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Abstract—Principal components analysis (PCA) is effective at
compressing information in multivariate data sets by computing
orthogonal projections that maximize the amount of data variance.
Unfortunately, information content in hyperspectral images does
not always coincide with such projections. We propose an appli-
cation of projection pursuit (PP), which seeks to find a set of pro-
jections that are “interesting,” in the sense that they deviate from
the Gaussian distribution assumption. Once these projections are
obtained, they can be used for image compression, segmentation,
or enhancement for visual analysis. To find these projections, a
two-step iterative process is followed where we first search for a
projection that maximizes a projection index based on the infor-
mation divergence of the projection’s estimated probability distri-
bution from the Gaussian distribution and then reduce the rank by
projecting the data onto the subspace orthogonal to the previous
projections. To calculate each projection, we use a simplified ap-
proach to maximizing the projection index, which does not require
an optimization algorithm. It searches for a solution by obtaining
a set of candidate projections from the data and choosing the one
with the highest projection index. The effectiveness of this method
is demonstrated through simulated examples as well as data from
the hyperspectral digital imagery collection experiment (HYDICE)
and the spatially enhanced broadband array spectrograph system
(SEBASS).

Index Terms—HYDICE, hyperspectral image, principal compo-
nents analysis, projection pursuit (PP), SEBASS.

I. INTRODUCTION

H YPERSPECTRAL imaging sensors are capable of
generating unprecedented volumes of radiometric data.

The airborne visible/infrared imaging spectrometer (AVIRIS),
for example, routinely produces image cubes with as many as
512 614 pixels and 224 spectral bands. If these data are to
be used for practical purposes, they must be reduced to allow
analysis by users as well as by computers. Data reduction is
an operation that enhances the information content of the data
in some way. A common data reduction method in situations
where there is noa priori knowledge about a scene is principal
components analysis (PCA). PCA is effective at compressing
information in multivariate data sets by computing orthogonal
projections that maximize the amount of data variance. It is
typically performed through the eigen-decomposition of the
spectral covariance matrix of an image cube. The information
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can then be presented in the form of component images, which
are projections of the image cube on to the eigenvectors. The
component images corresponding to the larger eigenvalues are
presumed to preserve the majority of the information about
the scene. Unfortunately, information content in hyperspectral
images does not always coincide with such projections for
several reasons.

1) PCA is optimal when the background associated with
signal sources (the clutter) is Gaussian white noise. This
is often not the case in hyperspectral images, where the
clutter includes contributions from interference sources
such as natural background signatures [1], [2] as well
as structured (nonrandom) noise such as striping. When
the Gaussian assumption does not hold, the background
clutter can become indistinguishable from the signal
sources [2].

2) The objects of interest are often small relative to the size
of the scene, and therefore contribute a small amount to
the overall variance. PCA often fails to capture the vari-
ability associated with small objects unless their spectra
are nearly orthogonal to the background spectra.

An alternative to PCA that can alleviate some of these prob-
lems is the minimum noise fraction (MNF) transform [2]–[4].
This transform, also known as noise-adjusted principal com-
ponents, was designed to produce orthogonal component im-
ages that are ordered by image quality as measured by the SNR,
rather than by the data variance. The MNF transform is equiv-
alent to a sequence of two orthogonal transformations, where
the first rotates the data such that the noise covariance matrix
is diagonalized, thus “whitening” the noise, followed by a stan-
dard PCA transform. PCA performance is improved because the
noise effects on signal sources are minimized by the whitening
process. However, the MNF transform still depends on “bulk”
image properties, so it is not generally sensitive to small objects.

