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Abstract—Linear spectral mixture analysis (LSMA) is awidely NNCLS normalized NCLS;
used technique in remote sensing to estimate abundance fractionsNSCLS normalized SCLS;
of materials presentin an image pixel. In order for an LSMA-based OSP orthogonal subspace projection;
estimator to produce accurate amounts of material abundance, it . ! .
generally requires two constraints imposed on the linear mixture SCLS sum-to—one constrained least squares;
model used in LSMA, which are the abundance sum-to-one con- UFCLS unsupervised FCLS.
straint and the abundance nonnegativity constraint. The first con-
straint requires the sum of the abundance fractions of materials
present in an image pixel to be one and the second imposes a con-
straint that these abundance fractions be nonnegative. While the PECTRAL mixture analysis has been widely used in re-

first constraint is easy to deal with, the second constraint is diffi- t ina f il licati h terial di
cultto implement since it results in a set of inequalities and can only ote sensing lor versatiie applications such as material dis-

be solved by numerical methods. Consequently, most LSMA-based Crimination, detection, and classification. A wealth of spectral
methods are unconstrained and produce solutions that do not nec- mixture analysis techniques have been reported in the litera-
essarily reflect the true abundance fractions of materials. In this tyre [1]-[12]. In multispectral/hyperspectral imagery, a pixel is
case, they can only be used for the purposes of material deteCt'on’generally mixed by a number of materials present in the scene.

discrimination, and classification, but not for material quantifica- T dels h b din th t 1o d b h
tion. In this paper, we present a fully constrained least squares WO models have been proposed in the past o aescribeé suc

(FCLS) linear spectral mixture analysis method for material quan- Mixing activities. One is the macroscopic mixture [11], which
tification. Since no closed form can be derived for this method, an models a mixed pixel as a linear combination of materials with

efficient algorithm is de\_/eloped to yield optimal solut_ions. Inorder relative concentrations. A second model suggested by Hapke in
to further apply the designed algorithm to unknown image scenes, [12] called the intimate spectral mixture, is a nonlinear mixing

an unsupervised least squares error (LSE)-based method is also f materials. N thel Hapke’ del be li ized b
proposed to extend the FCLS method in an unsupervised manner. Ormaterials. Nevertneless, Hapke's model can be linearized by

A series of computer simulations and real hyperspectral data ex- @ method proposed by Johnsenal. [13]. Consequently, only
periments were conducted to demonstrate the performance of the linear spectral mixture analysis (LSMA) will be considered in

proposed FCLS LSMA approach in material quantification. this paper. By taking advantage of the linear mixture model,
Index Terms—Fully constrained least squares (FCLS), linear many image processing techniques can be applied. However,
spectral mixture analysis (LSMA), nonnegatively constrained least there is a principal difference between pure and mixed pixel
squares (NCLS), sum-to-one constrained least squares (SCLS).5rcessing, where the former is a spatial analysis technique and
unsupervised FCLS (UFCLS). h . . .
the latter is a spectral analysis technique. For example, mixed
pixel classification attempts to estimate the abundance fractions
NOMENCLATURE of materials of interest in a pixel and classifies these materials in
accordance with their estimated abundance fractions as opposed

I. INTRODUCTION

ANC abundance nonnegativity constraint; . . :

ASC abundance sum-to-one constraint: t(_) _star_1dard class membershl_p asmgnment-b_a_seq pure pixel clas-

AVIRIS airborne visible/infrared imaging spectrometer: sification. As a result, th_e mixed pixel classification generally

FCLS fully constrained least squares; gengrates a gray s_cale image whose gray level values are.de—

HYDICE  hyperspectral digital imagery collection eXperi_terr_mned.by thg estlmat.ed al_)undance fractions of the m_aterlals
ment: re3|dent in the image pixels in c;ontrast tp' thg class-designated

LSE least squares error: images produced by the pure p.lxel c!as_5|f|cat|on.

LSMA linear spectral mixture analysis; . LSMA-based met'hods require priorl .knowledge of th? .

