1144 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 3, MAY 2000

Constrained Subpixel Target Detection for Remotely
Sensed Imagery

Chein-1 ChangSenior Member, IEEEBNd Daniel C. HeinzStudent Member, IEEE

Abstract—Target detection in remotely sensed images can be UNCLS Unsupervised nonnegatively constrained least
conducted spatially, spectrally or both. The difficulty of detecting squares.

targets in remotely sensed images with spatial image analysis ogp Unsupervised orthogonal subspace projection.
arises from the fact that the ground sampling distance is generally

larger than the size of targets of interest in which case targets are
embedded in a single pixel and cannot be detected spatially. Under . INTRODUCTION

this circumstance target detection must be carried out at subpixel . . . :
level and spectral analysis offers a valuable alternative. In this UBPIXEL target detection has received considerable in

paper, the problem of subpixel spectral detection of targets in \=Jt€rest in remote sensing image processing due to the sig-
remote sensing images is considered, where two constrained targetnificantly improved spectral resolution by recent advances of

detection approaches are studied and compared. One is a targetremote sensing instruments such as the AVIRIS and HYDICE
abundance-constrained approach, referred to as nonnegatively gsansor. The need for subpixel spectral detection in remotely

constrained least squares (NCLS) method. It is a constrained least . . .
squares spectral mixture analysis method which implements a sensed imagery arises from the fact that the ground sampling

nonnegativity constraint on the abundance fractions of targets distance is generally larger than the size of targets of interest. In
of interest. Another is a target signature-constrained approach, this case targets are embedded in a single pixel and cannot be
called constrained energy minimization (CEM) method. It con- detected spatially. As a result, traditional spatial analysis-based
strains the desired target signature with a specific gain while image processing techniques are not applicable. One must rely

minimizing effects caused by other unknown signatures. A ) :
quantitative study is conducted to analyze the advantages and on and take advantage of the targets’ spectral properties such as

disadvantages of both methods. Some suggestions are furtherspectral contrast, variability, similarity and discriminability to
proposed to mitigate their disadvantages. be able to detect targets effectively at subpixel level. One general
Index Terms—Constrained energy minimization (CEM), non- approach studied in the past [1], [2] was based on spectral mix-

negatively constrained least squares (NCLS), orthogonal subspaceUre analysis [3]-{11]. In this paper, this problem is investigated
projection (OSP). and two different approaches are proposed for subpixel spectral

detection of targets. One is a target abundance-constrained ap-
proach, referred to as NCLS method. It is a constrained least

ACRONYMS squares spectral mixture analysis method, which implements a
ANC Abundance nonnegativity constraint. nonnegativity constraint on the abundance fractions of targets
ASC Abundance sum-to-one constraint. of interest. The second approach is different from the NCLS
AVIRIS Airborne visible/infrared imaging spectrometer. method and can be derived from linear adaptive beamforming
CEM Constrained energy minimization. in sensor array processing. It is a target signature-constrained
FCLS Fully constrained least squares. approach, called the CEM method, which was first proposed in
FIR Finite impulse response. [12]. It constrains the desired target signature using a specific
FNNLS Fast NNLS. gain while minimizing effects resulting from other unknown
FNNLSb  Second version of FNNLS. signatures.
HYDICE  Hyperspectral digital imagery collection experi- In LSMA, a linear mixture model is used. Suppose that
ment. my, mo, ..., m, are target spectral signatures resident
LSE Least equares error. in a multispectral/hyperspectral image pixel vectgr and
LSMA Linear spectral mixture analysis. ag, ag, ..., ap are their associated abundance fractions within
MVDR Minimum variance distortionless response. 7. A linear mixture model of makes use of a mixing equation
NCLS Nonnegatively constrained least squares. to model the spectral signature ofas a linear combination
NNLS Nonnegative least squares. of my, mo, ..., m, with appropriate abundance fractions
OSsP Orthogonal subspace projection. specified byay, ao, ..., ap. In general, two constraints must
SCLS Sum-to-one constrained least squares. be imposed on this model to yield an optimal solution. These
UCEM Unsupervised constrained energy minimization.are the ASC3°Y_, a; = 1 and the ANC,«; > 0 for all
1 < j < p. An LSMA-based FCLS method was studied in
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cannot accomplish. However, from a target detection’s poifiter output energy is equivalent to enhancing the desired target
of view, whether or not the estimated amount of the targsignaturen,. CEM has been shown to be very effective in target
abundance is accurate may not be essential. As long as thedegection for HYDICE data because it works very well for small
timated abundance fractions of desired target pixel vectors danget detection. One disadvantage of CEM is that the perfor-
distinguish themselves from their surrounding pixel vectorsjance of CEM is completely determined by the signature.pf
the targets can be detected effectively even if the abundarmsawvell as the true dimensionality of the data. Therefore, it is not
fractions of LSMA do not satisfy ASC or ANC. Such targetobust and is very sensitive ta,, and noise. When the knowl-
detectability was demonstrated by the unconstrained O8&ge of the targek, is not accurate or noise level is high, the
methods in [15], [16]. Accordingly, for target detection purperformance of CEM will be significantly degraded and it may
poses, an LSMA-based fully constrained least squares mettey@n detect wrong targets.

sometimes may not be as effective as partially constrained olOne common drawback of NCLS and CEM is the require-
unconstrained LSMA-based methods. This is because a futhent of the prior knowledge of target signatures. For NCLS,
constrained method requires both ASC and ANC, and the, m., ..., m, used in LSMA must be knowa priori. For
corresponding abundance fraction estimates are confined to @M, knowledge of the desired signaturg, and the intrinsic
range of|0, 1], which may limit its target detection capability. dimensionality of the data must also be knoavpriori. Unfor-