This paper expands on a previous publication by the authors
[5] where an application of projection pursuit (PP) to hyper-
spectral data reduction and analysis was discussed. PP is an ex-
ploratory data analysis technique used to visualize high-dimen-
sional data in a low-dimensional space [6]–[8]. In PP, we look
for a set of linear projections that are “interesting,” in the sense
that they deviate from the Gaussian distribution assumption [9].
If we let be a column vector representing a data sample, then
we can compute a scalar “projection score”by

(1)

where is the projection vector. A projection is the collection of
the projection scores produced by all the data vectors. This ap-
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Fig. 1. Conceptual score distributions for which the projection score should
attain a high value. (a) Bimodal distribution, indicating spectral classes, and
(b) skewed distribution, indicating outliers.

proach is preferable to eigenanalysis of the spectral covariance
since it does not depend on the white Gaussian noise assumption
and is not biased toward larger objects (or spectral classes) that
contribute more variance. To carry out PP analysis, we must first
select an appropriate “projection index” to maximize. A projec-
tion index is a measure of the desirability of a given projection.
In PCA, which can be viewed as a special case of PP, this index
is the variance of the projection scores. Thus, PCA seeks projec-
tions that maximize the magnitude of signal sources (or “signal
energy”). However, information related to the segmentation of
different objects and background types does not generally align
itself with signal magnitude. Whereas PCA and MNF provide
the analyst with images ordered by a measure of signal strength,
they do not necessarily represent the spectral information con-
tent of the signals of interest. We would like to find projections
that cause a single pixel or a small cluster of projection scores
to become “separated” from the bulk of the data points (out-
liers). Such a projection would serve to locate spectrally anoma-
lous objects or low probability targets regardless of their relative
size. Another desirable type of projection is one that produces
multimodal projection score distributions, indicating different
spectral classes. Fig. 1 shows conceptual score distributions for
which our projection index should attain a high value.

The types of projections described above can be obtained
by using a projection index that considers the distribution of
projection scores. The projection index should attain a high
value for score distributions with strong outliers or multiple
modes, suggesting a spectral feature different than that of the
background. An important projection index used in PP is the one
proposed by Friedman [9], which is based on the mean-squared
difference between the projection score distribution and the
Gaussian distribution. This index gives a high value for bimodal
projection score distributions, but not necessarily for those with
outliers. An alternative to Friedman’s index, suggested by Huber
[8] and Jones and Sibson [7], is to use information-theoretic
measures such as entropy, computed on the projection score
distribution. One such measure is the information divergence
(or Kullback–Leibler distance) [10]. Information divergence is
an information-theoretic criterion that can be used to measure
the “distance” between two probability distributions. We can
construct a projection index by computing the information
divergence between the estimated probability distribution of a
projection and the normal distribution. A high projection index
indicates that its distribution is highly non-normal, and therefore
presumed interesting.

The PP method presented here is designed to obtain an
orthonormal transform. There is no restriction in the theory that
requires the computed projections to be mutually orthogonal,
but removing this requirement makes computations significantly
more complex and takes away the advantages of orthogonality.
To find a set of orthogonal projections, a two-step iterative
process is presented. We first search for a projection that max-
imizes the projection index and then reduce the rank of the
data matrix by projecting it onto the subspace orthogonal to all
the previous projections. Once these projections are obtained,
they can be used for image compression, segmentation, or
enhancement for visual analysis. PP analysis of hyperspectral
imagery has been reported previously by Jimenez and Landgrebe
[11]. They proposed a method based on the Bhattacharyya
distance as the projection index, requiring a training set with
labeled samples. Our approach does not require anya priori
knowledge about the scene. More recently [12], Chiang and
Chang successfully used skewness and kurtosis as the basis
of a projection index for unsupervised target detection with
hyperspectral imagery.

In Section II of this paper, we define the projection index
and show how it can be computed. Section III then introduces
an orthogonal transform based on our projection index. In Sec-
tions IV and V, we illustrate our method with examples, and
present our conclusions in Section VI.