LS least squares: signatures of ma.\terlals present. |n.the image scene, yvh|ch is

NCLS nonnegatively constrained least squares: generally not available. Under this circumstance, selection of an

appropriate set of material signatures is crucial for successful
Manuscript received December 14, 1999; revised May 30, 2000. This W‘%ﬂérformance of any LSMA-based method. In the ideal case

was supported by the Bechtel Nevada Corporation under Contract DE-AC . | | si f
96NV11718 through the Department of Energy, Washington, DC. ese signatures would represent pure spectral signatures o

The authors are with the Remote Sensing Signal and Image Processatlh materials in the image scene. Unfortunately, this case is
Laboratory, Department of Computer Science and Electrical Engineerir‘@rew true in practical situations since all the signatures to be
University of Maryland-Baltimore County, Baltimore, MD 21250 USA (e-mail: . . . .
cchang@umbc.edu). used are generally obtained directly from the image scene, in

Publisher Item Identifier S 0196-2892(01)02086-1. either a supervised or an unsupervised fashion. Suppose that

0196-2892/01$10.00 © 2001 IEEE



530 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 3, MARCH 2001

my;,msy,---,1m, are the signatures of materials resident in afie ANC to be imposed. The advantage of the SCLS method
image scene, ang, az, - - -, o, are their associated abundances that its solution can be obtained by an LSM and can be fur-
fractions. It should be noted that an image pixel does nthter expressed by an unconstrained least squares solution plus
necessarily contain all the material signatures For instancean error correction term. The unconstrained least squares solu-
when some signature, sa;, is absent from the pixel, its tioninthe SCLS method is identical to the least squares orthog-
corresponding abundanog will be zero,«; = 0. This implies onal subspace projection classifier derived in [23] or signature
that an image scene may contain as many amterials, while subspace classifier in [21]. In contrast, the NCLS method does
a pixel may contain only one or a few materials. In order for amot yield closed-form solutions. Nevertheless, the NCLS algo-
LSMA-based method to provide accurate and reliable estimatéam developed in [30] can be used to generate its solutions.
of signature abundance fractions for material quantificatiomhe algorithm utilizes a steering matrix to iteratively force ma-
two constraints must be imposed on the abundance fractiongerfal signatures with negative abundance fractions to zero until
materials in a pixel: 1) abundance sum-to-one constraint (AS&) optimal least squares solution is obtained. By implementing
Ele a; = 1 and 2) abundance nonnegativity constraint (ANGhis NCLS algorithm in conjunction with the ASC, an efficient
a; > 0forall1< j < p. Afully constrained LSMA method algorithm, called the fully constrained least squares (FCLS) al-
will simultaneously implement the ASC and the ANC. Whilggorithm, can be developed to solve for fully constrained linear
the ASC is easy to deal with, the ANC is difficult to implementnixing problems. Itis also a quadratic programming technique.
in practice, since the ANC results in a set of inequalities adbwever, it uses a more computationally efficient algorithm for
cannot be solved analytically. In this case, it must rely osimultaneously implementing both the ASC and ANC. The sig-
numerical methods to yield optimal solutions. Due to sudhificant savings in computational cost becomes more evident
mathematical intractability, many LSMA-based methods amhen the FCLS method is extended to an unsupervised FCLS.
unconstrained and can only produce suboptimal solutions, elg.order to better compare the SCLS method and NCLS method
minimum distance [14]-[16], singular value decompositioagainst the proposed FCLS method in terms of material quan-
[17], maximum likelihood estimation (MLE) [18], [19], leasttification, a normalized SCLS (NSCLS) method and normalized
squares method (LSM) [20], [21], subspace projection aptCLS (NNCLS) method are also included. The NSCLS method
proaches [21]-[24], etc. Furthermore, the abundance fractiaashe same approach presented in [27] that set to zero all nega-
aq, o, - -, o €stimated by the unconstrained LSMA do notive abundance estimates and rescaled the remaining abundance
generally reflect the true and accurate abundance fractions.estimates so that they summed to one. The NNCLS method
a result, they cannot be used for material quantification. simply rescales the NCLS-estimated abundance fractions to sum
In past years, some efforts were devoted to solving fullp one.
constrained linear mixing problems. However, the approachesOne common drawback of LSMA methods is the requirement
used to implement these constraints were designed mainly éithe complete prior knowledge of material signatures present
a small number of material signatures. For instance, in [20h an image scene. Unfortunately, finding such information is
Shimabukuro and Smith considered several constrained legesherally difficult. This is particularly true for hyperspectral im-
squares mixing models and obtained constrained least squagsry. For example, the hyperspectral digital imagery collection
solutions by solving an overdetermined system that consistexperiment (HYDICE) sensor has significantly improved spec-
of m equations withn unknowns withn < m, wherem is tral resolution of 10 nm and spatial resolution from 1-4 m when
the number of bands andis the number of signatures. Sincecompared to multispectral sensors. With such fine spatial and
there are no closed-form solutions, one must examine possiectral resolutions, the HYDICE sensor can detect targets with
solutions in a feasible region bounded by the ASC and ANGize as small as 1-4 m for the purpose of target detection, dis-
The use of quadratic programming techniques to impose ttxémination, classification, and identification. However, the HY -
ASC and ANC were investigated in [25]-[27], but the algoBICE sensor may also extract many unknown signal sources or
rithms used were computationally expensive. Another methathterials in an image scene. Obtaining prior knowledge of all
presented in [28] also suffered from excessive computatiomahterial sources is a serious issue for LSMA-based methods.
complexity as the number of materials increases. In order to resolve this problem, an unsupervised constrained
In this paper, we consider fully constrained linear mixingeast squares error (LSE)-based approach is further proposed to
problems in hyperspectral imagery and develop a least squagdend the FCLS algorithm to an unsupervised FCLS (UFCLS)
based approach to unmixing materials for quantification. Sinedégorithm so that the FCLS method can be implemented on an
there are no analytical solutions, an efficient numerical alganknown image scene with no required prior knowledge.
rithm is further designed to generate optimal solutions. The pro-The remainder of this paper is organized as follows. Sec-
posed method is based on the least squares approach [29%as 1l briefly reviews the linear mixture model to be used
well as the concept of orthogonal subspace projection (OSRjoughout this paper. Sections IV and Section V describe un-
developed in [22]. It first considers partially constrained leasbnstrained and partially constrained LSMA methods, respec-
squares LSMA and then takes advantage of its solutions to soliwely. Section VI presents the FCLS and UFCLS algorithms.
for fully constrained linear mixing problems. Two partially conSection VII conducts a series of computer simulations and hy-
strained least squares approaches are our interest, referredetspectral imagery experiments to evaluate the performance of
as sum-to-one constrained least squares (SCLS) and nonnewonstrained, partially constrained, and fully constrained least
atively constrained least squares (NCLS) methods. While thguares-based methods. Finally, Section VIII concludes with
SCLS method imposes only the ASC, the NCLS only requirea®me remarks.
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Il. LINEAR MIXTURE MODEL 0.7

