-Based IC Prioritization (ID-ICPA) 

Since the initial projection unit vector used for each 
FastICA-generated IC is randomly generated, the ICs 
produced by the FastICA in different runs generally appear in 
different orders and also are not necessarily the same. The 
HOS-ICPA resolves this issue by implementing the criterion 
specified by (2) to calculate priority score for each of the 
FastICA-generated ICs that can be used to prioritize all the 
ICs. In this subsection, we present an alternative algorithm, 
called initialization driven-based IC prioritization algorithm 
(ID-ICPA) which does not calculate priority scores the way 
that the HOS-ICPA does for IC prioritization. Instead, the ID-
ICPA resolves the issue of randomly generated ICs by using a 
custom-designed initialization algorithm which produces an 
appropriate set of initial projection vectors for the FastICA so 
that the FastICA-generated ICs are prioritized by the same 
order that the initial projection vectors are generated.  
Initialization Driven-Based IC-Prioritized Algorithm (ID-
ICPA) 
1 Find VD to determine the number of ICs required for 

FastICA to generate, p. 



2 Custom-design an initialization algorithm to produce an 

appropriate set of initial projection vectors { }p
ii 1=t  to be 

used by the FastICA.  
3 For each ICi, the FastICA uses ti as its initial projection 

vector to produce the final desired projection vector for 
the ICi and its priority score is then assigned to be “i”, 
i.e., priority_score(ICi) = i. 

Three comments on ID-ICPA are noteworthy. 
(a) It should be noted that the IC prioritization is ranked by 

priority scores that are determined by the sequential order 

that the initial projection vectors{ }p
ii 1=t  are generated by 

a specific initialization algorithm. So, a different 
initialization algorithm generally produces a different set 

of initial projection vectors { }p
ii 1=t . As a consequence, 

the priority scores produced for the FastICA-genertaed 
ICs will be also different. In this paper, an automatic 
target generation process (ATGP) used in an automatic 
target detection and classification algorithm (ATDCA) 
developed by Ren and Chang [25] is selected to 
implement the ID-ICPA. 

(b) It is also worth noting that all the initial projection vectors 

{ }p
ii 1=t  are present in separate ICs and no two initial 

projection vectors are the same IC. 
(c) Unlike the HOS-ICPA which requires the FastICA to 

generate all ICs for prioritization, the ID-ICPA only 
needs the FastICA to generate p ICs. 

(d) An intuitive selection of initial projection vectors for 

{ }p
ii 1=t  seems to be eigenvectors. Unfortunately, 

according to our experiments the eigenvector-selected 
initial projection vectors do not always work and often 
result in inconsistent results [26]. This may be due to the 
fact that eigenvectors are results of second-order statistics 
and cannot serve well for the FastICA which is developed 
based on statistical independence. 

IV. ICA-BASED ENDMEMBER EXTRACTION AND 
ABUNDANCE QUANTIFICATION 

Many algorithms which have been developed for 
endmember extraction cannot be also used to perform 
abundance quantification. For such an endmember extraction 
algorithm to do so, it must be implemented in conjunction 
with an abundance quantification algorithm, for example a 
fully abundance-constrained method, fully constrained least 
squares (FCLS) in [2,23]. This section presents an ICA-based 
approach, called ICA-based abundance quantification 
algorithm (ICA-AQA) which can achieve both endmember 
extraction and abundance quantification simultaneously. The 
idea is to select the first p prioritized IC for endmember 
extraction and further use the same selected p prioritized ICs 
for abundance quantification for all image pixels. In other 
words, since each IC represents a specific class of targets 
extracted from the image data, it can be used to serve as 
abundance fraction map for this particular class.  

 
 

A. Endmember Extraction 
Most EEAs extract all desired endmembers in a single map 

to show their spatial presence in the image in a similar way 
that a classification algorithm produces a class map. The 
following proposed ICA-based endmember extraction 
algorithm performs otherwise. It takes advantages of the 
FastICA-generated ICs that separate all extracted endmember 
pixels in individual components so that no two endmember 
pixels that represent two different classes will be present in 
the same component. 

 
ICA-Based Endmember Extraction Algorithm (ICA-EEA) 
1. Find VD to determine the number of ICs needed to be 

generated, p. 
2. Implement either HOS-ICPA or ID-ICPA to find first p 

prioritized ICs in accordance with their priority scores. 
3. For each of the selected p FastICA-generated IC images, 

find a pixel with maximum absolute value, which is 
referred to as endmember pixel. The spectral signature of 
such found pixel is then selected as an endmember. 

4. The p endmember pixels produced in step 3 denoted by 
{ }p

ii 1=e  are the final set of endmember pixels whose 

spectral signatures are our desirable endmembers.  
It should be noted that there may have more than one 

endmember pixel extracted in one IC, in which all the 
extracted endmember pixels are considered to be in the same 
class as will be shown in our experiments.  
 
B. Abundance Quantification 

The main goal of the ICA-EEA is to extract all the desired 
endmembers from a hyperspectral image from a set of p 
appropriately prioritized ICs and further show each of these 
extracted endmember pixels in a separate and individual 
component. Since the ICA does not impose constrain on 
abundance fractions (otherwise the signal sources will not be 
statistically independent), using the ICA to perform 
abundance quantification seems out of its reach. Interestingly, 
an approach can be developed in the following to use the same 
p ICs obtained by the ICA-EEA for abundance quantification 
in a similar manner that the LSMA generates one abundance 
fraction map for each of its image endmembers. 
 
ICA-Based Abundance Quantification Algorithm (ICA-AQA) 
1. Implement ICA-EEA using either the HOS-ICPA or the 

ID-ICPA to find p endmember pixels, { }p
ii 1=e . 

2. For each endmember pixel ei, let ICi be the IC from which 
ei was extracted and ICi(r) denote the value of each pixel 
r in ICi. We normalize the absolute value of ICi(r), 

|)(IC| ri  with respect to |ei|, the absolute value of ei and 

define its corresponding abundance fraction )(IC r
i

α  by 

|)(IC|min||

|)(IC|min|)(IC|
)(IC re

rr
r

r

r

ii

ii
i −

−
=α                   (3) 

It is worth noting that the endmember ei in (3) is actually 
|)(IC|max| | re r ii = which is the maximum of |)(IC| ri  

over all the image pixels in the ICi. 



3. The set of { }
ii ICIC )(

∈r
rα is the desired abundance fraction 

map of the i-th independent component, ICi. 
A comment on (3) in step 2 is noteworthy. In order for the 

ICA_AQA to perform quantification, (3) is implemented to 
satisfy both ASC and ANC by normalization. However, this is 
a heuristic approach to make an unconstrained method a fully 
constrained method. It does not really perform a fully 
constrained method as it should be such as FCLS. This is 
because the normalization performed in (3) varies with 
different ICs.  