II. PROJECTIONINDEX

The key to success in PP is the selection of an appropriate
projection index. In this section, we define the information di-
vergence index and show how it can be estimated in practice.
Given two continuous probability distributions and
of the projection score, the relative entropy of with re-
spect to is defined as

(2)

The absolute information divergence between and
can be defined by

(3)

which is symmetric, i.e., , and nonnegative.
The absolute information divergence is zero if and in-
creases as the two distributions diverge. If we let be the
Gaussian distribution, then we can compute the divergence of

from normality. To do this, we must estimate from the
data. One possible approach is to use a kernel estimator such as a
Parzen window [13], but the resulting integral to be solved would
result in a cumbersome expression. A simpler and effective ap-
proach is to approximate the continuous distributions and

with their discrete counterpartsand respectively. The
relative entropy of (2) for discrete distributions is defined as:

(4)
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where and are the th components of the and vectors
respectively. Then the absolute information divergence becomes

(5)

The absolute value is not needed in the discrete case since
for all discrete distributions and , though this

is not necessarily true for continuous probability distribution
functions [10]. We can now compute the projection index as
follows.

1) Select the number of binsand their width for quan-
tization of and .

2) Standardize the projection scores by subtracting their
mean and dividing by their standard deviation [i.e.,

].
3) Construct the projection score histogramfrom the stan-

dardized data and normalizeto unity, i.e., .
4) Quantize the standard Gaussian distribution by com-

puting the integral for
to . This is the value that would assume

in the limit as the number of pixels goes to infinity if the
projection were Gaussian.

5) Compute the projection index using (4) and (5).
The number of bins and their width should be chosen to cover at
least the range [ ] in order to retain the majority of the
Gaussian shape, but the number should be increased depending
on the maximum and minimum values of the projection scores.
The bin width should also be chosen small enough to provide
an accurate estimate of the divergence, but not so small that
it causes numerical instability. For the examples in this paper,
we have used 1, which appears to be appropriate for
sample sizes of about 1000 points. If a simulation is performed
where a number of Gaussian random numbers are generated, the
computed divergence of the samples from the true Gaussian will
change significantly as a function of , with a minimum at a
location that depends on the sample size. For a sample size of
1000, the optimal is close to 1 and decreases with increasing
sample size. Also, the zero values inare replaced by small
positive numbers to avoid numerical instability in the projection
index estimate (a “small” number is defined here as one that
would correspond to less than one sample occupying the bin).
This has a smoothing effect on the distribution estimate.

As discussed previously, we would like to capture both multi-
modality and skewness with our projection index. Fig. 1 shows
some interesting non-Gaussian shapes that, in our experience,
tend to give informative projections with hyperspectral images.
The divergence index was chosen for its ability to detect all such
distribution shapes.

III. PROJECTIONPURSUIT TRANSFORM

A. Preprocessing

It is a common practice in PP to prereduce the dimensionality
of the data by using PCA [8]. This process is sometimes known
as “sphering,” because all the components are given equal
weight by scaling them with their corresponding eigenvalue.
This step also serves as a first pass reduction by keeping
only projections associated with significant eigenvalues, thus

discarding the noise subspace. Ifis the diagonal eigenvalue
matrix and is the matrix whose columns contain the eigen-
vectors corresponding to the eigenvalues in, then a pixel
vector (spectrum) is transformed by

(6)

where is the sample mean of. We can then retain the elements
of associated with the largest eigenvalues in.

B. Obtaining the Projections

Since there is no analytical expression for the projection index
given in (5), obtaining a projection vector that maximizes the
projection index requires a numerical optimization technique.
Several different strategies are discussed in the literature [7]. In
this paper, we describe a simple search strategy that, although
not optimal, is intuitively straightforward and computationally
manageable. The premise of our approach is that there are in-
teresting projection vectors located in or near the data “cloud”
(i.e., the multidimensional area occupied by the data points),
and that they can be approximated by the pixel spectrum nearest
to it in terms of the inner product (zero-order approximation).
To find the best solution available in the data, we simply take
each pixel spectrum as a candidate projection vector, compute
the projection index and then select the one that produces the
highest value. We can illustrate this point graphically by using
a simple two-dimensional (2-D) example. Fig. 2 shows a scatter
plot of samples that have a non-Gaussian distribution. Clearly,
a projection along the horizontal dimension is more interesting
than a projection along the vertical, and in fact, will give a higher
projection index value. In this simple case, there is a data point
along almost every direction from the origin, so we can get a
very good answer by using the data points as candidate pro-
jection vectors and choosing the one that provides the largest
projection index. A similar argument can be applied to a higher
dimensional data space. If a high multidimensional data set is
interesting, the data points will not be spread evenly, but in-
stead will form clusters or other structures along some direc-
tions. These directions are the desired projection vectors. There-
fore, even if the number of dimensions increases, the interesting
projection directions of a data cloud will not be arbitrary, but
will in fact still be aligned with its data points.