Linear spectral mixture analysis is a widely used approach
determine and quantify materials in remotely sensed image
Since every pixel is acquired by spectral bands at different wan
lengths, they can be represented as column vectors, and a hy
spectral image is actually an image cube. Supposd tisahe
number of spectral bands. Lebe an/x 1 column pixel vector
in a multispectral or hyperspectral image where the bold fa
is used for vectors. Let M be dnx p material signature ma-
trix denoted bym; m; - - -m,|, wherem, is anix 1 column
vector represented by the signature of jkie material resident
in the image scene, apds the number of materials in the image
scene. Lety = (o, ao, - - -, o)1 be apx 1 abundance column
vector associated witl, wherew; denotes the abundance frac
tion of the jth signature present in the pixel vectoA classical 0 20 a0 e 0 100 1o 140 160
approach to solving mixed pixel classification problem is line¢ Band number
unmixing, which assumes that there anmaterials in an image
scene and the spectral signature of an image pixel veci®r Fig. 1. Simulated AVIRIS reflectance spectra with atmospheric water bands
linearly mixed by these material signatures. In this case, th&m°ed
spectral signature of a pixel vectercan be represented by a
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linear regression model as follows: U# = (UTU)~*UT is the pseudo-inverse &f and the nota-
tion § indicates that the projectdf mapsr into the orthog-
r=Ma+n (1) onal complement ofU}, denoted by(U)-.

