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Abstract—Target detection in remotely sensed images can be
conducted spatially, spectrally or both. The difficulty of detecting
targets in remotely sensed images with spatial image analysis
arises from the fact that the ground sampling distance is generally
larger than the size of targets of interest in which case targets are
embedded in a single pixel and cannot be detected spatially. Under
this circumstance target detection must be carried out at subpixel
level and spectral analysis offers a valuable alternative. In this
paper, the problem of subpixel spectral detection of targets in
remote sensing images is considered, where two constrained target
detection approaches are studied and compared. One is a target
abundance-constrained approach, referred to as nonnegatively
constrained least squares (NCLS) method. It is a constrained least
squares spectral mixture analysis method which implements a
nonnegativity constraint on the abundance fractions of targets
of interest. Another is a target signature-constrained approach,
called constrained energy minimization (CEM) method. It con-
strains the desired target signature with a specific gain while
minimizing effects caused by other unknown signatures. A
quantitative study is conducted to analyze the advantages and
disadvantages of both methods. Some suggestions are further
proposed to mitigate their disadvantages.

Index Terms—Constrained energy minimization (CEM), non-
negatively constrained least squares (NCLS), orthogonal subspace
projection (OSP).

ACRONYMS

ANC Abundance nonnegativity constraint.
ASC Abundance sum-to-one constraint.
AVIRIS Airborne visible/infrared imaging spectrometer.
CEM Constrained energy minimization.
FCLS Fully constrained least squares.
FIR Finite impulse response.
FNNLS Fast NNLS.
FNNLSb Second version of FNNLS.
HYDICE Hyperspectral digital imagery collection experi-

ment.
LSE Least equares error.
LSMA Linear spectral mixture analysis.
MVDR Minimum variance distortionless response.
NCLS Nonnegatively constrained least squares.
NNLS Nonnegative least squares.
OSP Orthogonal subspace projection.
SCLS Sum-to-one constrained least squares.
UCEM Unsupervised constrained energy minimization.
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UNCLS Unsupervised nonnegatively constrained least
squares.

UOSP Unsupervised orthogonal subspace projection.

I. INTRODUCTION

SUBPIXEL target detection has received considerable in-
terest in remote sensing image processing due to the sig-

nificantly improved spectral resolution by recent advances of
remote sensing instruments such as the AVIRIS and HYDICE
sensor. The need for subpixel spectral detection in remotely
sensed imagery arises from the fact that the ground sampling
distance is generally larger than the size of targets of interest. In
this case targets are embedded in a single pixel and cannot be
detected spatially. As a result, traditional spatial analysis-based
image processing techniques are not applicable. One must rely
on and take advantage of the targets’ spectral properties such as
spectral contrast, variability, similarity and discriminability to
be able to detect targets effectively at subpixel level. One general
approach studied in the past [1], [2] was based on spectral mix-
ture analysis [3]–[11]. In this paper, this problem is investigated
and two different approaches are proposed for subpixel spectral
detection of targets. One is a target abundance-constrained ap-
proach, referred to as NCLS method. It is a constrained least
squares spectral mixture analysis method, which implements a
nonnegativity constraint on the abundance fractions of targets
of interest. The second approach is different from the NCLS
method and can be derived from linear adaptive beamforming
in sensor array processing. It is a target signature-constrained
approach, called the CEM method, which was first proposed in
[12]. It constrains the desired target signature using a specific
gain while minimizing effects resulting from other unknown
signatures.

In LSMA, a linear mixture model is used. Suppose that
are target spectral signatures resident

in a multispectral/hyperspectral image pixel vector, and
are their associated abundance fractions within

. A linear mixture model of makes use of a mixing equation
to model the spectral signature ofas a linear combination
of with appropriate abundance fractions
specified by . In general, two constraints must
be imposed on this model to yield an optimal solution. These
are the ASC, and the ANC, for all

. An LSMA-based FCLS method was studied in
[9], [13], [14], with the goal aiming at quantifying materials
present in a pixel vector. In this case, the abundance fractions

must be estimated accurately to reflect the
true abundance fractions of different materials, a task that
many unconstrained or partially constrained LSMA methods
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cannot accomplish. However, from a target detection’s point
of view, whether or not the estimated amount of the target
abundance is accurate may not be essential. As long as the es-
timated abundance fractions of desired target pixel vectors can
distinguish themselves from their surrounding pixel vectors,
the targets can be detected effectively even if the abundance
fractions of LSMA do not satisfy ASC or ANC. Such target
detectability was demonstrated by the unconstrained OSP
methods in [15], [16]. Accordingly, for target detection pur-
poses, an LSMA-based fully constrained least squares method
sometimes may not be as effective as partially constrained or
unconstrained LSMA-based methods. This is because a fully
constrained method requires both ASC and ANC, and the
corresponding abundance fraction estimates are confined to the
range of , which may limit its target detection capability.

Two LSMA-based partially constrained least squares
methods have been considered in the past: the SCLS [8], [13]
method and the NCLS method [17], [18]. The SCLS imposes
the ASC, while ignoring the ANC. On the contrary, the NCLS
implements the ANC on targets of interest while discarding the
ASC. As a result, both methods generally do not estimate target
abundance fractions accurately. Nevertheless, their estimated
abundance fractions can be used for target detection purposes.
Since SCLS-generated abundance fractions must be summed
to one, when an image scene contains many target signatures,
which is the case for hyperspectral imagery, the magnitudes
of the SCLS-detected target abundance fractions will be
spread out. As a result, they will be relatively small in order
to satisfy to the sum-to-one constraint. Therefore, the target
detectability is considerably reduced. The situation become
even worse if the spectra of targets are very similar. On the
other hand, the NCLS-generated abundance fractions do not
have this constraint. With this freedom, they can take whatever
values that are generated by NCLS. Despite the fact that
their estimated abundance fractions may not reflect accurate
abundance fractions, the target detectability of NCLS may
actually benefit from not satisfying the sum-to-one constraint.
As a consequence, the target detection performance of NCLS
is therefore enhanced. This results in better performance of
NCLS than that of SCLS.