Starting with a matrix whose columns
contain the pixel spectra vectors transformed via (6), we
can compute an -dimensional vector of projection scores

. Each single column vector in acts as a candidate
projection operator. The information divergence from nor-
mality for each set of projection scores can then be estimated
following the algorithm outlined in the previous section. Let

be the quantized standard Gaussian distribution for some
. The pixel that produces the highest value of the projection

index is then selected as the best projection

(7)

with its corresponding pixel as the projection vector

(8)
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Fig. 2. (a) Scatter plot of samples that have a non-Gaussian distribution,
(b) uninteresting vertical projection, and (c) interesting horizontal projection.

where indicates the Euclidean norm. In practice, this com-
putation of the projection index is of complexity O . Since
this operation is done times per iteration, the total complexity
is O per iteration. By using a fixed-size sample of the pixels
to estimate the probability distribution of the projections, we can
reduce the complexity to O . We have found in practice that
selecting a subset of the pixels to estimateyields results that
are often indistinguishable from those using all the data. In the
implementation of our algorithm, 1000 pixels sampled from the
image at uniform intervals were used.

After the best projection is obtained by (8), the next step
is to project the data matrix onto the subspace orthogonal to

. This allows us to look for additional projections that are mu-
tually orthogonal by simply repeating our search for the best
projection vector described by (7) and (8). In terms of orthog-
onal projection operators, the procedure for theth iteration can
be carried out by

(9)

where

(10)

is the subspace orthogonal to the space spanned by the
columns of . is the identity matrix, and

is the pseudo-inverse of at the th
iteration. It should be noted that contains all the best
projection vectors obtained up to iteration

(11)

As a result of this step, the rank of the matrixis reduced. This
two-step process can be repeated until the rank of the data matrix
becomes zero. The end result is an orthogonal matrix, where
each column is a projection vector.

The main advantage of this approach is its simplicity. Initial-
ization is not required, so that our results do not depend on an
initial guess, and there are no gradients to estimate. Although
comparison of our strategy with conventional methods is beyond
the scope of this paper, our method may be improved by using

Fig. 3. PCA scatter plot of simulated data. (a) First and second PCA com-
ponents and (b) Third and fourth PCA components.

a conventional technique to optimize the projection vector with
the selected vector from the data as a starting point. This would
allow us to find good solutions in areas of the data cloud that are
sparsely populated. One can imagine such an approach as pro-
ducing a sort of “interpolation” between the two best guesses to
yield a locally optimal solution.

Another advantage of our approach is a tendency for the pro-
jections to align themselves with specific spectral classes. In
fact, the projections can be viewed as a sequence of spectral
angle maps [14] based on target spectra chosen by maximizing
the projection index. This aids in the physical interpretability of
the results, since the projection vectors are derived from phys-
ical spectra. However, such spectrum is seldom produced by a
pure material (endmember), but rather is a mixture of multiple
pure endmember spectra. Optimization could improve physical
interpretability by finding a projection vector that is closer to a
pure (single endmember) spectrum.

IV. COMPUTERSIMULATION

To illustrate our method we have constructed a simulated
data set with a non-Gaussian feature which has a small relative
variance so that PCA does not work optimally. Ten zero-mean
features with 1000 samples each were simulated using a
Gaussian random number generator and assigned geometrically
decreasing variance values (1, 1/2, 1/4,). Ten of the samples
(or 1%) were offset by 10 in the third and fourth largest
variance features, creating a non-normal distribution. The ten
features were then converted to sample vectors by an arbitrary
orthonormal rotation matrix. The resulting data set is one
where the information embodied in the altered samples is not
the dominant source of variance, and is spread between two
features even though it is one-dimensional (1-D) in nature.