Two LSMA-based partially constrained least squardsnately, finding such information in an unknown image scene
methods have been considered in the past: the SCLS [8], [18penerally difficult. This is particularly true for hyperspectral
method and the NCLS method [17], [18]. The SCLS imposésagery. For example, the HYDICE sensor has significantly im-
the ASC, while ignoring the ANC. On the contrary, the NCL$roved spectral resolution to 10 nm and spatial resolution from
implements the ANC on targets of interest while discarding tHeto 4 m. With such fine spatial and spectral resolutions, the
ASC. As aresult, both methods generally do not estimate targef DICE sensor can extract targets with size as small as several
abundance fractions accurately. Nevertheless, their estimateeters for the purpose of target detection, discrimination, classi-
abundance fractions can be used for target detection purpog$eation, and identification. On the other hand, many unknown
Since SCLS-generated abundance fractions must be sumnmeerfering signatures may also be measured by the HYDICE
to one, when an image scene contains many target signatusesisor [16]. Apparently, the knowledge of such unwanted target
which is the case for hyperspectral imagery, the magnitudggnatures cannot be obtainadriori. In order to resolve this
of the SCLS-detected target abundance fractions will Ipeoblem, a least squares error-based unsupervised target gener-
spread out. As a result, they will be relatively small in ordeation process is proposed to extend NCLS, OSP, and CEM to
to satisfy to the sum-to-one constraint. Therefore, the targheir unsupervised counterparts (UNCLS, UOSP, and UCEM).
detectability is considerably reduced. The situation becomeThe remainder of this paper is organized as follows. Section Il
even worse if the spectra of targets are very similar. On theefly reviews the linear mixture model and unconstrained OSP
other hand, the NCLS-generated abundance fractions do mathod. Section Il proposes a target abundance-constrained
have this constraint. With this freedom, they can take whatew&rbpixel detection approach, NCLS. Section IV extends NCLS
values that are generated by NCLS. Despite the fact thatunsupervised versions where the knowledge of target signa-
their estimated abundance fractions may not reflect accuratees is not required priori. Section V describes a target signa-
abundance fractions, the target detectability of NCLS mayre-constrained subpixel detection approach, the CEM method.
actually benefit from not satisfying the sum-to-one constrairsection VI conducts a series of computer simulations and hyper-
As a consequence, the target detection performance of NCé&ctral imagery experiments to evaluate detection performance
is therefore enhanced. This results in better performance dfNCLS, CEM, and OSP methods. Finally, Section VII con-
NCLS than that of SCLS. cludes with some remarks.

Compared to NCLS, which constrains target signature abun-
dance fractions, CEM is a completely different approach, which || PreLIMINARIES: LINEAR MIXTURE MODEL AND OSP
constrains the desired target signature rather than its abundance .
fraction. It was previously developed in [12], [19], [20] for hy-~- Linear Spectral Mixture Model
perspectral image classification and is not based on LSMA. ItLinear spectral mixing is awidely used approach for remotely
designs an adaptive filter that minimizes the filter output energgnsed imagery to determine and quantify multicomponents.
while constraining a desired target signature by a specific ga8ince every pixel is acquired by spectral channels at different
The idea of CEM was derived from the MVDR beamformer invavelengths, it can be represented by a column vector of which
array processing [21], [22] and was first used in chemical remaach component is a pixel in a particular band. More precisely,
sensing [23]. It a special case of Frost’s linearly constrainsdppose thak is the number of spectral bands. kedie anl. x 1
adaptive beamforming approach [24]. The advantage of CEdMIumn pixel vector in a multispectral or hyperspectral image
over NCLS is that it does not require the complete knowledge where boldface is used for vectors. In this case, each multi’/hy-
target signaturese, , mo, ..., m, as does NCLS, but only re- perspectral pixel is viewed as a pixel vector witliimensions.
quires the target signature to be detectedsggy priori. Using Assume thai is anL x p target spectral signature matrix de-
the desired target signaturg,, one can design an adaptive filtemoted bym, m. ... m;], wherem,; is anL x 1 column vector
to passm,, with a specific gain while minimizing the radiancerepresented by the spectral signature of itietarget resident
contributed by undesired signatures , ms, ..., m,_1, plus inthe pixelr, andp is the number of targets in the image scene.
other unknown signal sources. Consequently, minimizing thet o = (a7 «s ... «,,)* be ap x 1 abundance column vector
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associated with, wherer; denotes the fraction of theh target nonnegativity constraint is a set of inequalities, no analytic solu-
signature present in the pixel vectar tion can be derived to arrive at a closed form. Furthermore, since
A classical approach to solving mixed pixel classificatiolNCLS does not satisfy the sum-to-one constraint, it is not an op-
problem is linear unmixing, which assumes that the spectral stgnal abundance estimator. So, why is it important to consider
natures of thes endmembers in the pixel vecterare linearly NCLS? The interesting fact is that NCLS may not be as good as
mixed. Therefore, the spectral signature of a pixel veetoean an FCLS approach for endmember quantification developed in
be represented by a linear regression mod@tafm, ... mp] [14], but as a target detector, an NCLS-based detector may be
as follows: more effective than an FCLS-based quantifier by not requiring
or forcing ASC, the sum of target signature abundance fractions
r=Ma+mn (1)  to one. This unconstrained disadvantage turns out to be an ad-
) ) ) vantage in detection of targets for NCLS.
wheren is noise or can be interpreted as a measurement error. |, general, an NCLS problem can be described by the fol-

lowing optimization problem
B. Orthogonal Subspace Projection (OSP) gop P

Equation (1) is a general linear mixture model with no conMinimize LSE= (Ma — )" (Mo —7)  subject toa > 0

straints imposed on the abundance veater (a s ... )7 (6)
Recently, an unconstrained linear unmixing method, the OSP
approach, was developed in [15]. It rewrites (1) as where LSE is the least squares error used as the criterion for
optimality anda > 0 represents the nonnegativity constraint
r=da, +Uy+n (2) «; >0foralll < j < p.Sincea > 0isasetofinequalities, the