Compared to NCLS, which constrains target signature abun-
dance fractions, CEM is a completely different approach, which
constrains the desired target signature rather than its abundance
fraction. It was previously developed in [12], [19], [20] for hy-
perspectral image classification and is not based on LSMA. It
designs an adaptive filter that minimizes the filter output energy
while constraining a desired target signature by a specific gain.
The idea of CEM was derived from the MVDR beamformer in
array processing [21], [22] and was first used in chemical remote
sensing [23]. It a special case of Frost’s linearly constrained
adaptive beamforming approach [24]. The advantage of CEM
over NCLS is that it does not require the complete knowledge of
target signatures as does NCLS, but only re-
quires the target signature to be detected, saya priori. Using
the desired target signature , one can design an adaptive filter
to pass with a specific gain while minimizing the radiance
contributed by undesired signatures , plus
other unknown signal sources. Consequently, minimizing the

filter output energy is equivalent to enhancing the desired target
signature . CEM has been shown to be very effective in target
detection for HYDICE data because it works very well for small
target detection. One disadvantage of CEM is that the perfor-
mance of CEM is completely determined by the signature of
as well as the true dimensionality of the data. Therefore, it is not
robust and is very sensitive to and noise. When the knowl-
edge of the target is not accurate or noise level is high, the
performance of CEM will be significantly degraded and it may
even detect wrong targets.

One common drawback of NCLS and CEM is the require-
ment of the prior knowledge of target signatures. For NCLS,

used in LSMA must be knowna priori. For
CEM, knowledge of the desired signature and the intrinsic
dimensionality of the data must also be knowna priori. Unfor-
tunately, finding such information in an unknown image scene
is generally difficult. This is particularly true for hyperspectral
imagery. For example, the HYDICE sensor has significantly im-
proved spectral resolution to 10 nm and spatial resolution from
1 to 4 m. With such fine spatial and spectral resolutions, the
HYDICE sensor can extract targets with size as small as several
meters for the purpose of target detection, discrimination, classi-
fication, and identification. On the other hand, many unknown
interfering signatures may also be measured by the HYDICE
sensor [16]. Apparently, the knowledge of such unwanted target
signatures cannot be obtaineda priori. In order to resolve this
problem, a least squares error-based unsupervised target gener-
ation process is proposed to extend NCLS, OSP, and CEM to
their unsupervised counterparts (UNCLS, UOSP, and UCEM).

The remainder of this paper is organized as follows. Section II
briefly reviews the linear mixture model and unconstrained OSP
method. Section III proposes a target abundance-constrained
subpixel detection approach, NCLS. Section IV extends NCLS
to unsupervised versions where the knowledge of target signa-
tures is not requireda priori. Section V describes a target signa-
ture-constrained subpixel detection approach, the CEM method.
Section VI conducts a series of computer simulations and hyper-
spectral imagery experiments to evaluate detection performance
of NCLS, CEM, and OSP methods. Finally, Section VII con-
cludes with some remarks.

II. PRELIMINARIES: LINEAR MIXTURE MODEL AND OSP

A. Linear Spectral Mixture Model

Linear spectral mixing is a widely used approach for remotely
sensed imagery to determine and quantify multicomponents.
Since every pixel is acquired by spectral channels at different
wavelengths, it can be represented by a column vector of which
each component is a pixel in a particular band. More precisely,
suppose that is the number of spectral bands. Letbe an
column pixel vector in a multispectral or hyperspectral image
where boldface is used for vectors. In this case, each multi/hy-
perspectral pixel is viewed as a pixel vector withdimensions.
Assume that is an target spectral signature matrix de-
noted by , where is an column vector
represented by the spectral signature of theth target resident
in the pixel , and is the number of targets in the image scene.
Let be a abundance column vector
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associated with, where denotes the fraction of theth target
signature present in the pixel vector.

A classical approach to solving mixed pixel classification
problem is linear unmixing, which assumes that the spectral sig-
natures of the endmembers in the pixel vectorare linearly
mixed. Therefore, the spectral signature of a pixel vectorcan
be represented by a linear regression model of
as follows:

(1)

where is noise or can be interpreted as a measurement error.

B. Orthogonal Subspace Projection (OSP)

Equation (1) is a general linear mixture model with no con-
straints imposed on the abundance vector .
Recently, an unconstrained linear unmixing method, the OSP
approach, was developed in [15]. It rewrites (1) as

(2)

where is the desired target spectral signature and
is the undesired target spectral

signature matrix made up of the remaining undesired
signatures in . Here, without loss of generality, we assume
that the last signature is the desired signature. The reason for
separating from is that it allows us to design an orthogonal
subspace projector to annihilatefrom an observed pixel prior
to classification. So based on (2), an OSP operator was derived
in [15] by

(3)

where

(4)

and is the pseudo-inverse of , and the
notation in indicates that the projector maps the ob-
served pixel into the orthogonal complement of , denoted
by .