It should be also noted that the ICA-EEA and ICA-AQA 
proposed in this section make an assumption that the image 
data to be processed contain endmembers. This is a reasonable 
assumption since image data generally have a number of 
distinct classes and each class is assumed to be specified by an 
endmember. If there is no endmember in image data, the ICA-
EEA extracts pixels which are most likely to be purest pixels 
that can represent endmembers. Then the ICA-AQA treats 
these extracted pixels as if they were endmembers to perform 
abundance quantification. As experimental results 
demonstrated in the following section, the ICA-AQA indeed 
performs at least comparably to fully constrained least squares 
abundance quantification method in both cases. Since the use 
of the VD and design of IC prioritization algorithms, HOS-
ICPA and ID-ICPA are not our contribution which can be 
found in [17], in what follows we describe three major 
novelties derived from our proposed ICA-AQA. 
1. One of major novelties is the idea of using independent 

component analysis (ICA) for abundance quantification that 
has not been explored before. Since the ICA uses statistical 
independence as blind source separation, the ICA cannot be 
implemented as a constrained method, thus it cannot be 
used as abunadnce quantification. The ICA-AQA proposed 
in this paper shows otherwise. 

2. A second novelty is that our proposed ICA-based 
abundance quantification can perform both image 
endmember extraction and abundance quantification 
simultaneously which cannot be accomplished by any 
existing abundance quantifier or endmember extraction. For 
example, for ACLSMA to perform abundance 
quantification, it first requires the ACLSMA to find image 
endmembers first, which needs an algorithm to do so. After 
the image endmembers are determined, an AC-LSMA 
method must be followed up to estimate the abundance 
fractions. In this case, the algorithms for finding the image 
endmembers and the ACLSMA are generally different. The 
ICA-AQA uses the same ICA-genetated independent 
components to perform image endmember extraction as 
well as abunadnce quantification.  

3. A third major novelty is that the ICA-based abundance 
quantification is a high order statistics-based technique as 
opposed to commonly used ACLSMA methods which are 
least squares-based and second order statistics-based 
techniques. To authors’ best knowledge, there exist no such 
high order statistics-based abundance quantification 
techniques reported in the literature. 

V. COMPUTER SIMULATIONS 

In order to quantitatively evaluate the effectiveness of the 
ICA-based endmember extraction and abundance 
quantification, synthetic image-based computer simulations 
are conducted in this section for performance analysis. The 
synthetic images used for experiments were simulated by a 
library of five mineral spectra alunite (A), buddingtonite (B), 
calcite (C), kaolinite (K) and muscovite (M) available at the 
USGS website [26] shown in Fig. 1. 

 

 
Figure 1. Spectra of five pure pixels corresponding to minerals: alunite (A), 
buddingtonite (B), calcite (C), kaolinite (K) and muscovite (M) provided by 
the USGS 

 
Using the five signatures provided by Fig. 1 a synthetic 

image scene with size of 6464×  pixels was simulated 
according to Fig. 2 where the image background was made up 
of 50% Alunite and 50% Kaolinite, and three other minerals 
Buddingtonite, Calcite, and Muscovite were used to simulate 
27 panels of different abundance fractions with those panels in 
1st, 2nd and 3rd columns specified by Buddingtonite, Calcite 
and Muscovite respectively.  

These 27 panels were then implanted into the image 
background in a way that the corresponding background 
pixels were replaced by the pixels in the 27 panel. Except 
three panels in the first row in Fig. 2 labeled by 100% which 
contained 4 pure mineral pixels, all other panels in Fig. 2 were 
single-pixel panels with various abundance fractions as 
specified in Fig. 2. It is worth noting that the panel pixels with 
abundance fractions less than 1 were mixtures of the panel 
signature with the background. For example, the panel pixel 
labeled by 80% in the 1st column is a mixture of 80% 
Buddingtonite with 20% background signature.  
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Figure 2. A synthetic image with specified abundance fractions 

 



This synthetic image was used for experiments to simulate 
two scenarios, clean panels implanted into a noisy background 
and clean panels implanted into clean background with 
additive Gaussian noise. The former was design to evaluate 
the ability of an EEA in extracting endmembers in a noisy 
environment, while the latter is to evaluate the effectiveness of 
an EEA in extraction of endmembers corrupted by Gaussian 
noise, in which case there were no pure signatures.  

 
Experiment 1: Scenario with Endmembers (Clean panels 
implanted into a noisy background)  

In this experiment we simulated a scenario that the 27 clean 
panels in Fig. 2 were implanted into a noisy image 
background which was also simulated by mixing 50% Alunite 
and 50% Kaolinite, but was also corrupted by an additive 
Gaussian noise to achieve signal-to-noise ratio (SNR) 30:1. 
So, the resulting synthetic image had 27 clean panels 
implanted in a noisy background in such a way that the pixels 
in the 27 panels replaced their corresponding noisy 
background pixels so that the 27 panels were not corrupted by 
the Gaussian noise. The VD for this synthetic image with 
various false alarm probabilities is tabulated in Table 1. So, 
for our experiments VD = 3 was chosen. 

 
Table 1. VD estimates for the synthetic image in Ex.1 with various false alarm 
probabilities 

 PF = 10-1 PF  = 10-2 PF  = 10-3 PF  = 10-4 PF  = 10-5 

VD 3 3 3 3 3 

 
 Fig. 3(a-c) shows the results of 3 endmembers extracted in 

three different ICs by the ICA-EEA using HOS-ICPA, ICA-
EEA using ID-ICPA and PPI [4]. Since no noise was added to 
the 27 panels, the ICAEEA using the HOS-ICPA, ID-ICPA 
were able to extract all the five pure pixels in the 1st and 2nd 
rows in Fig. 3(a-b) for each of three minerals, B, C and M as 
endmember pixels. That is, a total of 15 panel pixels were 
extracted, 12 panels in three 22 ×  panels in the 1st row and 
three 11×  panel pixels in the 2nd row. 