Lagrange multiplier method is not applicable to solving optimal
whered = m, is the desired target spectral signature angb|ytions. In order to mitigate this dilemma, we introduce an
U = (mim2...m, 1) is the undesired target spectralnknownp-dimensional positive constraint constant veetes
signature matrix made up of the remainipg- 1 undesired [crca ... Cp]T > Owithe; > 0for1 < j < ptotake care of the
signatures inM. Here, without loss of generality, we assum@onnegativity constraint. Throughwe can form a Lagrangian
that the last signature is the desired signatlir€he reason for j 35 follows:

separatind/ from M is that it allows us to design an orthogonal

subspace projector to annihildtefrom an observed pixel prior J=1Ma-r)"(Ma—71)+Na—c) @
to classification. So based on (2), an OSP operator was derived
in [15] by with « = ¢ and
POSPIdTPé' (3) % IOI>MTM&NCL5—MTT+)\IO (8)
aNCLs
where

which results in the following two iterative equations given by

L _ 7 _ #
PU =1 U (4) dNLCS :(MTM)—IMTT_(MTM)—I)\

andU# = (UTU)~'U7 is the pseudo-inverse @f, and the =ars — (MTM)™1) ©)
notationg; in Pg indicates that the projectd?+ maps the ob-

served pixe¥ into the orthogonal complement @), denoted and
L
by (U)~. A= M"(r — Méayics). (10)
[ll. TARGET ABUNDANCE-CONSTRAINED SUBPIXEL Equations (9) and (10) can be used to solve the op-
DETECTION APPROACH NONNEGATIVELY CONSTRAINED timal solution dx1.cs and the Lagrange multiplier vector
LEAST SQUARES (NCLS) METHOD A= (A de AT
The target signature matrd and the abundance vecioin The nonnegativity constraint optimization problem given by

(1) are assumed to be knowrpriori. In reality, o is generally (6) was previously explored by Lawson and Hansonin [17] and
not known and needs to be estimated. In order to estimate Was called the NNLS. Based on Lawson and Hanson's NNLS,

(apaa .. ap)T, e use the least squares error as the criteri0 Fast NNLS algorithms referred to as FNNLS and FNNLSb

for optimality and the optimal least squares estimate,af; s, Were further developed by Bro and Jong in [18] to generate

for model (1) can be obtained by the desired optimal solutions. Their idea is to first decompose
the components of the estimaigg into two index sets called

A1s = (MTM)*lMTT_ (5) active set and passive set. While the former consists of all in-

dices corresponding to negative (or zero) components in the es-
As mentioned previously, the OSP classifiéssp» specified timateays, the latter contains all indices corresponding to pos-
by (3) does not necessarily satisfy the sum-to-one constraitnte components in the estimafg s. NNLS and FNNLS start
Ele «; = 1 or the nonnegativity constraint;; > 0 for all  off with an empty passive sé¢ = # and assume the active
1 < j < p. The NCLS imposes the nonnegativity constraint oset consisting all components &fgs, i.e., R = {1, 2, ..., p}.
the abundance vectarwhile using (5) to estimate. Since the They then adjust both sefd and R via iterations using (10). It
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has been shown in [17] that when an optimal solution has beeegative@l(\?gcs is recalculated. It should be noted that the two
found, the Lagrange multiplier vector must satisfy the fol- iterative equations, specified by (9) and (10), are carried out by

lowing Kuhn—Tucker conditions: step 14 and step 8 respectively.
One comment on NCLS is noteworthy. The reason that people
Aj =0, Jer overlook the potential application of NCLS in subpixel target
A; <0, 7€ R. (11) detection is because it requires the complete prior knowledge of

targets present in an image where NCLS is primarily used for
The final generated passive set identifies which components gffmixing materials rather than detecting a particular target in a
legitimate to be used in the abundance estimatign The de- |inear mixture. Of course, in this case, NCLS cannot compete
tails of implementing the NCLS algorithm are given below.  with the FCLS in [14].

NCLS Algorithm IV. UNSUPERVISEDNCLS

1) Initialization: Set the passive sBt® = {1, 2, ... p} and . ,
active setR(® — 0. Seth — 0. NCLS requires the complete knowledge of target signatures.

N _ N When no prior information is available, it cannot be applied. In

2) Computedrs using (5). Letiygcg = s this section, the NCLS is extended to an unsupervised version

3) Atthekth iteration. If all components ifixy s are NoN- \yhere the LSE is used to minimize the goodness of fit between
negative, the algorithm is terminated. Otherwise, continugye jinear mixture model and data measurements. The idea can

4) Letk = k_+ 1 e . be briefly described as follows.

®) Move all |nd|ce(sk|_nlj)D( ~1 that correspond to negative |itia|ly, we can select any arbitrary pixel vector as an initial
components ofiy; s to R*~Y, and the resulting index gesired target signature denotedtyHowever, a good choice
sets are denoted hiy*) and R, respectively. Create @may be the pixel vector, with a maximum length that corre-

newAindex set™ and set it equal td_%(k) sponds to the brightest pixel in the image scene. The NCLS al-
6) Let qR(m(genote the vector consisting of all componentgyyithm is then used to estimate the abundance fractiag, of
ais In R denoted b;&él)(r) for each pixel vector in the scene, and the

. (R .

7) Form a steering m"‘?t”)@% by deleting all rows and | g js further calculated between the image pixel veetand
columns in the matrix M* M)~ that are specified by its estimate&(l)(r)to ie
5 Ji.e.

Pk
8) Calculate\®® = (@%))=14 ;. If all components in ) X T,
are negative, go(to stép 115 Otherwise, continue. LSEV(r) = [(O‘((JI)(T)tO - T) (O‘((Jl)(r)to - 7')} - (12
9) Calculate\{), = arg{max; A§k)} and move the index in
R™® that corresponds tal, to P®. Herer is included in the abundance fraction estima{e () to
10) Form another matrixp&” by deleting every column of €mphasize thatthe estimated abundance fradiosia function
(MY M)~ ! specified byP*). of the pixel vectorr and varies withr. The pixel that yields
11) Setégy = drg — \1/&’0)\(1&‘)_ the maximum LSE is then selected as the next target signature,

12) If any components @t in S are negative, then move denoted by, namely
these components frof*) to R(*). Go to step 6.