III. T ARGET ABUNDANCE-CONSTRAINED SUBPIXEL

DETECTION APPROACH: NONNEGATIVELY CONSTRAINED

LEAST SQUARES(NCLS) METHOD

The target signature matrix and the abundance vectorin
(1) are assumed to be knowna priori. In reality, is generally
not known and needs to be estimated. In order to estimate

, we use the least squares error as the criterion
for optimality and the optimal least squares estimate of, ,
for model (1) can be obtained by

(5)

As mentioned previously, the OSP classifier specified
by (3) does not necessarily satisfy the sum-to-one constraint

or the nonnegativity constraint, for all
. The NCLS imposes the nonnegativity constraint on

the abundance vectorwhile using (5) to estimate. Since the

nonnegativity constraint is a set of inequalities, no analytic solu-
tion can be derived to arrive at a closed form. Furthermore, since
NCLS does not satisfy the sum-to-one constraint, it is not an op-
timal abundance estimator. So, why is it important to consider
NCLS? The interesting fact is that NCLS may not be as good as
an FCLS approach for endmember quantification developed in
[14], but as a target detector, an NCLS-based detector may be
more effective than an FCLS-based quantifier by not requiring
or forcing ASC, the sum of target signature abundance fractions
to one. This unconstrained disadvantage turns out to be an ad-
vantage in detection of targets for NCLS.

In general, an NCLS problem can be described by the fol-
lowing optimization problem

Minimize LSE subject to

(6)

where LSE is the least squares error used as the criterion for
optimality and represents the nonnegativity constraint

for all . Since is a set of inequalities, the
Lagrange multiplier method is not applicable to solving optimal
solutions. In order to mitigate this dilemma, we introduce an
unknown -dimensional positive constraint constant vector

with for to take care of the
nonnegativity constraint. Through, we can form a Lagrangian

as follows:

(7)

with and

(8)

which results in the following two iterative equations given by

(9)

and

(10)

Equations (9) and (10) can be used to solve the op-
timal solution and the Lagrange multiplier vector

.
The nonnegativity constraint optimization problem given by

(6) was previously explored by Lawson and Hanson in [17] and
was called the NNLS. Based on Lawson and Hanson’s NNLS,
two Fast NNLS algorithms referred to as FNNLS and FNNLSb
were further developed by Bro and Jong in [18] to generate
the desired optimal solutions. Their idea is to first decompose
the components of the estimate into two index sets called
active set and passive set. While the former consists of all in-
dices corresponding to negative (or zero) components in the es-
timate , the latter contains all indices corresponding to pos-
itive components in the estimate . NNLS and FNNLS start
off with an empty passive set and assume the active
set consisting all components of , i.e., .
They then adjust both setsand via iterations using (10). It
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has been shown in [17] that when an optimal solution has been
found, the Lagrange multiplier vector must satisfy the fol-
lowing Kuhn–Tucker conditions:

(11)

The final generated passive set identifies which components are
legitimate to be used in the abundance estimation. The de-
tails of implementing the NCLS algorithm are given below.

NCLS Algorithm

1) Initialization: Set the passive set and
active set . Set .

2) Compute using (5). Let .
3) At the th iteration. If all components in are non-

negative, the algorithm is terminated. Otherwise, continue.
4) Let .
5) Move all indices in that correspond to negative

components of to , and the resulting index
sets are denoted by and , respectively. Create a
new index set and set it equal to

6) Let denote the vector consisting of all components
in .

7) Form a steering matrix by deleting all rows and
columns in the matrix that are specified by

8) Calculate . If all components in
are negative, go to step 13. Otherwise, continue.

9) Calculate and move the index in

that corresponds to to .
10) Form another matrix by deleting every column of

specified by .
11) Set .
12) If any components of in are negative, then move

these components from to . Go to step 6.
13) Form another matrix by deleting every column of

specified by .
14) Set . Go to step 3.

In summary, at the th iteration, the NCLS algorithm begins
by calculating the unconstrained least squares solution. If
all components in are positive, the algorithm terminates.
Otherwise, all negative components are identified, and their cor-
responding indices are moved to the active set . In the mean-
time, a duplicate set of , referred to as , is introduced
for the purpose of keeping track of the current negative com-
ponents of during the th iteration. The steering matrix

is then formed and the Lagrange multiplier vector that
will be used to steer each negative component of back
to zero is calculated. From (11), all components of must
be negative. Therefore, in case there exists at least one positive
component, the index that corresponds to the maximum compo-
nent of is shuffled from to . Since the loop from
step 6 to step 12 may be repeated over and over again during
a single iteration, is used to check if all previously identi-
fied indices of maximum components of should be retained
in or moved back to . Once all the values of are

negative, is recalculated. It should be noted that the two
iterative equations, specified by (9) and (10), are carried out by
step 14 and step 8 respectively.

One comment on NCLS is noteworthy. The reason that people
overlook the potential application of NCLS in subpixel target
detection is because it requires the complete prior knowledge of
targets present in an image where NCLS is primarily used for
unmixing materials rather than detecting a particular target in a
linear mixture. Of course, in this case, NCLS cannot compete
with the FCLS in [14].

IV. UNSUPERVISEDNCLS

NCLS requires the complete knowledge of target signatures.
When no prior information is available, it cannot be applied. In
this section, the NCLS is extended to an unsupervised version
where the LSE is used to minimize the goodness of fit between
the linear mixture model and data measurements. The idea can
be briefly described as follows.