 
 

    

 

  
                      3 endmembers                                   B(IC2)   

               

 

    

 

 
                           C(IC1)                                          M(IC3) 

 (a) 3 endmembers extracted by ICA-EEA using HOS-ICPA         

 

    

 

 
                      3 endmembers                                        B(IC1)                      

 

     

 

 
                            C(IC2)                                              M(IC3) 

 (b) 3 endmembers extracted by ICA-EEA using ID-ICPA 
 

 
(c) 3 endmembers extracted by PPI 

Figure 3. 3 endmembers extracted by ICA-EEA using HOS-ICPA ICA-EEA 
using ID-ICPA PPI 
 

It is worth noting that all the ICs generated in Fig. 3(a-b) 
were real-valued and are shown in gray scales. The panel 
pixels which are not 100% pure were also detected in all ICs. 
But their gray level intensities were proportional to the 
abundance fractions of endmembers contained in the panel 
pixels, that is, the more the abundance the brighter the panel 
pixel. Interestingly, the PPI only extracted three panel pixels 
which were at the upper left corners of the three 22 ×  panels 
in the 1st row in Fig. 3(c). 

However, unlike the ICs in Fig. 3(a-b), the image in Fig. 
3(c) was actually a binary map where the gray pixels are 
included to show those pixels which were pure panel pixels, 
but were not extracted by the PPI. It should be also noted that 
when the PPI was implemented, it required dimensionality 
reduction which was performed by the maximum noise 
fraction (MNF) [27] and the number of dimensions to be 
retained was set to p, in this case, p = 3.  

In order to evaluate the performance of the ICA-AQA, an 
unsupervised fully constrained least squares (UFCLS) method 
[2,23] with p = 3 was also used for comparison. The 3 panel 
pixels extracted by the UFCLS is shown in Fig. 4(a) where the 
UFCLS missed the mineral signature M in Fig. 4(a). 
 



 

      

 

 

                (a) UFCLS with p = 3                     (b) UFCLS with p = 4 
Figure 4. 3 pixels extracted by UFCLS with p = 3 and UFCLS with p = 4 
 

Table 2 also tabulates the results of the ICA-AQA using the 
HOS-ICPA and ID-ICPA along with the UFCLS in 
abundance quantification of all panel pixels in the 27 panels in 
Fig. 2.  

 
 

Table 2. Abundance quantification results by ICA-AQA and UFCLS with p = 3 
B (%) C (%) M (%) 

Ground 
truth (%) 

ICA-AQA 
HOS-ICPA 

ICA-AQA 
ID-ICPA 

UFCLS 
(p = 3) 

ICA-AQA 
HOS-ICPA 

ICA-AQA 
ID-ICPA 

UFCLS 
(p = 3) 

ICA-AQA 
HOS-ICPA 

ICA-AQA 
ID-ICPA 

UFCLS 
(p = 3) 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 66.75 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 66.75 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 66.75 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 66.75 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 66.75 

80 79.96 79.96 80.33 79.96 79.96 80.41 79.96 79.96 53.73 

60 59.92 59.92 60.65 59.92 59.92 60.82 59.93 59.93 40.70 

40 39.89 39.88 40.98 39.88 39.88 41.24 39.89 39.89 27.68 

30 29.87 29.86 31.14 29.86 29.86 31.44 29.87 29.87 21.16 

20 19.85 19.85 21.30 19.84 19.84 21.65 19.85 19.85 14.65 

10 9.83 9.83 11.46 9.82 9.82 11.85 9.83 9.83 8.14 

5 4.82 4.82 6.54 4.81 4.81 6.96 4.82 4.83 4.88 
 

As also shown in Table 2, all the 15 shaded panel pixels 
extracted in Fig. 3 and the 10 shaded panel pixels extracted in 
Fig. 4(a) were quantified to 100% pure pixels and the UFCLS 
failed to quantify the five panel pixels that corresponded to the 
mineral M to 100% pure pixels. The ICA-AQA performed 
significantly better than the UFCLS in quantification of other 
panel pixels as well. Since the background signature was 
spectrally distinct from the three endmembers, it should be 
accounted as the fourth signature in the UFCLS. Therefore, if 
the UFCLS was implemented with p = 4, Fig. 4(b) shows the 
same results as those obtained in Fig. 3 where a total of the 15 
panel pixels in the 1st and 2nd rows were also extracted by the 
UFCLS.  

Table 3 tabulates the UFCSL-quantified abundance 
fractions of the panel pixels in all the 27 panels in Fig. 2. Also 
included in Table 3 for comparison are the results produced by 
the FCLS using complete prior knowledge of three mineral 
signatures B,C,M with/without the background signature 
(BKG) where the FCLS using the complete knowledge of four 
signatures, B,C,M and BKG produced perfect results. 
.However, if the FCLS used only three signatures, B,C,M for 
abundance quantification, it produced the worst performance 
and even worse than those obtained by the ICA-AQA in Table 
2. 

 
Table 3. Abundance quantification results of B, C, M by UFCLS and FCLS 
B (%) C (%) M (%) 

FCLS FCLS FCLS 
Ground 

truth (%) 
UFCLS (p 

=  4) B,C,M 
B,C,M,+ 

BKG  
UFCLS 
(p =  4) B,C,M 

B,C,M + 
BKG 

UFCLS 
(p =  4) B,C,M 

B,C,M, + 
BKG  

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

80 80.15 86.53 80.00 80.36 89.28 80.00 80.27 84.18 80.00 

60 60.29 73.07 60.00 60.72 78.57 60.00 60.54 68.36 60.00 

40 40.44 59.60 40.00 41.07 67.85 40.00 40.81 52.54 40.00 

30 30.51 52.87 30.00 31.25 62.50 30.00 30.94 44.63 30.00 

20 20.58 46.14 20.00 21.43 57.14 20.00 21.08 36.72 20.00 

10 10.65 39.40 10.00 11.61 51.78 10.00 11.21 28.82 10.00 

5 5.69 36.04 5.00 6.70 49.10 5.00 6.28 24.86 5.00 
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Experiment 2: Scenario with No Endemmbers (Clean panels 
implanted into clean background with additive Gaussian 
noise) 

 In Experiment 1 we simulated a scenario where there were 
three endmembers present in a noisy background. In this 
experiment, we simulated another scenario where there was no 
true endmember present in a synthetic image. In doing so, an 
additive Gaussian noise was added to the image in Fig. 2 to 
achieve signal-to-noise ratio (SNR) 30:1 where the 27 clean 
panels and clean image background were all corrupted by an 
additive Gaussian noise. The VD for this synthetic image with 
various false alarm probabilities was estimated and tabulated 
in Table 4.  

 
Table 4. VD estimates for the synthetic image in Experiment 2 with various 
false alarm probabilities 

 PF = 10-1 PF  = 10-2 PF  = 10-3 PF  = 10-4 PF  = 10-5 

VD 4 3 3 3 3 

 

For our experiments VD = 3 was chosen with 2
F 10P −≤ . 