wheren is noise or can be interpreted as a measurement error. o -
Here, without confusion, the will be used to represent eitherB. Least Squares (LS) Projection Classifier
the pixel vector or its spectral signature (i.e., digital numbers, |n the OSP classifier given by (3), the abundance veator

[DNs]). A linear unmixing method attempts to unmix the unis assumed to be knowan priori. In reality, « is generally not
known abundance fractions via an inverse of the linear miXtUlI’(ﬂown, and needs to be estimated. In order to estimate

model specified by (1) so as to achieve the tasks of material dis-— (ap,a,---, %)T from the observed data, several tech-
crimination, detection, classification, quantification, etc. niques have been developed in [21], [23] based @osteriori
information obtained from the image data to be processed. The
lll. UNCONSTRAINEDLSMA METHODS OSP APPROACH least squares estimate @f & s for model (1) is given by

The model given by (1) represents an unconstrained linear

~ _ T —1 T
mixing problem. Many methods have been developed in the past s =(MEM)™ M'r ©)
to address this problem [1]-{11], [16]-[24]. In this section, Wg 4 the LS classifier, denoted s, is given by
are particularly interested in the OSP approach in [21]-[23] that
will lead to the proposed FCLS method. Prs(r) = (AT PEd) =t Posp(r). (6)

A. Orthogonal Subspace Projection (OSP)

In the OSP approach, a single material signature of interestis V. PARTIALLY CONSTRAINEDLSMA METHODS
\s;\(ilﬁctetd | from tfhe matelr_ltal Egnztur_e n&zmi tor.c:aS.S|f|ctat|or_1. The PLg classifier specified by (6) imposed no constraints on

! Ogt oszlo_generalé/ﬁ E esired matenia sgnz}ure 'S &%e abundance vecter = (1 az---ap)t. Therefore, it only
sumed to bel = m,, andU = [m; m;---my_,] is the un- provides a suboptimal solution. In order to find a constrained
desired material signature matrix made up of the remaimindg

desired material sianaturedvi. Model (1 b it version of P.g, we first consider a partially constrained least
undesiredmatenalsignaturesvii. Model (1) canhe rewritten as squares linear mixing problem that imposes only the ASC on

r=da,+Uy+n (2) «,then derive the sum-to-one constrained least squares (SCLS)

: . . ) method.
where~ is the abundance vector associated lithEquation

(2) allows us to design an orthogonal subspace projector to an-gc| s Method
nihilate U from r prior to classification which results in an or-

thogonal subspace projection (OSP) operator derived in [22] and'’
mixing problem:

dmposing the ASC on (1) results in the following SCLS linear

given by
Posp(r) = d7 Pg(r) ©) min {(r — Ma)*(r — Ma)} subject toA
where P
=L« Z a;j =15, (7
Pg =1-UU? @) i
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Fig. 2. Results of the LS and FCLS methods in detection and quantification of creosote leavesdMvbensisted of three materials: dry grass, red soil, and
creosote leaves.
The solutionascr,s to (7) can be obtained by which results in the following two iterative equations given by

ascrs = PppaGos +(MTM)™[1T (M M) ~11]7 (8) aners =(MTM)™'MTr — (MTM) 1A
=a

whereé s is given by (5) and s — (MTM) ™A (13)
Py, =I-M"M)~"11"(M" M)~ 17117 (9) ang
with 1 = (1,1,---,1)T. Note that the same solution given b
(hv—/) g y A=M(r - Méaycrs). (14)

pr
(8) was also derived in [27]. . :

Since the SCLS method is based only on the constrai_lzllgese can be used to solve the optimal 50"‘?@@“ and the
¥P_, «; =1, its solutionascrs does not guarantee the agrange multiplier vectok = ()‘1’)‘2"")‘1’). o .
estimated abundance fractions are nonnegative,da,e.> 0 In order.to solve the NCLS problem, an iterative _algorlthm
for each 1< j < p. In the following section, we Considerpropgsed in [30] can be used' to genera'te .the squt!on'to (20).
imposing the ANC ¢&; > 0 for eachl < j < p) on linear Two index ;ets, calleq_a passive §etop5|st|ng C.)an” mgllces
mixing problems while discarding the ASC. corresponding to positive components in the estimiategiven

by (5) and an active se&t containing all indices corresponding

B. Nonnegativity Constrained Least Squares (NCLS) Methotf Negative (or zero) components in the estiniate were used
to iterate (13) and (14). It was shown in [32] that when an op-