Initially, we can select any arbitrary pixel vector as an initial
desired target signature denoted by. However, a good choice
may be the pixel vector, with a maximum length that corre-
sponds to the brightest pixel in the image scene. The NCLS al-
gorithm is then used to estimate the abundance fraction of,
denoted by for each pixel vector in the scene, and the
LSE is further calculated between the image pixel vectorand
its estimate , i.e.

LSE (12)

Here, is included in the abundance fraction estimate to
emphasize that the estimated abundance fractionis a function
of the pixel vector and varies with . The pixel that yields
the maximum LSE is then selected as the next target signature,
denoted by , namely

LSE

LSE

(13)

Because the LSE between and is the maximum, it
can be expected that is most dissimilar to . In order to find
a second target signature, the UNCLS algorithm estimates the
abundance fractions of and contained in each pixel vector

in the image scene, denoted by and . Then the
maximum LSE between all image pixel vectorsand the least
squares linear mixture are estimated by
the NCLS algorithm. Once again, the pixel vector that yields
the maximum LSE is selected as a second target signature de-
noted by . The same procedure of using the NCLS algorithm
with is repeated until the resulting LSE is small
enough and less than a prescribed error threshold. It should be
noted that if there is partial knowledge availablea priori, it can
be incorporated in the above process. For example, if we know
nothing but the desired target signature, the initial target pixel
vector can be replaced by this. If there is more than one
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known target in the image scene, we can select these targets as
an initial target set and then follow the same procedure described
above until the LSE meets a stopping criterion. The procedure
outlined as above is called the UNCLS algorithm, which can be
summarized as follows.

Unsupervised NCLS (UNCLS) Algorithm

1) Initial condition: Select to be a prescribed error threshold
and let where is run over all image
pixel vectors. Let .

2) Let , and apply the NCLS algorithm with
the signature matrix to estimate
the abundance fractions of , , ,

.
3) Find the LSE defined by

LSE

(14)

and check the error if LSE for all . If it is, the
algorithm stops, otherwise continue.

4) Find LSE . Go to step 2.

One comment on is noteworthy. The superscript
is a counter to indicate the number of iterations. It starts with

. The subscript starting with is the index of theth
target signature , generated by the UNCLS algorithm. The ini-
tial target is represented by with . For example,
is the abundance estimate of in the first iteration, given by
(13). It should also be noted that, as will be demonstrated in the
experiments in Section VI, step 4 implemented in the UNCLS
algorithm tries to locate pure pixel vectors first. If there is no
such pixel vector, it then looks for a mixed pixel vector with
the largest possible abundance fraction of any substance in the
pixel vector. This implies that a mixed pixel vector with uni-
form mixture is less likely to be selected by the UNCLS as a
target signature. Furthermore, using an analogous approach to
UNCLS, OSP and CEM can be also implemented in an unsu-
pervised fashion, referred to as UOSP and UCEM throughout
this paper.

V. TARGET SIGNATURE-CONSTRAINED SUBPIXEL DETECTION

APPROACH: CEM

In order to implement the NCLS algorithm, knowledge of
all target signatures of interest is required. Such knowledge
is generally difficult to obtain in practice. So, a least squares
error-based unsupervised method, as described in Section III,
was proposed for this purpose. As an alternative, the CEM
approach [12], [19], [20] recently proposed in [12] took another
approach. Instead of constraining target signature abundance
fractions, CEM constrains a desired target signature by using
a specific gain. Since CEM does not impose a constraint on
the abundance of the target signature, it cannot be used for
quantification purposes as the FCLS in [14]. However, as a

target detector, CEM has shown success in hyperspectral image
classification [19], [20].

Basically, CEM uses an FIR filter to constrain the desired
target signature by a specific gain while minimizing the filter
output power. The idea of CEM arises from the MVDR in array
processing [21], [22], with the desired target signature inter-
preted as the direction of arrival from a desired signal. It can
be derived as follows.

Assume that we are given a finite set of observations
where for is

a sample pixel vector. Suppose that the desired target signature
is also knowna priori. The objective of CEM is to design

an FIR linear filter with filter coefficients
denoted by an -dimensional vector
that minimizes the filter output power subject to the following
constraint

(15)

It is worth noting that the constraint constant 1 in (15) can be
replaced by any scalar[21], [22].

Let denote the output of the designed FIR filter resulting
from the input . Then can be written as

(16)

So the average output power produced by the observation set
and the FIR filter with coefficient vector
specified by (16) is given by

(17)

where turns out to be the
sample autocorrelation matrix of. Minimizing (17) with the
filter response constraint yields

subject to (18)

The solution to (18) was shown in [12] and called the CEM filter
with the weight vector given by

(19)

It should be noted that the in (19) is not necessarily of
full rank. So calculating the in (19) can be a problem. It
has been noted that CEM is very sensitive to the knowledge used
for the desired target as well as the noise. While the problem of
CEM’s sensitivity to the target signature knowledge has been
addressed in [25], the issue of CEM’s noise sensitivity has not
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been studied in depth in open literature. As will also be shown
in the experiments, the noise sensitivity is closely related to
the rank used to calculate the weight vector in (19). This rank
determines the number of eigenvectors to be used to calculate

and is also closely related to the intrinsic dimension-
ality of a hyperspectral image, which is usually less than the
data dimensionality . It is known that finding the intrinsic di-
mensionality of data is very challenging and has been investi-
gated previously in [26], [27]. Nevertheless, if the number of
eigenvectors is knowna priori ( , for example), we can use
singular value decomposition so that can be reduced to

, where is an eigenmatrix,
is the -dimensional vector corresponding to theth eigen-

value , and is a diagonal ma-
trix with eigenvalues as diagonal elements. Using this eigen-de-
composition, the inverse of can be found by

[12].