Fig. 5(a-b) shows the results of 3 endmembers that are marked 
by circles and were extracted in three different ICs by the 
ICA-EEA using the HOS-ICPA and ID-ICPA respectively 
where both extracted two pixels in the 2nd row, each of which 
was a single panel pixel corresponding to the minerals B and 
C respectively and a third pixel which was the upper left 
corner panel pixel in the 22 ×  panel in the 3rd column that 
corresponded to the mineral M. So, the ICA-EEA still 
successfully extracted three endmembers even they were 
noise-corrupted. On the other hand, the PPI behaved quite 
differently. It extracted a total of 5 panel pixels in Fig. 5(c) 
with 1 single panel pixels in the 2nd row and 4 panel pixels in 
the 1st row, one located at bottom left corner of the 22 ×  
panel in the 1st column, one located at upper right corner of 
the 22 ×  panel in the 2nd column and 2 at upper left and right 
corners of the 22 ×  panel in the 3rd column.  

 
 

     

 

  
                     3 endmembers                                    B(IC1)                      

 

     

 

 
                              C(IC2)                                       M (IC3) 

(a) 3 ICs by HOS-ICPA               

 

     

 

  
                       3 endmembers                                     B (IC2)                     

 

     

 

 
                            C (IC1)                                             M (IC3) 

 (b) 3 ICs by ID-ICPA 
 

 
(c) endmembers extracted by PPI 

Figure 5. Endmembers extracted by ICA-EEA using HOS-ICPA, ICA-EEA 
using ID-ICPA and PPI 
 

Compare Fig. 5(a-b) to Fig. 5(c), the ICA-EEA performed 
as well as the PPI from an endmember extraction point of 
view since all the three endmembers corresponding to the 
three distinct minerals, B,C,M were extracted correctly. 

Similarly, in analogy with Experiment 1 the UFCLS with p 
= 3 and 4 was also implemented for comparison. Fig. 6(a) 
shows 3 pixels extracted by the UFCLS with p = 3, of which 
only one was a pure panel pixel located at the bottom right 
corner of the 22 ×  panel in the 1st row and the 2nd column. 
Fig. 6(b) shows 4 pixels extracted by the UFCLS with p = 4, 
of which three were pure panel pixels with one located at the 
bottom left corner of the 22 ×  panel at the 1st row and the 1st 
column, a second panel pixel being a single panel pixel at the 
2nd row and the 2nd column and a third pixel located at the 
upper left corner of the 22 ×  panel at the 1st row and the 3rd 
column.  
  

       

 

        

 

 
                  (a) UFCLS with p = 3                       (b) UFCLS with p = 4 
Figure 6. 3 pixels extracted by UFCLS with p = 3 and UFCLS with p = 4 
 

As shown in Fig. 6(a-b), the UFCLS with p = 4 
outperformed the UFCLS with p = 3 and successfully 
extracted three noise corrupted endmembers which 



TGRS-2005 
 

10 

corresponded to three distinct minerals, B,C,M as the ICA-
EEA did in Fig. 5(a-b). 

Despite the fact that there were no endmembers present in 
the scene, the panel pixels extracted in Fig. 5(a-b) were 
assumed to be endmember pixels and their abundance 
fractions were then assigned to 100%. All other panel pixels 
were then normalized to the range of [0,1] by (3) accordingly. 
Table 5 tabulates quantification results of abundance fractions 
for the panel pixels in the 27 panels estimated by the ICA-
AQA where the shaded pixels were the endmember pixels 
extracted by the ICA-EEA. Since only one of the five panel 
pixels for each of B, C and M was extracted as an endmember 
pixel and assigned to 100% abundance, the abundance 
fractions for the rest of the four pure panel pixels were 
normalized by (3). Nevertheless, their quantified abundance 
fractions were no less than 97.38%. For subpixels with 
abundance fractions less than 100%, the ICA-AQA actually 
performed well in abundance quantification except those 
subpixels with 5% abundance.  

 In comparison with the ICA-EEA the quantification results 
produced by the UFCLS with p = 3 for the panel pixels in the 
27 panels are also included in Table 5 where the UFCLS 
performed substantially worse than the ICA-AQA due to the 
fact that the background signature was not included in the 
UFCLS as the fourth signature. In this case, only one 
endmember pixel (shaded) corresponding to C was extracted 
by the UFCLS and the other two signatures B and M were 

missed by the UFCLS. However, if the UFCLS was 
implemented with p = 4, Fig. 6(b) shows the 4 extracted 
pixels, three of which turned out to be panel pixels 
representing three distinct minerals. The quantitative results 
produced by the UFCLS for the panel pixels in the 27 panels 
are tabulated in Table 6 where three endmember pixels 
(shaded) corresponding to three mineral signatures B,C,M 
extracted by the UFCLS in Fig. 6(b). In this case, the UFCLS 
performed better than the ICA-AQA. 

Table 6 suggested that in order for the UFCLS to perform 
well, using only endmembers as its image endmembers was 
not sufficient. It must include all potential spectrally distinct 
signatures other than endmembers such as background 
signatures and interfering signatures. For the ICA-EEA such 
signatures are extracted in ICs with low priorities. To further 
verify the results, a supervised fully constrained least squares 
(FCLS) method [2,23] was implemented using complete prior 
knowledge of three mineral signatures (B,C,M) with/without 
the background signature (BKG). Their results are also 
tabulated in Table 6 where the FCLS using the B, C, M with 
the background signature BKG performed better than both the 
ICA-EEA and UFCLS. By contrast, the FCLS using only 
three minerals, B, C, M without the background signature 
BKG performed very poorly particularly for subpixels 
because the background signature was not included as an 
undesired signature. 

 
Table 5. Endmembers extracted by ICA-EEA and abundance quantification results by ICA-AQA and UFCLS 

B (%) C (%) M (%) 
Ground 

truth (%) HOS-ICPA ID-ICPA 
UFCLS 
(p = 3) 

HOS-
ICPA ID-ICPA  

UFCLS 
(p = 3) 

HOS-
ICPA ID-ICPA  

UFCLS 
(p = 3) 

100 98.04 98.03 98.67 99.15 99.17 98.99 100.00 100.00 19.54 

100 97.50 97.47 99.08 99.39 99.41 99.24 97.38 97.38 18.91 

100 98.91 98.90 98.73 99.20 99.21 99.09 98.43 98.43 20.19 

100 98.43 98.42 99.39 99.97 99.99 100.00 98.78 98.78 19.97 

100 100.00 100.00 99.99 100.00 100.00 99.65 98.72 98.72 19.39 

80 76.54 76.54 79.49 77.17 77.16 79.65 77.18 77.18 16.68 

60 57.49 57.49 61.02 58.05 58.04 60.21 57.55 57.55 12.11 

40 37.88 37.87 41.33 38.60 38.60 40.89 38.45 38.45 8.42 

30 28.74 28.74 30.75 28.32 28.32 31.12 28.37 28.37 7.21 

20 18.68 18.68 21.67 19.27 19.27 20.84 17.61 17.61 5.52 

10 8.56 8.55 11.33 8.70 8.69 11.03 9.17 9.17 3.36 

5 4.26 4.26 7.39 5.58 5.58 6.41 3.73 3.73 2.64 

Table 6. Abundance quantification results of B, C, M by UFCLS and FCLS 
B (%) C (%) M (%) 