(0)
13) Form another matrifo(Ak) by deleting every column of X LSE™(r)
(M” M)~ specified %31’@). = LSEO(#))
5 (K — A )\ (k
14) Setdyy g = d1.s —_\IfA )\ . Go to step 3. . _ B (&(1)“ Vo — ¢ )T (&(1)“ Yoo — ¢ ) (13)
In summary, at thétth iteration, the NCLS algorithm begins - 0 \MLJRO TR 0 \MLJRO T L)

by calculating the unconstrained least squares soldtign If

all components iniys are positive, the algorithm terminatesBecause the LSE betweeﬁﬁl)(tl)to andt; is the maximum, it
Otherwise, all negative components are identified, and their cean be expected that is most dissimilar td. In order to find
responding indices are moved to the activef8ét. Inthe mean- a second target signature, the UNCLS algorithm estimates the
time, a duplicate set aR™*), referred to ass®, is introduced abundance fractions &§ and; contained in each pixel vector

for the purpose of keeping track of the current negative comin the image scene, denoted &§” (r) anda!™ (r). Then the
ponents oy 14 during thekth iteration. The steering matrix maximum LSE between all image pixel vecterand the least
3% is then formed and the Lagrange multiplier vecté) that  squares linear mixturéﬁf)(r)to + &§2)(r)t1 are estimated by

will be used to steer each negative componer&kﬁf&% back the NCLS algorithm. Once again, the pixel vector that yields
to zero is calculated. From (11), all components\gf’ must the maximum LSE is selected as a second target signature de-
be negative. Therefore, in case there exists at least one positivéed byt,. The same procedure of using the NCLS algorithm
component, the index that corresponds to the maximum compath m = [ty ¢ ¢2] is repeated until the resulting LSE is small
nent of A(*) is shuffled fromR®*) to P(*), Since the loop from enough and less than a prescribed error threshold. It should be
step 6 to step 12 may be repeated over and over again duniaged that if there is partial knowledge availablgriori, it can

a single iterationS™®) is used to check if all previously identi- be incorporated in the above process. For example, if we know
fied indices of maximum components b should be retained nothing but the desired target signatdrehe initial target pixel

in P*) or moved back taR*). Once all the values of*) are vectort, can be replaced by thid If there is more than one
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known target in the image scene, we can select these targettaaget detector, CEM has shown success in hyperspectral image
an initial target set and then follow the same procedure descrildssification [19], [20].

above until the LSE meets a stopping criterion. The procedureBasically, CEM uses an FIR filter to constrain the desired
outlined as above is called the UNCLS algorithm, which can harget signature by a specific gain while minimizing the filter

summarized as follows. output power. The idea of CEM arises from the MVDR in array
processing [21], [22], with the desired target signature inter-
Unsupervised NCLS (UNCLS) Algorithm preted as the direction of arrival from a desired signal. It can

e derived as follows.

Assume that we are given a finite set of observatiSns-
{7’1’!’2 - ’I'N} WhereTZ‘ = (Til Ti2 v 7’iL)T for1l <+:<N is

a sample pixel vector. Suppose that the desired target signature
d is also knowna priori. The objective of CEM is to design

1) Initial condition: Select to be a prescribed error thresholab
and letty = arg{maxy[r?r]} wherer is run over all image
pixel vectors. Lett = 0.

2) Letk «— k 4+ 1, and apply the NCLS algorithm with

the signature matrixM = [tot;...¢;_1] tO estimate . . X : -

g ; lfots k-] « (k) an FIR linear filter withL filter coefficients{w; ws ... wr}
tAh(E) abundanAc((z) fractions ofy, ¢, ..., tk—1, Gy (7), denoted by art.-dimensional vectomw = (w; ws ... wg )"
o (r) .. O‘k—l.(T)' that minimizes the filter output power subject to the following

3) Find the LSE defined by constraint

k—1 T L
LSE(k—l)(,r) _ <T _ [Z &Ek) (’r‘)t;|> dTw = Z dyw; = 1. (15)
. =1

k-1 *) It is worth noting that the constraint constant 1 in (15) can be
T— it (14)  replaced by any scalar[21], [22].
Let y; denote the output of the designed FIR filter resulting

) 1 o from the inputr;. Theny; can be written as
and check the error if LSE~Y(r) < & for all . If it is, the

algorithm stops, otherwise continue. - -
4) Findty, = arg{maxy LSE(kfl)( )}. Go to step 2. Yi = Z Wi =W T =T Ww. (16)
One comment 0@( )( ) is noteworthy. The superscript)
is a counter to indicate the number of iterations. It starts wifo the average output power produced by the observatich set
k = 1. The subscripj starting withj = 1 is the index of thgith and the FIR filter with coefficient vectan = (wy w» ... wr)*
target signature;, generated by the UNCLS algorithm. The ini-Specified by (16) is given by

tial target is represented sy with j = 0. For exampIeA( )( ) 1[N 1 I
is the abundance estimate #fin the first iteration, given by — [Z yf] =5 lZ(r?w)Tﬁwl
=1

(13). It should also be noted that, as will be demonstrated in the N i=1

experiments in Section VI, step 4 implemented in the UNCLS 1 [

algorithm tries to locate pure pixel vectors first. If there is no =w’ < [Z T D

such pixel vector, it then looks for a mixed pixel vector with

the largest possible abundance fraction of any substance in the =w'Rpypw a7)

pixel vector. This implies that a mixed pixel vector with uni-

form mixture is less likely to be selected by the UNCLS asWhereRrxr, = 1/N [E =1 TiT 61 turns out to be thd, x L
target signature. Furthermore, using an analogous approackaople autocorrelation matrix MInImIZIng (17) with the
UNCLS, OSP and CEM can be also implemented in an undilter response constrai’w = 3/, dyw; = 1 yields
pervised fashion, referred to as UOSP and UCEM throughout

this paper. Hllll { [Z yz] } = IIqlli]ll{wTRLxL 111}

V. TARGET SIGNATURE-CONSTRAINED SUBPIXEL DETECTION subject tod”w = 1. (18)
APPROACH CEM
he solution to (18) was shown in [12] and called the CEM filter