VI. COMPUTERSIMULATIONS AND EXPERIMENTS

In this section, a series of computer simulations and real hy-
perspectral data experiments are conducted to evaluate the com-
parative performance among the three subpixel target detection
techniques, unconstrained OSP, target abundance-constrained
NCLS, and target signature-constrained CEM methods along
with their unsupervised counterparts. In particular, a compre-
hensive analysis on the issues of noise sensitivity and target
knowledge is studied by simulating various scenarios to see the
effects of different numbers of eigenvectorsused in computa-
tion of on the performance of CEM, as well as the im-
pacts of different levels of prior target signature knowledge used
in NCLS, OSP, and CEM

A. Computer Simulations

Three examples are designed to demonstrate two important
issues of subpixel detection: noise sensitivity and sensitivity to
prior target knowledge.

1) Noise Sensitivity to Number of Eigenvectors Used in Com-
putation of : Determining the number of eigenvectors
is always challenging because it is closely related to the unpre-
dictable noise level incurred in the data. However, except for
Gaussian noise, it is generally difficult to simulate non-Gaussian
random noise. So in the following experiments, instead of di-
rectly considering such random noise, we deal with the issue of
the effects caused bysince the selection of is determined by
the noise sensitivity.

Example 1: Target Signatures with Relatively Large
Abundance Fractions:A laboratory data set of an AVIRIS
scene considered in [15] was used to evaluate the performance
of NCLS and CEM against OSP. The data set contained five
field reflectance spectra, dry grass, red soil, creosote leaves,
blackbrush, and sagebrush shown in Fig. 1(a) with spectral
range from 0.4–2.5m. There were 158 bands after water
bands, and bands with low SNR were removed. In this case,
the signature matrix was consisting
of these five spectral signatures with abundance fractions given
by . The simulation consisted of 400
mixed pixel vectors and was divided into four groups, each

of which contained a hundred pixel vectors with the same
mixture. The first group consisted of the first hundred pixel
vectors with the mixture made up of 50% sagebrush and 50%
dry grass. The second group consisted of the second hundred
pixel vectors with the mixture made up of 50% sagebrush and
50% red soil. The third group consisted of the third hundred
pixel vectors with the mixture made up of 50% sagebrush
and 50% creosote leaves. The fourth group consisted of the
fourth hundred pixel vectors with the mixture made up of 50%
sagebrush and 50% blackbrush. More specifically, each of the
400 simulated pixel vectors is a two-component mixture with
a 50/50 split, and all of the 400 pixel vectors share the same
amount of sagebrush (that is, 50% sagebrush). White Gaussian
noise was added to each pixel vector to achieve a 30 : 1 SNR,
which was defined in [15] as 50% reflectance divided by the
standard deviation of the noise. Fig. 1(b)–(f) shows the results
of NCLS, CEM, and OSP in detection of dry grass, red soil,
creosote leaves, blackbrush, and sagebrush, respectively. From
Fig. 1, both OSP and NCLS were able to detect all of the five
signatures. However, if we examine the amounts of abundance
detected by NCLS and OSP, those detected by OSP did not
reflect true abundance fractions, but those produced by NCLS
did. This is because OSP is unconstrained and NCLS is at least
partially constrained. Surprisingly, CEM, which was shown
to be effective in [12], [19], and [20], performed poorly. As
noted in the concluding remark of Section IV, the number of
eigenvectors (denoted by) used to calculate in (19) is
crucial. Since there are five signatures in the simulated data,

was chosen to be 5 to produce the results in Fig. 1. In order
to see if was appropriate, 3, 10, 60, and 158 were also
tested for to detect blackbrush, and the results are shown in
Fig. 2. As we can see, at , the mixture of creosote leaves
and sagebrush resulted in a large value above 1 instead of the
mixture of blackbrush and sagebrush. The value yielded
the best result, and asincreased past 5, the results became
worse. In the case of this experiment, was the optimal
number of eigenvectors to be used in computation of .

Example 2: Target Signatures with Small Amount of Abun-
dance Fractions:The experiment conducted in this example
provides another extreme for CEM performance. The data to be
used are three field reflectance spectra, dry grass, red soil, and
creosote leaves shown in Fig. 1(a). Again, 400 mixed pixel vec-
tors were also generated, but simulated in a different way from
that in Example 1. We started the first pixel vector with 100%
red soil and 0% dry grass, then began to increase 0.25% dry
grass and decrease 0.25% red soil every pixel vector until the
400th pixel vector, which contained 100% dry grass. We then
added creosote leaves to pixel vector numbers 198–202 at abun-
dance fractions 10%, while reducing the abundance of red soil
and dry grass accordingly. For example, after addition of cre-
osote leaves, the resulting pixel vector 200 contained 10% cre-
osote leaves, 45% red soil, and 45% dry grass. White Gaussian
noise was also added to each pixel vector to achieve a 30 : 1
SNR. Fig. 3 shows the results of OSP, CEM and NCLS in de-
tection of creosote leaves. Unlike Example 1, this time all three
methods NCLS, CEM, and OSP produced comparable detec-
tion results. However, both NCLS and CEM performed better
than OSP in the sense of detecting true abundance fractions of
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Fig. 1. (a) Refectances of five signatures, dry grass, red soil, creosote leaves, blackbrush, and sagebrush. (b)–(f) Results of OSP, CEM, and NCLS in detection
of dry grass, red soil, creosote leaves, blackbrush, and sagebrush.