FCLS FCLS FCLS 
Ground 

truth (%) 
UFCLS (p 

=  4) B,C,M 
B,C,M,+ 

BKG 
UFCLS 
(p =  4) B,C,M 

B,C,M + 
BKG 

UFCLS 
(p =  4) B,C,M 

B,C,M, + 
BKG 

100 97.99 99.21 99.21 98.68 99.48 99.33 100.00 100.00 100.00 

100 98.07 99.54 99.54 99.09 99.82 99.63 96.67 99.23 98.70 

100 99.09 100.00 100.00 98.73 99.79 99.35 96.84 99.13 99.13 

100 100.0 100.00 100.00 99.39 100.00 99.96 97.34 99.46 99.46 

100 99.65 100.00 100.00 100.00 100.00 100.00 96.97 99.42 99.31 

80 78.46 85.87 79.71 79.44 88.30 79.69 78.44 84.08 80.07 

60 59.94 73.23 60.09 60.77 78.29 60.60 59.35 68.93 60.10 

40 40.33 59.58 40.15 41.22 67.95 40.45 40.34 53.85 40.38 
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30 30.87 53.12 30.32 30.71 62.60 29.98 29.95 44.89 29.81 

20 20.79 46.23 19.73 21.67 57.74 20.56 18.87 35.84 19.04 

10 10.55 39.07 9.74 11.07 51.64 9.92 10.11 28.71 9.51 

5 5.51 35.44 4.59 7.32 49.37 5.57 4.81 24.63 4.56 

However, it should be noted that the UFCLS was 
performed by two stage processes where an unsupervised 
least square error-based algorithm was implemented to find 
a set of image endmembers including endmembers and 
undesired signatures in the first stage, then followed by a 
supervised FCLS in the second stage to quantify abundance 
fractions. If the set of found image endmembers was not 
representative for the image data to be processed, the 
UFCLS would generally fail as shown in Table 2 and Table 
3. Compared to the UFCLS, the ICA-AQA performs 
endmember extraction and abundance quantification 
simultaneously in a one-shot single operation. This 
advantage may give the ICA-AQA better utility in real 
applications. Similarly, Experiment 2 was also conducted 
for SNR = 20:1 and 10:1 where the results were very 
similar to what we presented here. Therefore, their 
experimental results are not included.  

VI. REAL HYPERSPECTRAL IMAGE EXPERIMENTS 

In this section, two real hyperspectral image data were 
used for experiments. One is a well-known Airborne 
Visible/InfraRed imaging spectrometer (AVIRIS) Cuprite 
image scene and the second one is HYperspectral Digital 
Imagery Collection Experiment (HYDICE) image scene. 
 
A. AVIRIS Image Experiments  

The AVIRIS Cuprite image scene shown in Fig. 7 is 
available at website [26] and was collected over the Cuprite 
mining site, Nevada, in 1997. It is a 224-band image with 
size of 350350×  pixels and well understood 
mineralogically where bands 1-3, 105-115 and 150-170 
have been removed prior to the analysis due to water 
absorption and low SNR in those bands. As a result, a total 
of 189 bands were used for experiments. Although there are 
more than five minerals on the data set, the ground truth 
available for this region only provides the locations of the 
pure pixels: Alunite (A), Buddingtonite (B), Calcite (C), 
Kaolinite (K) and Muscovite (M). The locations of these 
five pure minerals are labeled by A, B, C, K and M 
respectively and shown in Fig. 7.  

 

    

Figure 7. Cuprite AVIRIS image scene g with spatial positions of five pure 
pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite 
(C), kaolinite (K) and muscovite (M) 

 
This scene is well understood mineralogically and has 

reliable ground truth. It becomes a standard test site for 
comparison of endmember extraction algorithms. The VD 
for this image scene was estimated with various false alarm 
probabilities and tabulated in Table 7. For our experiments 
VD = 22 was chosen with PF = 10-4.  

 
Table 7. VD estimates for the AVIRIS scene in Fig. 7 with various false 
alarm probabilities 

 PF = 10-1 PF  = 10-2 PF  = 10-3 PF  = 10-4 PF  = 10-5 

VD 34 30 24 22 20 

 
Figs. 8-9 show the spatial locations of the 22 pixels 

extracted in Fig. 8(a) and Fig. 9(a) by the ICA-EEA using 
the HOS-ICPA and the ID-ICPA along with their 
corresponding five different ICs in Fig. 8(b-f) and Fig. 9(b-
f) that extracted the five pixels marked by a, b, c, k, m with 
triangles were shown to be closest to the spatial locations of 
the five ground truth mineral endmember pixels marked by 
A, B, C, K, M with crosses.  
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                      (e) K (IC5)                                      (f) M (IC7) 
Figure 8. 22 pixels extracted by ICA-EEA using HOS-ICPA for 
endmember extraction 
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                      (a) 22 pixels                               (b) A (IC14)                 
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                     (c) B (IC4)                          (d) C (IC18)                        

 

K(k)  

    

 

M  

m  

 
                        (e) K (IC6)                               (f) M (IC8) 
Figure 9. 22 pixels extracted by ICA-EEA using ID-ICPA for endmember 
extraction 
 

The indexes of ICs in Fig. 8-9 were included to indicate 
the order that they were generated. The spectral similarity 
measure used for mineral identification was the correlation-
matched filter based distance (RMFD) [28]. The reason that 
the RMFD was used in this experiment is because it was 
shown in [28] that the RMFD was preferred to the 
commonly used spectral similarity measure, spectral angle 
mapper (SAM) for real hyperspectral imagery. The 
remaining 17 pixels marked by circles in Fig. 8(a) and Fig. 
9(a) were not endmember pixels that corresponded to the 
five minerals, but could be some other unidentified 
substances which were not available from the ground truth. 
Fig. 10 shows the result obtained by the PPI with 
dimensions reduced to p = 22 for comparison where the 
pixels marked by triangle were the extracted endmembers 
correspond to 5 minerals, and circles were unidentified 
endmembers. As noted, the  PPI missed one mineral, which 
is Buddingtonite. Comparing the PPI result in Fig. 10 to the 
results produced  in Figs. 8-9 by the ICA-EEA, the ICA-
EEA performed better than the PPI did.   
 