The results of PCA are shown in Fig. 3. The scatter plot of
the first two components [Fig. 3(a)] shows no non-normal fea-
tures. As would be expected, the scatter plot of the third and
fourth components shows the information [Fig. 3(b)], which is
preserved after an orthogonal transformation. To apply PP, we
start by scaling all the PCA scores (see Section III-A) and then
apply the method described in Section III-B. As Fig. 4 shows,
the non-normal feature is captured in the first projection only.
Thus, we have revealed the informative low variance feature as
well as compressed the information. The projection index values
for the PCA and PP projections are given in Table I. It shows that
the third PCA component has the largest index, corresponding
to the non-normal feature. The fact that the fourth component
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Fig. 4. PP Scatter plot of simulated data. (a) First and second PP projections
and (b) Third and fourth PP projections.

TABLE I
max J(ppp; qqq) VALUES FOR THEPCA AND PP PROJECTIONS FOR

SIMULATED DATA

Fig. 5. HYDICE scene.

has a low index value indicates that PCA did remove some of
the redundancy that resulted from introducing the variation in
two components. PP not only removed the redundancy com-
pletely, but also captured the information in the first projection.
Also, note that the projection indexes for the PP are not neces-
sarily montonically decreasing. Since the projections are mutu-
ally orthogonal, their ordering is merely a matter of convention
(as with PCA). In this paper we have not altered the order pro-
duced by the algorithm.

V. HYPERSPECTRALIMAGING EXPERIMENTS

A. HYDICE Experiments

The hyperspectral digital imagery collection experiment
(HYDICE) sensor [15], [16] is a pushbroom imaging spec-

Fig. 6. Eigenvalue spectrum from PCA analysis of HYDICE scene.

Fig. 7. Component images from PCA analysis of HYDICE scene.

trometer operating in the visible to short-wave infrared spectral
region. The data was delivered with the radiometric calibration
already done, so it is in units of W/m/Sr/ m. Spectral cali-
bration, nonuniformity correction, and bad pixel compensation
were also done prior to delivery.

To illustrate the usefulness of our PP approach, we use a 256
256 image (Fig. 5), which includes the smaller scene used in a

previous paper [5]. It contains objects of several types, including
vehicles, trees, roads, and other features. Because PP analysis is
performed using the image data only, conversion from radiance
to apparent reflectance is not necessary. It is assumed that the
atmospheric variability is negligible over the scene. Depending
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Fig. 8. Component images from MNF analysis of HYDICE scene.

Fig. 9. Projection images from PP analysis of HYDICE scene.

on the application, however, it may be desirable to normalize the
pixel spectra prior to PCA. In this example, we use the calibrated
spectra as it is. The only alteration to the data is the removal
of bands 1–4, which contain image artifacts that can affect the
results. The water bands were kept unaltered.

Fig. 6 shows eigenvalue spectrum for the PCA of this scene
(first 50 eigenvalues). It is used to help estimate the number of
components that contain any significant amount of variance.

TABLE II
max J(ppp; qqq) VALUES FOR THEPCA, MNF, AND PP PROJECTIONS FOR

HYDICE SCENE

Fig. 10. LWIR SEBASS scene.

Fig. 11. Eigenvalue spectrum from PCA analysis of SEBASS scene.
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Fig. 12. Component images from PCA analysis of SEBASS scene.

The rest are presumed to contain only noise and can thus be
discarded in order to reduce computation. Our experience has
shown that finding the exact number of eigenvalues is not critical
to successful application of PP. It is preferable to overestimate
the number of significant components in order to capture low
variance information that may otherwise be lost. In this example
we use the largest eleven components, accounting for 99.81% of
the signal variance. The component images from the PCA are
shown in Fig. 7. A visual analysis reveals that the signal variance
is dominated by the shadow features together with the vegetation
and roads, followed by the vehicles and the other objects in the
scene. The latter have their signatures spread among several

components. Although most of the useful information is cap-
tured in the first four components, there is a significant amount
of information down to the eleventh component. Additionally,
the MNF transform was computed on the same image (Fig. 8)
using the ENVI software package [17], with the noise covariance
matrix estimated from the image using the “shift difference”
method. No improvement over PCA is evident in terms of com-
pression for this scene. The MNF transform in this case contains
visually useful information up to the twelfth component.