creosote leaves, whereas OSP did not. Compared to ,
used to produce Fig. 1(d), the number of eigenvectorsused
to calculate in Fig. 3 was set to the full dimensionality
of pixel vector 158. Fig. 4 shows the results of CEM using the
number of eigenvectors . Interestingly, when

, CEM picked up a wrong target signature: dry grass which
was supposed to be creosote leaves [see Fig. 4(a)]. For CEM,

yielded the best result, shown in Fig. 4(d), where the es-
timated abundance of creosote leaves was nearly accurate. But
even in this case, the result was still not as good as that produced
by NCLS in Fig. 3(c), because of the performance in detecting
abundance fractions of other pixels.

While Example 1 shows one extreme case for CEM perfor-
mance, Example 2 provides another extreme case for CEM. Both
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Fig. 2. Results of CEM using the number of eigenvectorsq = 3, 10, 60, and 158 with blackbrush as the desired signature.

Fig. 3. Results of OSP, CEM, and NCLS in detection of creosote leaves.

examples further demonstrate the crucial role the number of
eigenvectors plays in CEM performance. If each eigenvector
is interpreted as a piece of information, the larger the eigenvalue
is, the more significant information it represents. So these two
examples suggest that when the desired target is small or occurs
with low probability, the number of eigenvectors to be used for

is generally very high because targets with small abundance

fractions may correspond to small eigenvalues and can be then
viewed as insignificant targets. Under this circumstance, they
may not be able to be detected by using only a few eigenvectors.
Therefore, it requires a large set of eigenvectors to find these
targets. This explains why CEM can be used to detect small
targets so effectively by lettingbe equal to the full number of
full bands. Conversely, if the desired targets are relatively large
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Fig. 4. Results of CEM using the number of eigenvectorsq = 2; 3; 10; 60 in the detection of creosote leaves.

Fig. 5. Results of NCLS, CEM, and OSP in detection of creosote leaves with blackbrush and sagebrush acted as interferers.

and widespread, like the one studied in Example 1, a smaller
may be more appropriate to make CEM effective because the
information provided by these targets can be well-represented
by a few largest eigenvectors. In this case, a small set of large
eigenvectors may be sufficient to detect these targets.

Example 3: Target Signatures Used as Interferers:The
same simulated data used in Example 2 were also used in this

example, except that two more additional signatures, blackbrush
and sagebrush, were assumed to be present in the data even
though they were actually not present. In this case, the signature
matrix contained the five signatures:
dry grass, red soil, creosote leaves, blackbrush, and sagebrush
in Fig. 1. With this scenario, the blackbrush and sagebrush acted
as interferers rather than target signatures. Fig. 5 shows the re-
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Fig. 6. (a)–(c) Comparative results of UNCLS, CEM, and OSP, with targets
generated by UNCLS and the inital targetTTT , given by the desired creosote
leaves signature.

sults of NCLS, CEM and OSP in detection of creosote leaves.
Unlike Fig. 3, the performances of three methods are quite dif-
ferent. OSP produced the worst performance because the dimen-
sionality of orthogonal subspace used for detection of creosote
leaves had been reduced by two due to an addition of the black-

Fig. 7. (a)–(c) Comparative results of UNCLS, UCEM, and UOSP with no
prior target knowledge.

brush and sagebrush signatures. As a result, its detection capa-
bility was considerably deteriorated by the undesired signature
annihilator , since the spectra of the interferers blackbrush
and sagebrush are very similar to that of creosote leaves. Sim-
ilarly, NCLS also suffered from the same problem, which re-
sulted in slight degradation in detection of creosote leaves at
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Fig. 8. AVIRIS image scene.

pixel 200, but it actually did better than it did for Fig. 3(c) at
other pixels in terms of nulling the abundance of creosote leaves.
For CEM, the result was identical to that in Fig. 3, because the
addition of blackbrush and sagebrush with zero abundance did
not affect the output energy of the CEM filter. This example also
demonstrates a major difference between NCLS and CEM.

2) Sensitivity to Target Knowledge:In Section VI-A, the
complete knowledge of target signatures described was as-
sumed in Examples 1–3 to demonstrate how crucial the number
of eigenvectors used in computation of are. In this
section, the sensitivity issue of the precise knowledge of target
signatures used in NCLS, CEM, and OSP will be investigated.

Example 4: Partial Knowledge of Target Signature:Once
again, the same simulated data used in Example 2 were con-
sidered to demonstrate how partial target knowledge is utilized
in UNCLS. Here, the only knowledge available to us was that
there was a signature of creosote leaves present in the data.
Following the UNCLS algorithm, the creosote leaves signature
was set to the initial target signature. The NCLS algorithm
was used to estimate the abundance fraction of, denoted by

, in each of 400 simulated pixel vectors, where theis
dropped from the notation of to simplify notations, i.e.,

. Using , we calculated the LSE between
all simulated pixel vectors and . Since the resulting max-
imum LSE was not below a prescribed threshold, the UNCLS
was continued to find a pixel vector that yielded the maximum
LSE. In this example, the seventh pixel vector with 98.5% red
soil was selected as the first target, denoted by. The UNCLS
algorithm was then used to estimate the abundance fractions
of and , denoted by and . Using the estimated
abundance fractions, we calculated LSE of all simulated pixels
between the least squares linear mixture . Be-
cause the resulting maximum LSE was still not below the pre-
scribed threshold, the UNCLS algorithm was continued and the
400th pixel with 100% dry grass was selected as a second target