 

A(a)  

c  
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B  
m  

K(k)  
M  

 
Figure 10. 22 pixels extracted by PPI for endmember extraction 

 
It should be noted that due to the lack of information 

about abundance fractions of pixels in the image, the ICA-
AQA was not implemented for this scene. 
 
B. HYDICE Image Experiments  

Another image scene to be studied is HYperspectral 
Digital Imagery Collection Experiment (HYDICE) image 
scene shown in Fig. 11(a) was used for experiments, which 
has a size of 6464 ×  pixel vectors with 15 panels in the 
scene and the ground truth map in Fig. 11(b) [1]. It was 
acquired by 210 spectral bands with a spectral coverage 
from 0.4µm to 2.5 µm. Low signal/high noise bands: bands 
1-3 and bands 202-210; and water vapor absorption bands: 
bands 101-112 and bands 137-153 were removed. So, a 
total of 169 bands were used. The spatial resolution is 
1.56m and spectral resolution is 10nm. Within the scene in 
Fig. 11(a) there is a large grass field background, and a 
forest on the left edge. Each element in this matrix is a 
square panel.   
 

    
                            (a)                                          (b) 
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Figure 11. (a) A HYDICE panel scene which contains 15 panels; (b) 
Ground truth map of spatial locations of the 15 panels; (c) Spectral 
signatures of p1, p2, p3, p4 and p5 
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For each row 5,,2,1 �=i , the three panels were painted 
by the same material but have three different sizes. For 
each column 3,2,1=j , the five panels have the same size 
but were painted by five different materials. It should be 
noted that the panels in rows 2 and 3 are made by the same 
material with different paints, so did the panels in rows 4 
and 5. Nevertheless, they were still considered as different 
materials. The sizes of the panels in the first, second and 
third columns are m3m3 × , m2m2 ×  and m1m1 ×  
respectively. So, the 15 panels have five different materials 
and three different sizes. Fig. 11(b) shows the precise 
spatial locations of these 15 panels where red pixels (R 
pixels) are the panel center pixels and the pixels in yellow 
(Y pixels) are panel pixels mixed with background. The 
1.56m-spatial resolution of the image scene suggests that 
the panels in the 2nd and 3rd columns, denoted by p12, p13, 
p22, p23, p32, p33, p42, p43, p52, p53 in Fig. 11(b) are one pixel 
in size. Additionally, except the panel in the 1st row and 1st 
column, denoted by p11 which also has size of one pixel, all 
other panels located in the 1st column are two-pixel panels 
which are the panel in the 2nd row with two pixels lined up 
vertically, denoted by p211 and p221, the panel in the 3rd row 
with two pixels lined up horizontally, denoted by p311 and 
p312, the panel in the 4th row with two pixels also lined up 
horizontally, denoted by p411 and p412. and the panel in the 
5th row with two pixels lined up vertically, denoted by  p511 
and p521. Since the size of the panels in the third column is 
1m × 1m , they cannot be seen visually from Fig. 11(a) due 
to the fact that its size is less than the 1.56m pixel 
resolution.  

Fig. 11(c) plots the 5 panel spectral signatures pi for 
5,,2,1 �=i  obtained by averaging R pixels in the 

m3m3 ×  and m2m2 ×  panels in row i in Fig. 11(b). It 
should be noted the R pixels in the m1m1 ×  panels are not 
included because they are not pure pixels due to that fact 
that the spatial resolution of the R pixels in the m1m1 ×  
panels is 1 m smaller than the pixel resolution, 1.56 m. 
These panel signatures along with the R pixels in the 

m3m3 ×  and m2m2 ×  panels were used as required prior 
target knowledge for the following comparative studies. 

First of all, the VD was used to estimate number of 
bands, p, required for band selection. Table 8 calculated the 
values of VD for the HYDICE image in Fig. 11(a) with 
various false alarm probabilities. For our experiments, the 
VD was chosen to be 9. The selection of p = 9 was 
empirical based on the false alarm fixed at probabilities PF 
= 10-4.  
 
Table 8. VD estimates for the HYDICE scene in Fig. 11 with various false 
alarm probabilities 

 PF = 10-1 PF  = 10-2 PF  = 10-3 PF  = 10-4 PF  = 10-5 

VD 14 11 9 9 7 

 
Fig. 12-13 shows the spatial locations of 9 pixels 

extracted in Fig. 12(a) by the ICA-EEA using the HOS-
ICPA and the ID-ICPA along with their corresponding five 
different ICs indexed by the order that they appeared, Fig. 
12(b-f) and Fig. 13(b-f) that extracted the five distinct panel 

signatures where endmember pixels marked by triangles 
were those corresponded to ground truth R pixels marked 
by crosses for comparison. The remaining 4 endmember 
pixels marked by circles in Fig. 12(a) and Fig. 13(a) were 
not R pixels but could correspond to tree, forest, grass or 
road in the image background. Comparing Fig. 12(b-f) and 
Fig. 13(b-f) against the ground truth map in Fig. 9(b), the 
ICA-EEA using HOS-ICPA and ID-ICPA extracted the 
same five panel pixels, p11, p221, p312, p411 and p521 that 
represented the five distinct panel signatures p1, p2, p3, p4 
and p5 despite that both found four different remaining 
pixels marked by circles in Fig. 12(a) and Fig. 13(a). Fig. 
14 shows the results obtained by the PPI with dimensions 
reduced to p = 9 extracted 11 pixels, of which only four 
endmember pixels, p311, p312, p412 and p521 that 
corresponded to three distinct panel signatures (panel 
signatures p3, p4 and p5 in rows 1, 3 and 5) and missed the 
other two panel signatures p1 and p2. The remaining 
endmember pixels marked by circles were not R pixels, but 
rather background pixels. 

 
 

    

 

  
                 (a) 9 extracted pixels                             (b) p1 (IC2)                    

 

    

 

 
                        (c) p2  (IC6)                                   (d) p3  (IC5)                    
 

  

 

    

 

 
                       (e) p4 (IC3)                                   (f) p5 (IC4)                    
                  Figure 12. 9 pixel extracted by the ICA-EEA using HOS-ICPA                                         
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                   (a) 9 extracted pixels                        (b) p1 (IC2)                     

 

   

 

 
                     (c) p2  (IC6)                                  (d) p3  (IC5)        

    

 

   

 

 
                        (e) p4 (IC4)                                     (f) p5 (IC3) 
                  Figure 13. 9 pixel extracted by the ICA-EEA using ID-ICPA  

 
This experiment showed that the ICA-EEA performed 

significantly better than the PPI in endmember extraction 
where the former found all five endmember pixels 
including the three extracted by the latter which missed the 
second and fourth signatures. 