Unlike the SCLS method which produces a closed-form sg, 5| NcLs solution was found, the Lagrange multiplier vector
lution, the NCLS method does not have an analytical solutign,\ satisfy the following Kuhn-Tucker conditions:

since the ANC is formed by a set pflinear inequalities rather
than equalities. In general, an NCLS problem can be described =0 .
: S ; . j =Y JeP
by the following optimization problem:
Aj <0 JjE€R. (15)
Minimize LSE = (Ma — r)* (Ma — r) overa
subject too > 0 Using the conditions given by (15), the NCLS algorithm in [30]
(10) can effectively select a passive gétfrom thep material sig-
natures for unmixing. It is this selection process that makes

where the LSE is used as the criterion for optimality ang 0  the ANC so important and advantageous to the performance

represents the nonnegativity constraint> Oforall 1< j < p. of NCLS and FCLS methods. Simulations and real data exper-

Sincea > 0 is a set of inequalities, the Lagrange multiplieiments conducted in Section VII will demonstrate the signifi-

method is not applicable to solving optimal solutions. In ord&@nce of the ANC. We refer the details of the NCLS algorithm

to mitigate this dilemma, we introduce an unknown p-dimerdmplementation to [30].

sional positive constraint constant vectoe (Cla C2, e, Cp)T Itis worth noting thata more general form of a Welghted least

with ¢; > 0for 1< j < p to take care of the nonnegativitySquares problem can be considered by replacing the LSE in (11)

constraint. Througk, we can form a Lagrangias as follows: With

J = %(Ma — r)T(Ma — I‘) =+ )\(a — C) (11) (MOé _ r)TW(Ma _ I‘) (16)
with o = ¢ and whereW is introduced as a loading factor matrix to weight the
aJ ignifi
oJ — 0= M"Méycrs —MTr+A=0 (12) S|gq|f|cance of each pand. For exampV¥, can be c_hosen to be_
da the inverse of the noise covariance matrix or a diagonal matrix.

&NcLs
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Fig. 3. Results of LS, SCLS, NSCLS, NCLS, NNCLS, and FCLS methods in detection and quantification of creosote leaves, where M consisted oflive materia
dry grass, red soil, creosote leaves, sagebrush, and blackbrush.

V. FCLS MeETHOD AND UNSUPERVISEDFCLS METHODS

One simple approach to solving for fully constrained linear
mixing problems is to take advantage of partially constrained
solutions. For an SCLS solution, we simply throw out the mate-
rial signatures with negative abundance fractions and normalize
the abundance fractions of the remaining material signatures
to unity. The resulting solution is called a normalized SCLS
(NSCLS) solution. For an NCLS solution, we can normalize it
to unity, which results in the normalized NCLS (NNCLS) so-
lution. Unfortunately, as will be shown in the experiments, nei-
ther the NSCLS nor the NNCLS method will yield optimal so-
lutions since the ANC and the ASC are carried out in sequence
and not simultaneously. A method that simultaneously imple-
mented ANC and ASC was recently proposed in [31]_ Howeveétig. 4. The 200x 200 pixel subsection of an AVIRIS image scene (Lunar
it still produced only a nearly optimal solution because it did ngtate" Velcanic Field).
satisfy (15). In this section, we present an FCLS algorithm that
will generate an optimal solution by making use of the NCL8&aterial signature abundance fractions in a linear mixture. The
algorithm developed in the previous section in conjunction withCLS method is the same one considered in [32] that extended
the ASC. Simultaneously requiring both the ASC and the ANte nonnegative least squares algorithm in [33] by including the
allows us to use the proposed FCLS algorithm to find accura&&cC.
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Fig. 5. Results of LS, SCLC, NSCLS, NCLS, NNCLS, and FCLS methods, where figures labeled by (a), (b), (c), (d), and (e) are detection and quantification
results of cinders, playa, rhyolite, vegetation, and shade, respectively.