. After finding , the resulting maximum LSE was below
the prescribed threshold, and the UNCLS algorithm was termi-
nated. At this point, we had generated two more target signa-
tures, red soil and dry grass, which were not known
a priori. Using these three target signatures, , and as the
signature matrix for NCLS algorithm and OSP, the results are
shown in Fig. 6(a)–(c), where creosote leaves, red soil, and dry
grass were used as the desired signatures and detected, respec-
tively. As we can see from Fig. 6, CEM performed very well by
extracting all the three target signatures but did not detect correct
amounts of target signatures. In addition, the fractions of abun-

Fig. 9. Results of NCLS, OSP, and CEM, usingq = 158, where figures
labeled by (a), (b), (c) (d), and (e) are detection results of cinders, playa, rhyolite,
vegetation, and shade, respectively.

dance detected by CEM for these three desired signatures were
very different. Except for creosote leaves, the CEM-detected
abundance fractions for red soil and dry grass were negative,
where their accurate amounts were supposed to be 45%. This
implies that CEM can detect anomalies even though it failed to
detect the desired target signatures such as red soil and dry grass.
Compared to CEM, UOSP and UNCLS detected more accurate
abundance fractions for these three desired signatures. In par-
ticular, UNCLS produced almost correct amounts of abundance
for all the three signatures. This example demonstrates two in-
teresting facts. From a target detection’s point of view, CEM
performed better than OSP and UNCLS in terms of weak or
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Fig. 10. Comparative results of CEM for cinders, playa, rhyolite, vegetation, and shade using: (a)q = 5, (b)q = 10, (c)q = 20, and (d)q = 40, andq = 80.

small targets even though it may fail to detect right targets. On
the other hand, from an abundance detection’s point of view,
UNCLS performed substantially better than UOSP and CEM. It
is not only capable of detecting right target signatures but also
estimating correct amounts of target abundance. UOSP seems
right in between in either case.

Example 5: No Target Knowledge Available A Priori:The
only difference between this example and Example 4 was that

no initial target signature was givena priori. Target must
be generated from the data set. In this case, we selected the pixel
vector with maximum length, which turned out to be the 400th
pixel vector with 100% dry grass. Using this pixel vector to
initialize the UNCLS algorithm, and following the same pro-
cedure in Example 4, we found the fourth pixel vector to be

with 99.25%, and the 200th pixel vector
creosote leaves with 10% and the UNCLS was terminated. The
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Fig. 11. Results of UNCLS for cinders, playa, rhyolite, vegetation, and shade with partial target knowledge, where for each image only the target of interest was
knowna priori.

Fig. 12. Results of UNCLS with no target knowledge.

Fig. 13. Results of UOSP using targets generated by UNCLS.

procedure used to generate these three signatures was also used
to extend CEM and OSP to UCEM and UOSP. It should be noted
that targets generated by UNCLS in this example were different
from those generated in Example 4. Fig. 7(a)–(c) show the de-
tection results produced by UNCLS, UCEM, and UOSP, respec-
tively. Interestingly, the detection result of red soil in Fig. 7(b)
produced by UCEM looked exactly upside down compared to
that in Fig. 6(b), produced by UCEM with slightly different
magnitudes. For detection of creosote leaves, the results pro-
duced by UCEM in Figs. 6(a) and 7(c) looked similar, but the de-
tected abundance fractions were different. For detection of dry
grass, UCEM produced nearly the same results in both cases.
Like Example 4, UCEM can be only used for target detection
purpose. Comparing the results in Fig. 7 generated by UOSP
and UNCLS against those in Fig. 6, UNCLS, and UOSP did

Fig. 14. Results of UCEM using targets generated by UNCLS withq = 158.

not perform as well as they did in Fig. 6 in terms of estimating
abundance fractions due to the lack of prior information about
target signatures. Under this circumstance, UOSP and UNCLS
behaved more like a target detector rather than a target abun-
dance estimator, as shown in Fig. 6.

B. Hyperspectral Images

The hyperspectral data used in the following experiments are
AVIRIS data, which were the same data in [15]. It is a sub-
scene of 200 200 pixels extracted from the upper left corner
of the Lunar Crater Volcanic Field, Northern Nye County, NV,
shown in Fig. 8, where five target signatures of interest are cin-
ders, rhyolite, playa (dry lakebed), vegetation, and shade. Fig. 9
shows the results of NCLS, OSP, and CEM using the number
of eigenvectors , where figures labeled by (a), (b), (c),
and (d) show cinders, playa, rhyolite, and vegetation as targets
respectively, and figures labeled by (e) are results of the shade.
From these images, we see that NCLS performed the best in all
cases. In order to see how the number of eigenvectorsused
in CEM affects its performance, five more different numbers

were also used in CEM implementation,
and the results are shown in Fig. 10. As we can see, CEM per-
formed well in detection of cinders, rhyolite, and shade when
the value of was small. On the contrary, CEM did a better job
in the detection of vegetation if a large value ofwas used. This
phenomenon coincides with the conclusion made in Example 2
of Section VI-A.