 
 

  
Figure 14.  9 pixels extracted by PPI 

 
Since the abundance fractions of the 19 R pixels in Fig. 

11(b) can be calculated based on the ratio of their panel size 
to the spatial resolution [29], the ICA-AQA was 
implemented and evaluated in comparison with the UFCLS 
for performance analysis. Since it has been shown in [2,23] 
that in order for the UFCLS to perform well it required at 
least 34 signatures to be used for linear unmixing, Fig. 

15(a-b) shows the results of pixels extracted by the UFCLS 
with p = 9 and 34 respectively where two pixels, p312 and 
p521 were extracted by the UFCLS with p = 9 and 4 pixels, 
p11, p312, p411 and p521 were extracted by the UFCLS with p 
= 34.  

 
 

  

 

 
                          (a) p = 9                                         (b) p = 34  

Figure 15. Pixels extracted by the UFCLS with p = 9 and 34 
 

Using the pixels extracted in Fig. 12(b-f) and Fig. 13(b-f) 
as endmember pixels, Table 9 tabulates the quantification 
results of the 19 R panel pixels produced by the ICA-AQA 
where the shaded pixels were the pixels extracted by 
algorithms in Fig. 12(b-f) and Fig. 13(b-f). Also included in 
Table 9 are the abundance quantification results of 19 R 
panel pixels produced by the UFCLS with p = 9 and p = 34 
with the shaded pixels extracted in Fig. 15(a-b).  

 
Table 9. Abundance fractions of all the 19 R pixels by ICA-AQA and 
UFCLS in Fig. 6 

ICA-AQA UFCLS  
  

HOS-ICPA ID-ICPA p = 9 p = 34 
p11 1 1 0.3498 1 
p12 0.4458 0.4458 0.1982 0.4098 
p13 0.1745 0.1744 0.0712 0.0499 
p211 0.9986 0.9988 0.4291 0.5255 
p212 1 1 0.4358 0.3141 
p22 0.9215 0.9209 0.3560 0.6917 
p23 0.2733 0.2719 0.1978 0.4221 
p311 0.8943 0.8981 0.9273 0.8647 
p312 1 1 1 1 
p32 0.5358 0.5396 0.5127 0.5343 
p33 0.3356 0.3381 0.3735 0.3285 
p411 1 1 0.7380 1 
p412 0.9 0.9012 0.8066 0.3821 
p42 0.7907 0.7889 0.6397 0.7034 
p43 0.1918 0.1897 0.1772 0.2242 
p511 0.7004 0.7001 0.7242 0.7203 
p521 1 1 1 1 
p52 0.7306 0.7322 0.7742 0.7789 
p53 0.1301 0.1301 0.1584 0.1466 
 

From Table 9, the ICA-AQA performed significantly 
better than the UFCLS in both cases. The poor performance 
of the UFCLS with p = 9 was due to insufficient number of 
signatures used for UFCLS. Even though the performance 
of the UFCLS with p = 34 significantly improved the 
UFCLS with p = 9, but its performance was still not as 
good as that of the ICA-AQA. Comparing results in Table 9 
both the ICA-AQA and the UFCLS performed rather 
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differently on panels in the 1st and 2nd rows. Since there is 
no complete prior knowledge about the HYDICE image 
scene other than those 15 panels, no experiments were 
conducted for the supervised FCLS for comparison. Table 9 
also revealed an intriguing difference between the ICA-
EEA and a fully abundance-constrained method such as 
UFCLS. If the image data contain pure pixels, i.e., 
endmember pixels, the ICA-AQA can do as well as a fully 
abundance constrained method does. On some occasions, it 
may perform even better. On the other hand, if there are no 
pure pixels present in the image data, the ICA-AQA is 
forced to find one which may be a mixed pixel, but very 
likely a purest pixel. Under this circumstance, the 
abundance fraction of the found mixed pixel is normalized 
to one and the abundance fractions of all other pixels are 
also normalized by (3) accordingly. Consequently, the 
obtained abundance fractions may not be accurate. Such 
phenomena were demonstrated by Fig. 5 and Table 5 
conducted for Experiment 2 and also by the HYDICE 
experiments where both pixels, p211 and p212 in Fig. 6(c) are 
R pixels but they are not pure pixels according to the 
experiments conducted in [29]. In this case, the ICA-AQA 
found the pixel p212 as a desired endmember pixel and 
normalized it to one. The abundance fraction of the second 
pixel p211 in the same 2-pixel panel was then quantified as 
0.9986 (HOS-ICPA) or 0.9988 (ID-ICPA). However, 
according to the UFCLS the abundance fractions of these 
two pixels were estimated as 0.5255 and 0.3141 
respectively. Therefore, there was discrepancy between the 
ICA-AQA and the UFCLS in abundance quantification 
when no pure pixels are in the image data. Under this 
circumstance, UFCLS produces more accurate abundance 
estimation than the ICA-AQA. In the latter case, the ICA-
AQA found the purest pixel as an endmember pixel and 
then treated as if it was a pure pixel by normalizing its 
abundance fraction to one. Then all other pixels are 
quantified accordingly via (3) as the way that it did for 
quantification of the panel that is made up of two panel 
pixels, p211 and p212. 

One of major advantages derived from the proposed 
ICA-AQA is a one-shot process in endmember extraction 
and quantification compared to any other unsupervised 
abundance quantification algorithm which is generally 
carried out in two stages, endmember extraction followed 
by abundance quantification. As expected, there is a 
significant saving in computational complexity for the ICA-
AQA. In order to see this, Table 10 tabulates the CPU time 
required for the ICA-AQA and UFCLS to generate the 
results shown in Table 9 where the computer environment 
is tabulated in Table 11. Table 10 shows that the ID-ICPA 
yielded the best time as opposed to the worst time produced 
by the UFCLS generating 34 target pixels.  