We now apply our PP algorithm to generate eleven projec-
tions shown in Fig. 9, based on (7)–(10). Most of the information
has now been compressed into the first seven projections. Fur-



2536 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 6, NOVEMBER 2000

Fig. 12. (Continued.) Component images from PCA analysis of SEBASS scene.

thermore, the components tend to correspond to different types
of objects. The first captures the information related to two of
the objects while the second projection contains information on
the roads and some of the vehicles. The third and fourth projec-
tions correspond mainly to the shadows and trees respectively.
The next three projections contain information on the remaining
objects and vehicles, as well as some variability of the back-
ground, which consists of both grass and dirt. Note that the re-
maining images (8–11) are mostly noise.

Table II lists the projection index values for the PCA, MNF,
and PP projections. For PP, the weaker features in images 5–7
are reflected by the relatively low value of the projection index.

The PCA components have generally lower index values com-
pared to PP. The MNF components show higher values of the
projection index than PCA, but lower than PP. Another inter-
esting pattern to note is that in the case of PP, the index values
start out higher and then drop significantly after the fourth com-
ponent, indicating a higher degree of information compression
by PP than by PCA or MNF, which show a more steady de-
cline in the index values (with the exception of MNF component
6). Because each transform computed a different set of projec-
tions, the reader should be aware of that when examining the
values not to compare the numbers line-by-line, but rather con-
sider them as a whole.
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Fig. 13. Projection images from PP analysis of SEBASS scene.

B. SEBASS LWIR Experiments

The spatially enhanced broadband array spectrograph system
(SEBASS) [18] is a dual-band mid-wave/long-wave infrared
pushbroom imaging spectrometer. As with the HYDICE data,
the radiometric calibration and bad pixel correction were done
prior to delivery. We use the LWIR SEBASS data here to demon-
strate the ability of PP to uncover important image features that
have a low variance relative to the overall image variability. Our
example image is a 127 400 pixel scene that contains a source
of Sulfur Hexafluoride (SF) gas (Fig. 10). The infrared absorp-
tion spectrum of SFhas a strong spectral feature near the 10.5

m band, which can be used to detect the presence of the gas in
the atmosphere. The gas source, although quite hot, is very small
relative to the image, and so contributes little variance. PCA
(Figs. 11 and 12) provides little visual information on the gas
plume. An analysis of the eigenvectors shows that the gas-re-
lated information is contained in the eighth and ninth compo-
nents, but the noise level is too high to visually discern a plume
in the projection images.

Fifteen components were used for PP. Fig. 13 shows the re-
sults of the PP analysis for projections. The first projection lo-
cates some spectral targets which had been placed on the field.
The second projection clearly aligns itself with the SFgas in-
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formation, revealing the plume. We can see the hot source to-
ward the bottom of the image (in this case hotter pixels are
darker). At this point the gas is emitting more energy than it
is absorbing from the background behind it. As it moves away
from the source, it cools down below the background temper-
ature and begins to absorb more energy than it emits, so the
image contrast is reversed. Note that as the plume drifts away
from the source, it passes over the colder spectral target, briefly
producing a net emission. Projections 3 through 5 locate other
objects and natural features in the scene. The remaining projec-
tions carry little information, illustrating again the information
compression capabilities of this method.

VI. CONCLUSIONS

Although PP has been part of the data analyst’s toolbox for
over two decades, it has been slow to gain acceptance in cer-
tain areas, including remote sensing. With the increased use
of imaging spectrometry, however, it becomes necessary to ex-
ploit techniques that are capable of quickly reducing the mas-
sive volume of data while simultaneously preserving as much
information as possible. It has been demonstrated in this paper
that a significant reduction can be achieved by using PP with an
information divergence projection index. In addition, the com-
ponent images resulting from our analysis can be further pro-
cessed using image segmentation or unmixing methods so as to
produce a single classified image containing all the information
that by a given projection index.
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