In order to implement the NCLS algorithm, knowledge 0-{|th the weight vectoms* given by

all target signatures of interest is required. Such knowledg
is generally difficult to obtain in practice. So, a least squares . RZ>1<Ld
error-based unsupervised method, as described in Section I, = FrL d
was proposed for this purpose. As an alternative, the CEM LxL
approach [12], [19], [20] recently proposed in [12] took another It should be noted that th&;, . 7, in (19) is not necessarily of
approach. Instead of constraining target signature abundafderank. So calculating thé%ZiL in (19) can be a problem. It
fractions, CEM constrains a desired target signature by usings been noted that CEM is very sensitive to the knowledge used
a specific gain. Since CEM does not impose a constraint &or the desired target as well as the noise. While the problem of
the abundance of the target signature, it cannot be used @EM'’s sensitivity to the target signature knowledge has been
guantification purposes as the FCLS in [14]. However, asaaldressed in [25], the issue of CEM’s noise sensitivity has not

(19)
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been studied in depth in open literature. As will also be shovwaf which contained a hundred pixel vectors with the same
in the experiments, the noise sensitivity is closely related toixture. The first group consisted of the first hundred pixel
the rank used to calculate the weight vector in (19). This ramectors with the mixture made up of 50% sagebrush and 50%
determines the number of eigenvectors to be used to calculditg grass. The second group consisted of the second hundred
R;l, and is also closely related to the intrinsic dimensiorpixel vectors with the mixture made up of 50% sagebrush and
ality of a hyperspectral image, which is usually less than tf®% red soil. The third group consisted of the third hundred
data dimensionality.. It is known that finding the intrinsic di- pixel vectors with the mixture made up of 50% sagebrush
mensionality of data is very challenging and has been invesdind 50% creosote leaves. The fourth group consisted of the
gated previously in [26], [27]. Nevertheless, if the number dburth hundred pixel vectors with the mixture made up of 50%
eigenvectors is knowm priori (g, for example), we can use sagebrush and 50% blackbrush. More specifically, each of the
singular value decomposition so that, .y, can be reduced to 400 simulated pixel vectors is a two-component mixture with
Rpxr = VAVT whereV = (9,9, ... 9,)is an eigenmatrix, a 50/50 split, and all of the 400 pixel vectors share the same
vy, is the L-dimensional vector corresponding to thida eigen- amount of sagebrush (that is, 50% sagebrush). White Gaussian
value A, andA = diag{A1, A2, ..., Ay} IS a diagonal ma- noise was added to each pixel vector to achieve a 30:1 SNR,
trix with eigenvalues as diagonal elements. Using this eigen-dehich was defined in [15] as 50% reflectance divided by the
composition, the inverse dt;.;, = VAVT can be found by standard deviation of the noise. Fig. 1(b)—(f) shows the results

Ryl =VA—tvVT[12]. of NCLS, CEM, and OSP in detection of dry grass, red soil,
creosote leaves, blackbrush, and sagebrush, respectively. From
VI. COMPUTER SIMULATIONS AND EXPERIMENTS Fig. 1, both OSP and NCLS were able to detect all of the five

. . . . . signatures. However, if we examine the amounts of abundance
In this section, a series of computer simulations and real atected by NCLS and OSP, those detected by OSP did not
perspectral data experiments are conducted to evaluate the CAMact true abundance fractio,ns, but those produced by NCLS

parative performance among the three subpixel target deteCtb%'. This is because OSP is unconstrained and NCLS is at least

techniques, unconstrained OSP, target abundance-constra - o ;
. ; ally constrained. Surprisingly, CEM, which was shown
NCLS, and target signature-constrained CEM methods aloﬁge effective in [12], [19], and [20], performed poorly. As

with their unsupervised counterparts. In particular, a Compres.ad in the concluding remark of Section IV, the number of

Een5||\/ed anglystlsdpr:j tk?e |'ssule\:,. of noise senS|t|V|_ty atnd tar Féenvectors (denoted gy used to calculaté?.ziL in (19) is
nowledge Is studied by simu’ating various scenarios 0 Se€ f)fqiq) - since there are five signatures in the simulated data,

effects of different numbers of eigenvectgresed in computa- q was chosen to be 5 to produce the results in Fig. 1. In order

. —1 .
tion of . ;, on the performance of CEM, as well as the im; ' ifg = 5 was appropriate, 3, 10, 60, and 158 were also

pacts of different levels of prior target signature knowledge us?gsted forg to detect blackbrush, and the results are shown in
in NCLS, OSP, and CEM Fig. 2. As we can see, at= 3, the mixture of creosote leaves
. . and sagebrush resulted in a large value above 1 instead of the
A. Computer Simulations mixture of blackbrush and sagebrush. The vajue 5 yielded
Three examples are designed to demonstrate two importtre best result, and asincreased past 5, the results became
issues of subpixel detection: noise sensitivity and sensitivity teorse. In the case of this experimeagt= 5 was the optimal
prior target knowledge. number of eigenvectors to be used in computatioRpj‘< Py
1) Noise Sensitivity to Number of Eigenvectors Used in Com- Example 2: Target Signatures with Small Amount of Abun-
putation ofRZiL: Determining the number of eigenvecters dance Fractions: The experiment conducted in this example
is always challenging because it is closely related to the unppevides another extreme for CEM performance. The data to be
dictable noise level incurred in the data. However, except fased are three field reflectance spectra, dry grass, red soil, and
Gaussian noise, itis generally difficult to simulate non-Gaussiareosote leaves shown in Fig. 1(a). Again, 400 mixed pixel vec-
random noise. So in the following experiments, instead of diers were also generated, but simulated in a different way from
rectly considering such random noise, we deal with the issuetbt in Example 1. We started the first pixel vector with 100%
the effects caused hysince the selection afis determined by red soil and 0% dry grass, then began to increase 0.25% dry
the noise sensitivity. grass and decrease 0.25% red soil every pixel vector until the
Example 1. Target Signatures with Relatively Largd00th pixel vector, which contained 100% dry grass. We then
Abundance FractionsA laboratory data set of an AVIRIS added creosote leaves to pixel vector numbers 198—-202 at abun-
scene considered in [15] was used to evaluate the performadaeace fractions 10%, while reducing the abundance of red soll
of NCLS and CEM against OSP. The data set contained fiaad dry grass accordingly. For example, after addition of cre-
field reflectance spectra, dry grass, red soil, creosote leavesote leaves, the resulting pixel vector 200 contained 10% cre-
blackbrush, and sagebrush shown in Fig. 1(a) with spectoaote leaves, 45% red soil, and 45% dry grass. White Gaussian
range from 0.4-2/m. There were 158 bands after watenoise was also added to each pixel vector to achieve a 30:1
bands, and bands with low SNR were removed. In this ca8N\R. Fig. 3 shows the results of OSP, CEM and NCLS in de-
the signature matrix wadf{ = [m, my mgm, m;] consisting tection of creosote leaves. Unlike Example 1, this time all three
of these five spectral signatures with abundance fractions giveiethods NCLS, CEM, and OSP produced comparable detec-
by o = (a1 a2 az aq a5)T. The simulation consisted of 400tion results. However, both NCLS and CEM performed better
mixed pixel vectors and was divided into four groups, eadhan OSP in the sense of detecting true abundance fractions of
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Fig. 1. (a) Refectances of five signatures, dry grass, red soil, creosote leaves, blackbrush, and sagebrush. (b)—(f) Results of OSP, CEM, aete@IrS in d
of dry grass, red soil, creosote leaves, blackbrush, and sagebrush.