In the above experiment, we assumed that the complete
knowledge of all five target signatures was knowna priori.
In the following experiment, we assume that partial target
knowledge is available. In this case, only one of five signatures
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Fig. 15. Comparative results of UCEM for cinders, playa, rhyolite, vegetation, and shade, using (a)q = 5, (b)q = 10, (c)q = 20, and (d)q = 40, andq = 80.

is known a priori. UNCLS is used for target detection. The
results are shown in Fig. 11 and are comparable to those in
Fig. 9. Finally, we conclude the experiment by assuming that
no prior target knowledge is given. In this situation, UNCLS
generated six targets from the scene in Fig. 8, and they were
detected and classified in Fig. 12. The results are also very sim-
ilar to those in Figs. 9 and 11, where playa, cinders,

anomalous target, vegetation, shade, and
rhyolite. Interestingly, the third generated targetwas

an edge pixel of the dry lakebed. This pixel vector can be
thought of as an anomalous target and was not picked up in
previous experiments. This experiment further demonstrates
the potential usefulness of UNCLS, which can be used for
detection of anomalies, a task that supervised NCLS and
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CEM cannot achieve. Figs. 13 and 14 were also generated by
UOSP and UCEM with 158 using the targets generated
by UNCLS. As we can see from Fig. 14, without precise target
signature knowledge, UCEM performed very poorly except
at detecting vegetation. Fig. 15 shows the results of UCEM
using , as was done in Fig. 10, produced
by CEM. Obviously, UCEM performed much worse than its
counterparts produced by CEM in Fig. 10. This example shows
that the success of CEM was completely determined by the
knowledge of the desired target signature and the number of
eigenvectors used in CEM.

VII. CONCLUSION

In this paper, a target abundance-constrained subpixel target
detection approach, NCLS, is introduced. It is a least squares
method based on a nonnegativity abundance-constrained linear
spectral mixture model. Since there is no closed form that can
be derived for optimal solutions, a fast, efficient numerical al-
gorithm is developed to generate a desired optimal subpixel de-
tector. The NCLS-based detector is then further extended to an
unsupervised version where no prior information is required.
Despite the success of CEM in hyperspectral image classifica-
tion, the strengths and weaknesses of CEM have not been inves-
tigated in depth previously in the literature. This paper presents
a comprehensive study of CEM and also conducts a compar-
ative analysis among the target abundance-constrained NCLS,
the target signature-constrained CEM, and the unconstrained
OSP. As shown in the experiments, NCLS generally performs
subpixel detection significantly better than the unconstrained
OSP. Both NCLS and CEM have been shown to have their ad-
vantages and disadvantages (see Appendix). If there are small
targets in an image scene, CEM generally performs better than
NCLS and OSP. This may explain why CEM has achieved much
success in HYDICE data analysis due to their significantly im-
proved spatial resolution. On the other hand, NCLS performs
much better when no precise target knowledge is available or
when targets are relatively large or ubiquitous in the scene, such
as background signatures. Since CEM uses the sample corre-
lation matrix to calculate the optimal weight vector in (17), it
is actually a spatial filter and can be viewed as a spatial anal-
ysis technique. This is the reason the rank of the sample corre-
lation matrix plays a significant role in performance. In contrast
to CEM, NCLS does not deal with spatial correlation but only
spectral correlation among target signatures. Therefore, NCLS
is a spectral analysis technique. From this point of view, both
techniques are completely different. Nevertheless, NCLS seems
to be more robust and less sensitive to noise and target knowl-
edge than CEM.

As a concluding remark, the NCLS algorithm has been shown
to be converge in all the experiments conducted in this paper.
However, it should be noted that on some occasions, the NCLS
algorithm could oscillate between two passive sets since it steers
back to a zero passive set, which usually contains more than one
negative component during each iteration. Should it occur, the
NCLS algorithm would adjust only one component at a time
during each iteration. More details about the analysis of the
NCLS algorithm can be found in [28].

APPENDIX

In this appendix, we list possible advantages and disadvan-
tages of three methods studied in this paper: OSP, CEM, and
NCLS. It is by no means a comprehensive list. All advantages
and disadvantages described below are based on experiments
conducted in our lab and reflect only our lab’s opinions.

OSP

• Advantages

1) It is simple, efficient, and effective when target sig-
natures are distinct.

2) It is only based on second-order statistics and does
not make Gaussian noise assumption.

• Disadvantages

1) It is unconstrained and does not yield optimal solu-
tions.

2) It requires the knowledge of target signatures and a
linear spectral mixture model.

3) It can only be used for target detection and cannot
detect similar targets effectively.

4) It cannot be used for material quantification.

CEM

• Advantages

1) It improves unconstrained linear unmixing methods
and can be implemented in real time processing.

2) Noa priori knowledge except the desired target sig-
nature is required.

3) No linear mixture model is assumed.
4) It is very efficient and can detect small targets very

effectively.
• Disadvantages

1) It is very sensitive to noise and the desired target
signature knowledge.

2) It can only detect one target at a time and cannot
detect similar targets effectively.

3) It requires the rank of the sample correlation matrix
to achieve the best results and separate images to
classify multiple targets.

4) It cannot be used for material quantification.

NCLS

• Advantages

1) It improves unconstrained linear unmixing methods
and can be implemented in an unsupervised manner.

2) It can detect similar targets as well as multiple tar-
gets.

3) It is not as sensitive as CEM to target signature
knowledge.

4) It can be extended to an unsupervised version,
UNCLS.

• Disadvantages

1) It requires a linear spectral mixture model.
2) It is not as effective as CEM if targets are small and

the target knowledge is accurate.
3) It cannot be used for material quantification.
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