A. FCLS Method B. Unsupervised FCLS Method

In order to take care of the ASC, we include the ASC in the
signature matri@M by introducing a new signature matrix, de- The FCLS method requires a complete knowledge of the ma-

noted byN, defined by terial signhature matri®. In order for it to apply to a situation
where noa priori information is available, we need an unsu-
oM . . L .
N = [ 1T } (17) pervised process to generate the required material information
to apply the FCLS method. Two criteria were previously de-
with 1 = (1,1,---,1)¥ and a vectos by veloped for this purpose. One was the nearest neighbor rule,
‘*p”_/ from which an unsupervised vector quantization method was
derived to find unknown material or signals in an image scene
s = Hr} (18) [24]. Another is the target generation process proposed in [34],

[35], which was based on the principle of orthogonality. In this
The utilization ofé in (17), (18) controls the impact of the ASC.section, we propose an LSE-based criterion as an alternative be-
Using these two equations, an FCLS algorithm can be deriveause the methods studied in this paper are also based on the
directly from the NCLS algorithm described in the previous seéeast squares approach. The LSE criterion minimizes the good-
tion by replacingM andr used in the NCLS algorithm wittN  ness of fit between the linear mixture model and estimated mea-
ands. surements. The idea can be described as follows.
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Fig. 6. Results of UFCLS method for (a) cinders, (b) playa, (c) rhyolite, (d) vegetation, and (e) shade with partial material knowledge, whermégesanly
the material of interest was knovenpriori.

Initially, we make an attempt to select a pure pixel vector of a x10°
material present in the image scene as an initial desired material
signature denoted bing. If there is knowledge of a material
signature available priori, then it can becomeg. Also, the 4l
initial material signaturam, is not necessarily limited to one
signature. If there is a set of material signatures known to be in
the image scene, then these signatures can be formed as anini _ 3}
tial material signature set. However, when there is no prior in- &
formation available about materials, a good choice may be the A
pixel vector with the maximum length, which is the brightest
pixel in the image scene. One reason for this selection is based
on the simple fact that the brightest pixel may correspondtoa 1}
pixel containing a material with the largest radiance spectrum in
the image scene. Another reason is because the LSE measure
the Euclidean distance, i.e., length between the linear mixture 02 s 4 e p 2 o 9
model and a target material pixel. In this case, the initial material K
pixel and the pixel that has the maximum distance fromittend to
be a pair of the brightest and darkest pixels. So, if the brighté%?' £
pixelis not selected as an initial material pixel, it most likely will, the estimated abundance fracti(ivﬁ,é) (r) anddgl) (r)to em-
be picked in a subsequent selection. N_e\_/ertheles_s, this does size thaﬁél)(r) and&gl)(r) are functions of, and they vary
have to be the only way to make the initial selection. Once they, . The superscript indicates the number of iterations cur-

initial material pixel is selected, we then assume that all pix%ntly being executed. Usir@(()l)(r) and&gl)(r) we then cal-

vectoors N an Image scene are pure pixels made upowith .CLéJate the least squares error (LSE) betweand its estimated
100% abundance. Of course, this is generally not true, so we f'l?near mixture&él) (r)mo + &51) (r)my for all image pixel vec-

apixel vector that has the largest LSE between itseliapand torsr. A pixel that yields the largest LSE will be selected to

fr]e;eftsg ";‘)2 ;:gesgoggdmateig?#sll);erl Zi??:ec?mfgia:i?e e the third material pixein,. The same procedure of using
0 my gest, P he FCLS algorithm witiM = [m¢ m; m3] is repeated until

thatm; is most distinct frommo. We then form a material sig- the resulting LSE is small enough and below a prescribed error

nature matrixXM = [m, m] and create the matriN ands hreshold. Techniques for determining the error threshold will

using (17) and (18). The FCLS algorithm is used to estimate t & discussed in Section VII. The procedure outlined as above is

. (1)
?E)P)ndance fractions fan, andm,, denoted by, "(r) and o104 ynsupervised FCLS (UFCLS) Algorithm, which can be
&y’ (r) for each pixel vector, respectively. Here; is included summarized as follows.