creosote leaves, whereas OSP did not. Compared 0 5, ¢ = 60 yielded the best result, shown in Fig. 4(d), where the es-
used to produce Fig. 1(d), the number of eigenvecfoused timated abundance of creosote leaves was nearly accurate. But
to calculateR;i,l in Fig. 3 was set to the full dimensionality even in this case, the result was still not as good as that produced
of pixel vector 158. Fig. 4 shows the results of CEM using they NCLS in Fig. 3(c), because of the performance in detecting
number of eigenvectorg = 2, 3, 10, 60. Interestingly, when abundance fractions of other pixels.

q = 2, CEM picked up awrong target signature: dry grass which While Example 1 shows one extreme case for CEM perfor-
was supposed to be creosote leaves [see Fig. 4(a)]. For CEivance, Example 2 provides another extreme case for CEM. Both
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Fig. 2. Results of CEM using the number of eigenvectoes 3, 10, 60, and 158 with blackbrush as the desired signature.
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Fig. 3. Results of OSP, CEM, and NCLS in detection of creosote leaves.
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examples further demonstrate the crucial role the number fodctions may correspond to small eigenvalues and can be then
eigenvectorg plays in CEM performance. If each eigenvectoviewed as insignificant targets. Under this circumstance, they

is interpreted as a piece of information, the larger the eigenvaluay not be able to be detected by using only a few eigenvectors.
is, the more significant information it represents. So these tWinerefore, it requires a large set of eigenvectors to find these

examples suggest that when the desired target is small or ocdargets. This explains why CEM can be used to detect small

with low probability, the number of eigenvectors to be used fdargets so effectively by letting be equal to the full number of

q is generally very high because targets with small abundarfodl bands. Conversely, if the desired targets are relatively large
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Results of NCLS, CEM, and OSP in detection of creosote leaves with blackbrush and sagebrush acted as interferers.

and widespread, like the one studied in Example 1, a smalleexample, except that two more additional signatures, blackbrush
may be more appropriate to make CEM effective because ttned sagebrush, were assumed to be present in the data even
information provided by these targets can be well-representiugh they were actually not present. In this case, the signature
by a few largest eigenvectors. In this case, a small set of langatrix M = [m; m2 m3 m4m;] contained the five signatures:

eigenvectors may be sufficientto detect these targets.
Example 3: Target Signatures Used as Interferefde

dry grass, red soil, creosote leaves, blackbrush, and sagebrush
in Fig. 1. With this scenario, the blackbrush and sagebrush acted

same simulated data used in Example 2 were also used in tBsnterferers rather than target signatures. Fig. 5 shows the re-
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Fig. 6. (a)-(c) Comparative results of UNCLS, CEM, and OSP, with targefdd- 7-  (8)—(c) Comparative results of UNCLS, UCEM, and UOSP with no
generated by UNCLS and the inital targl$, given by the desired creosote Prior target knowledge.
leaves signature.

brush and sagebrush signatures. As a result, its detection capa-
sults of NCLS, CEM and OSP in detection of creosote leavdslity was considerably deteriorated by the undesired signature
Unlike Fig. 3, the performances of three methods are quite dianihilator P, since the spectra of the interferers blackbrush
ferent. OSP produced the worst performance because the dirmeemd sagebrush are very similar to that of creosote leaves. Sim-
sionality of orthogonal subspace used for detection of creosdtly, NCLS also suffered from the same problem, which re-
leaves had been reduced by two due to an addition of the blaskited in slight degradation in detection of creosote leaves at
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Fig. 8. AVIRIS image scene.

pixel 200, but it actually did better than it did for Fig. 3(c) at
other pixels in terms of nulling the abundance of creosote leaves.
For CEM, the result was identical to that in Fig. 3, because the (b)
addition of blackbrush and sagebrush with zero abundance did
not affect the output energy of the CEM filter. This example also
demonstrates a major difference between NCLS and CEM.

2) Sensitivity to Target Knowledgdn Section VI-A, the
complete knowledge of target signatures described was as-
sumed in Examples 1-3 to demonstrate how crucial the number
of eigenvectors used in computation &f; %, are. In this
section, the sensitivity issue of the precise knowledge of target
signatures used in NCLS, CEM, and OSP will be investigated. ©