 
Table 10. CPU time required by  ICA-AQA and UFCLS 

ICA-AQA UFCLS  
  

HOS-ICPA ID-ICPA p = 9 p = 34 
CPU Time 
(seconds) 7.56 3.79 19.16 276.17 

  

Table 11. Computer environment used to run the algorithms 
CPU Memory OS Matlab Version 

Intel(R)  
Pentium(R) 4 
CPU 2.66GHz 

1G Windows 
XP 6.5 

VII. CONCLUSIONS 

This paper presents an ICA-based approach to 
endmember extraction and abundance quantification, called 
ICA-abundance quantification algorithm (ICA-AQA). Of 
particular interest is a detailed study using synthetic image-
based computer simulations conducted for performance 
analysis. The proposed ICA-AQA first uses a new concept 
of virtual dimensionality (VD) recently developed in [2,18] 
to resolve a long standing and challenging issue, 
determination of number of  ICs required to be generated, p 
for endmember extraction. It then implements an ICA-
based endmember extraction algorithm (ICA-EEA) to 
extract desired image endmembers where two IC 
prioritization algorithms, high order statistics-based IC 
prioritization algorithm (HOS-ICPA) and initialization 
driven-based IC prioritization algorithm (ID-ICPA) are 
used to prioritize the ICs so that an appropriate set of p ICs 
can be selected for endmember extraction. Finally, the same 
ICA-EEA selected p prioritized ICs are further used for 
abundance quantification, a task that cannot be 
accomplished by any endmember extraction algorithm. 
Both synthetic image-based computer simulations and real 
hyperspectral image experiments are conducted to 
substantiate the ICA-AQA for quantitative analysis as well 
as to validate their utility in real applications. The 
experiments demonstrate that the ICA-EEA performs as 
well as or even better than a commonly used endmember 
extraction algorithm, PPI. Additionally, the ICA-AQA also 
performs comparably to fully abundance-constrained linear 
spectral mixture analysis methods such as UFCLS [23]. It 
should be noted that similar conclusions drawn for the PPI 
are also true for another popular endmember extraction 
algorithm, N-FINDR [5]. Since both results are very 
similar, the experiments conducted for the N-FINDR are 
not included in this paper. 
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APPENDIX 

The purpose of this appendix is to provide a brief 
introduction of the concept of the VD and a method, called 
Harsanyi-Farrand-Chang (HFC) method developed in [30] 
to estimate the VD. The details about the VD can be found 
in [18]. The name of virtual dimensionality (VD) was 
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originally coined in [2] and later in [18]. It was designed to 
determine the number of spectrally distinct signatures. If a 
component such as PC or IC is used to accommodate a 
spectrally distinct signature for classification and 
identification, the number of required components happens 
to be the number of spectrally distinct signatures, which is 
the VD.  Despite several methods were developed in [18], 
the method developed by Harsanyi et al. [30], referred to as 
Harsanyi-Farrand-Chang’s (HFC) method is selected for 
two reasons. One is simple to implement. Another is that it 
was shown to be effective in determining the number of 
spectrally signatures for AVIRIS data [30]. Its idea is very 
simple. It first calculates the sample correlation matrix, R, 
and sample covariance matrix, K, then finds the difference 
between their corresponding eigenvalues.  

More specifically, let }ˆˆˆ{ 21 Lλλλ ≥≥≥ �  and 

}{ 21 Lλλλ ≥≥≥ �  be two sets of eigenvalues generated by 
R and K, called correlation eigenvalues and covariance 
eigenvalues, respectively where the L is the number of 
spectral channels. By assuming that signal sources are 
nonrandom unknown positive constants and noise is white 
with zero mean, we can expect that  

ll λλ >ˆ  for VDl ,,1 �= ,                               (A-1)                                                                              
and  

ll λλ =ˆ   for LVDl ,,1 �+= .                        (A-2)                                                                        
Using (A-1)-(A-2), the eigenvalues in the l-th spectral 
channel can be related by 

Ll

l

l

l

nll

nll

,,1VDfor  ˆ

 and

VD,,1for  ˆ

2

2

�

�

+===

=>>

σλλ

σλλ

            (A-3)  

where 2
lnσ  is the noise variance in the l-th spectral channel. 

In order to determine the VD, Harsanyi et al. [25] 
formulated the VD determination problem as a binary 
hypothesis problem as follows.  

0ˆ  :

versus

0ˆ  :

1

0

>−=

=−=

lll

lll

zH

zH

λλ

λλ

   for Ll ,,2,1 �=  (A-4) 

where the null hypothesis H0 and the alternative hypothesis 
H1 represent the case that the correlation-eigenvalue is 
equal to its corresponding covariance eigenvalue and the 
case that the correlation-eigenvalue is greater than its 
corresponding covariance eigenvalue, respectively. In other 
words, when H1 is true (i.e., H0 fails), it implies that there is 
an endmember contributing to the correlation-eigenvalue in 
addition to noise, since the noise energy represented by the 
eigenvalue of R in that particular component is the same as 
the one represented by the eigenvalue of K in its 
corresponding component.  

Despite the fact that the lλ̂  and lλ  in (A-1)-(A-3) are 

unknown constants, according to [26], we can model each 
pair of eigenvalues, lλ̂  and lλ , under hypotheses H0 and 

H1 as random variables by the asymptotic conditional 
probability densities given by 

  ),0()|()( 2
00 lzll NHzpzp σ≅=  for Ll ,,2,1 �=  (A-5) 

and 
),()|()( 2

11 lzlll NHzpzp σµ≅=  for  Ll ,,2,1 �= (A-6) 

respectively, where µl  is an unknown constant and the 
variance 2

lzσ  is given by for Ll ,,2,1 �=  

[ ] [ ] [ ] ( )llllllzl
λλλλλλσ ,ˆcov2varˆvarˆvar2 −+=−= .(A-7) 

It has been shown that when the total number of samples, N 

is sufficiently large, [ ] Nll /ˆ2ˆvar 2λλ ≅  and 

[ ] Nll /2var 2λλ ≅ . Therefore, the noise variance 2
lzσ  in 

(A-6) can be estimated and approximated using (A-7).   
From (A-5), (A-6) and (A-9), we define the false alarm 

probability and detection power (i.e., detection probability) 
as follows: 

�
∞

=
l

dzzpPF τ
)(0                                             (A-8)                                                                                                   

            �
∞

=
l

dzzpPD τ
)(1 .                                           (A-9)                                                                                                  

A Neyman-Pearson detector for ll λλ −ˆ , denoted by 

)ˆ(NP ll λλδ −  for the binary composite hypothesis testing 

problem specified by (A-4) can be obtained by maximizing 
the detection power PD in (A-9), while the false alarm 
probability PF in (A-8) is fixed at a specific given value, α, 
which determines the threshold value τl in (A-8)-(A-9). So 

a case of lll τλλ >−ˆ  indicating that )ˆ(NP ll λλδ −  fails 

the test, in which case there is signal energy assumed to 
contribute to the eigenvalue, lλ̂ , in the l-th data dimension. 

It should be noted that the test for (A-4) must be performed 
for each of L spectral dimensions. Therefore, for each pair 
of ll λλ −ˆ , the threshold τ is different and should be l-

dependent, that is τl. 
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