Example 4: Partial Knowledge of Target Signatur®nce
again, the same simulated data used in Example 2 were con-
sidered to demonstrate how partial target knowledge is utilized
in UNCLS. Here, the only knowledge available to us was that
there was a signature of creosote leaves present in the data.
Following the UNCLS algorithm, the creosote leaves signature
was set to the initial target signatukg The NCLS algorithm
was used to estimate the abundance fractioty oflenoted by
&(()1), in each of 400 simulated pixel vectors, where thes (d)
dropped from the notation aiél) to simplify notations, i.e., OSP Shade
al? = alP(r). Using ao, we calculated the LSE between ST

all simulated pixel vectors anfdél)to. Since the resulting max-
imum LSE was not below a prescribed threshold, the UNCLS
was continued to find a pixel vector that yielded the maximum
LSE. In this example, the seventh pixel vector with 98.5% red
soil was selected as the first target, denoted;byrhe UNCLS
algorithm was then used to estimate the abundance fractions (e)

of £, and¢;, denoted bya'? and &®. Using the estimated

abundance fractions, we calculated LSE of all simulated pixeig. 9. Results of NCLS, OSP, and CEM, usigg= 158, where figures

between the least squares linear mixtaff't, + a{t,. Be- Li%ﬂte;i%(Z)ﬁébghg:&éd)r'easg‘igi)v 2{;’ detection results of cinders, playa, rhyolite,
cause the resulting maximum LSE was still not below the pre- ' ' '

scribed threshold, the UNCLS algorithm was continued and the

400th pixel with 100% dry grass was selected as a second tamggtce detected by CEM for these three desired signatures were
to. After finding ¢., the resulting maximum LSE was belowvery different. Except for creosote leaves, the CEM-detected
the prescribed threshold, and the UNCLS algorithm was ternaibundance fractions for red soil and dry grass were negative,
nated. At this point, we had generated two more target signahere their accurate amounts were supposed to be 45%. This
tures,t; = red soil andt; = dry grass, which were not knownimplies that CEM can detect anomalies even though it failed to
a priori. Using these three target signatutgst;, and¢, as the detectthe desired target signatures such as red soil and dry grass.
signature matrixM for NCLS algorithm and OSP, the results ar€€ompared to CEM, UOSP and UNCLS detected more accurate
shown in Fig. 6(a)—(c), where creosote leaves, red soil, and @dfyundance fractions for these three desired signatures. In par-
grass were used as the desired signatures and detected, resjpaitar, UNCLS produced almost correct amounts of abundance
tively. As we can see from Fig. 6, CEM performed very well byor all the three signatures. This example demonstrates two in-
extracting all the three target signatures but did not detect corremresting facts. From a target detection’s point of view, CEM
amounts of target signatures. In addition, the fractions of abymerformed better than OSP and UNCLS in terms of weak or

OSP Vegetation CEM Vegetation NCLS Vegetation

CEM Shade

NCLS Shade

T e
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Fig. 10. Comparative results of CEM for cinders, playa, rhyolite, vegetation, and shade using: )b)g¢ = 10, (c)¢ = 20, and (d)y = 40, andg = 80.

small targets even though it may fail to detect right targets. @ initial target signaturé, was givena priori. Targett; must

the other hand, from an abundance detection’s point of vielg generated from the data set. In this case, we selected the pixel

UNCLS performed substantially better than UOSP and CEM.\Jector with maximum length, which turned out to be the 400th

is not only capable of detecting right target signatures but algfxel vector with 100% dry grass. Using this pixel vector to

estimating correct amounts of target abundance. UOSP segRifalize the UNCLS algorithm, and following the same pro-

right in between in either case. cedure in Example 4, we found the fourth pixel vector to be
Example 5: No Target Knowledge Available A PriofThe t; = redsoil with 99.25%, and the 200th pixel vectey =

only difference between this example and Example 4 was thagosote leaves with 10% and the UNCLS was terminated. The
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UNCLS Cinders UNCLS Playa UNCLS Rhyolite UNCLS Vegetation UNCLS Shade

Fig. 11. Results of UNCLS for cinders, playa, rhyolite, vegetation, and shade with partial target knowledge, where for each image only theteregttvadn
known a priori.

NCLS to NCLS t NCLS % CEM to CEM t4 CEM t;
NCLS ts NCLS ts CEM t; CEM t4 CEM ts
Fig. 12. Results of UNCLS with no target knowledge. Fig. 14. Results of UCEM using targets generated by UNCLS with 158.

OSF 4 OSP & OSP t not perform as well as they did in Fig. 6 in terms of estimating

abundance fractions due to the lack of prior information about
target signatures. Under this circumstance, UOSP and UNCLS
behaved more like a target detector rather than a target abun-
dance estimator, as shown in Fig. 6.

B. Hyperspectral Images

OSP ts The hyperspectral data used in the following experiments are
AVIRIS data, which were the same data in [15]. It is a sub-
scene of 200« 200 pixels extracted from the upper left corner
of the Lunar Crater Volcanic Field, Northern Nye County, NV,
shown in Fig. 8, where five target signatures of interest are cin-
ders, rhyolite, playa (dry lakebed), vegetation, and shade. Fig. 9
shows the results of NCLS, OSP, and CEM using the number
Fig. 13. Results of UOSP using targets generated by UNCLS. of eigenvectorg = 158, where figures labeled by (a), (b), (c),
and (d) show cinders, playa, rhyolite, and vegetation as targets
procedure used to generate these three signatures was also tesgrictively, and figures labeled by (e) are results of the shade.
to extend CEM and OSP to UCEM and UOSP. It should be notédom these images, we see that NCLS performed the best in all
that targets generated by UNCLS in this example were differezdses. In order to see how the number of eigenvegtarsed
from those generated in Example 4. Fig. 7(a)—(c) show the de-CEM affects its performance, five more different numbers
tection results produced by UNCLS, UCEM, and UOSP, respegc= 5, 10, 20, 40, 80 were also used in CEM implementation,
tively. Interestingly, the detection result of red soil in Fig. 7(band the results are shown in Fig. 10. As we can see, CEM per-
produced by UCEM looked exactly upside down compared formed well in detection of cinders, rhyolite, and shade when
that in Fig. 6(b), produced by UCEM with slightly differentthe value of; was small. On the contrary, CEM did a better job
magnitudes. For detection of creosote leaves, the results prothe detection of vegetation if a large valuejofias used. This
duced by UCEM in Figs. 6(a) and 7(c) looked similar, but the dghenomenon coincides with the conclusion made in Example 2
tected abundance fractions were different. For detection of dyfySection VI-A.
grass, UCEM produced nearly the same results in both casedn the above experiment, we assumed that the complete
Like Example 4, UCEM can be only used for target detectidmowledge of all five target signatures was knowarpriori.
purpose. Comparing the results in Fig. 7 generated by UO8Pthe following experiment, we assume that partial target
and UNCLS against those in Fig. 6, UNCLS, and UOSP dikhowledge is available. In this case, only one of five signatures
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Fig. 15. Comparative results of UCEM for cinders, playa, rhyolite, vegetation, and shade, using &)b)¢ = 10, (c)¢ = 20, and (d)y = 40, andgy = 80.

is known a priori. UNCLS is used for target detection. Thet, = anomalous target;; = vegetation,t;, = shade, and

results are shown in Fig. 11 and are comparable to thosetin= rhyolite. Interestingly, the third generated targgtwas

Fig. 9. Finally, we conclude the experiment by assuming thah edge pixel of the dry lakebed. This pixel vector can be
no prior target knowledge is given. In this situation, UNCL$hought of as an anomalous target and was not picked up in
generated six targets from the scene in Fig. 8, and they w@mevious experiments. This experiment further demonstrates
detected and classified in Fig. 12. The results are also very sitne potential usefulness of UNCLS, which can be used for
ilar to those in Figs. 9 and 11, whetg = playa,t; = cinders, detection of anomalies, a task that supervised NCLS and
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CEM cannot achieve. Figs. 13 and 14 were also generated by APPENDIX
UOSP and UCEM withy; = 158 using the targets generated

by UNCle'(AS vlvedcan Zegg\;)m Fifg. 14’(‘jNithOUt preclise targ?éges of three methods studied in this paper: OSP, CEM, and
signature knowledge, performed very poorly excepfc g it js by no means a comprehensive list. All advantages

at _detec_tlnrg Il()eg;()taz(;néolzlg. 15 SZOWS _th?:_resluolts OdeCEdiM‘.d disadvantages described below are based on experiments
usingg = v, 11, 20, 29, 89, as was done in Fg. 19, Proaucecy,,q,cted in our lab and reflect only our lab’s opinions.

by CEM. Obviously, UCEM performed much worse than its
counterparts produced by CEM in Fig. 10. This example showgsp
that the success of CEM was completely determined by the

knowledge of the desired target signature and the number of * Advanta_lgetc, o ) _
eigenvectorg used in CEM. 1) Itis simple, efficient, and effective when target sig-

natures are distinct.
2) Itis only based on second-order statistics and does
VIl. CONCLUSION not make Gaussian noise assumption.

In this appendix, we list possible advantages and disadvan-

In this paper, a target abundance-constrained subpixel target’ Disadvgntages . . _
detection approach, NCLS, is introduced. It is a least squares 1) Itis unconstrained and does not yield optimal solu-

method based on a nonnegativity abundance-constrained linear tions.

spectral mixture model. Since there is no closed form that can 2) Itrequires the knowledge of target signatures and a
be derived for optimal solutions, a fast, efficient numerical al- linear spectral mixture model.

gorithm is developed to generate a desired optimal subpixel de- ~ 3) It can only be used for target detection and cannot
tector. The NCLS-based detector is then further extended to an detect similar targets effectively.

unsupervised version where no prior information is required. 4) It cannot be used for material quantification.

Despite the success of CEM in hyperspectral image classifica-
tion, the strengths and weaknesses of CEM have not been inves-
tigated in depth previously in the literature. This paper presents « Advantages

a comprehensive study of CEM and also conducts a compar- 1) Itimproves unconstrained linear unmixing methods
ative analysis among the target abundance-constrained NCLS, and can be implemented in real time processing.
the target signature-constrained CEM, and the unconstrained 2) Noa priori knowledge except the desired target sig-
OSP. As shown in the experiments, NCLS generally performs nature is required.

subpixel detection significantly better than the unconstrained 3) No linear mixture model is assumed.

OSP. Both NCLS and CEM have been shown to have their ad- 4) Itis very efficient and can detect small targets very
vantages and disadvantages (see Appendix). If there are small effectively.

targets in an image scene, CEM generally performs better than, pjisadvantages
NCLS and OSP. This may explain why CEM has achieved much
success in HYDICE data analysis due to their significantly im-
proved spatial resolution. On the other hand, NCLS performs
much better when no precise target knowledge is available or
when targets are relatively large or ubiquitous in the scene, such

as background signatures. Since CEM uses the sample corre-
lation matrix to calculate the optimal weight vector in (17), it

is actually a spatial filter and can be viewed as a spatial anal-
ysis technique. This is the reason the rank of the sample corre-
lation matrix plays a significant role in performance. In contragjc s
to CEM, NCLS does not deal with spatial correlation but only
spectral correlation among target signatures. Therefore, NCLS

1) It is very sensitive to noise and the desired target
signature knowledge.

2) It can only detect one target at a time and cannot
detect similar targets effectively.

3) Itrequires the rank of the sample correlation matrix
to achieve the best results and separate images to
classify multiple targets.

4) It cannot be used for material quantification.

» Advantages

is a spectral analysis technique. From this point of view, both 1) Itimproves unconstrained linear unmixing methods
techniques are completely different. Nevertheless, NCLS seems and can be implemented in an unsupervised manner.
to be more robust and less sensitive to noise and target knowl- ~ 2) It can detect similar targets as well as multiple tar-
edge than CEM. gets. 3 _

As a concluding remark, the NCLS algorithm has been shown 3) It is not as sensitive as CEM to target signature
to be converge in all the experiments conducted in this paper. knowledge. _ _
However, it should be noted that on some occasions, the NCLS ~ 4) It can be extended to an unsupervised version,
algorithm could oscillate between two passive sets since it steers UNCLS.
back to a zero passive set, which usually contains more than one® Disadvantages
negative component during each iteration. Should it occur, the 1) It requires a linear spectral mixture model.

NCLS algorithm would adjust only one component at a time 2) Itis not as effective as CEM if targets are small and
during each iteration. More details about the analysis of the the target knowledge is accurate.

NCLS algorithm can be found in [28]. 3) It cannot be used for material quantification.
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