Plot of maximum LSE values: LSE(r) for AVIRIS image.
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Fig. 8. Resulting LSE”(r) images (ak = 0, (b)k =1, (c)k = 2, (d)k = 3, (€)k = 4, and ()k = 5.

Unsupervised FCLS (UFCLS) Algorithm: and check the error if LSE)(r) < ¢ for all r. If it is, the
1) Initial condition: algorithm stops, otherwise continue.
Select: to be a prescribed error threshold, and let 5) Findmyy; = arg{max, LSE®(r)}. Go to step 3.

my = arg{max, [rr]} wherer is run over all image pixel
vectors. Lett = 0. (k) . .
2) Findm, that yields the largest LSE (r) = (r —mo)” (r— It should be noted tha{tL_SE (r)}isa mo_n_otonlcally de-
my), i.e.,m; = arg{max, LSE® (r)}. creasing sequence/atthus, it converges. Additionally, an anal-
3) Letk — k+ 1, and apply the FCLS algorithm with the©dous approach to UFCLS can also be used to extend LS, SCLS,
M NSCLS, NCLS, and NNCLS methods to Unsupervised LS, Un-

signature matridM = [mp m; ---my], N = [{7] and eod SCLS. U isod NSCLS. U ised NCLS
" rer ; : supervise , Unsupervise , Unsupervise ,
= to estimate the abundance fractionsm§, , }

® 7] b, and Unsupervised NNCLS [36].

omy, 68 (r), M (r), and- - -, & ().

4) Find the least squares error defined b
JF u ! y - VI. COMPUTER SIMULATIONS AND EXPERIMENTS
LSE® ()= [r— Z &gk)(r)ma, Th|§ section contains a series 01_‘ computer simulations and
pard experiments to evaluate comparative performance of the LS,

& SCLS, NSCLS, NCLS, NNCLS, and FCLS methods and their
. <r _ [Z &Ek)(r)mi] ) (19) corresponding unsupervised versions. First, we conducted com-

Pt puter simulations to demonstrate advantages of the FCLS and
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P21> P22: P23
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Fig. 9. Results of LS, SCLS, NSCLS, NCLS, NNCLS, and UFCLS methods using material pixels generated by the UFCLS algorithm.

UFCLS methods. Then real hyperspectral image data were usec 3% ' ' ; ' ' ' ‘ '
to show the superior performance of the FCLS and UFCLS
methods in comparison to other methods. In implementing the
FCLS and UFCLS methods, the valuetaised in (17) and (18) 6000
was fixed ats = 1.0 x 1073, except for HYDICE experiments

where varioug values were explored for study. 5000

7000

A. Computer Simulations 4000

Radiance

In the following simulations, two experiments were designed = 5,4
to demonstrate the performance of the LS, SCLS, NSCLS,
NCLS, NNCLS, and FCLS methods 1) when the information 2000 A%
of all material signatures is completely known, and 2) when '
some false information is used.

Example 1: Signature Matrix with Three Distinct Material , \ freee
Signatures: A set of reflectance spectra considered in [22] 20 40 60 80 100 120 140 160

1000

was used for performance evaluation. The set contained five Band number
reflectance spectra, dry grass, red soil, creosote leaves, black @

brush, and sagebrush. These spectra were convolved to 1( 8000 . . : ; : ; . .
nm spectral bands and atmospheric water bands were re-
moved, as shown in Fig. 1. A signhature mathk was formed
from the dry grass, red soil, and creosote leaves signatures
M = [m; my mg3], with their associated abundance fractions
given by a = (a1, a2, a3)?. The simulation consisted of 400 5000
mixed pixel vectors. We started the first pixel vector with
100% red soil and 0% dry grass, then began to increase 0.25%.g 4000
dry grass and decrease 0.25% red soil every pixel vector until o
the 400th pixel vector, which contained 100% dry grass. We
then added creosote leaves to pixel vector numbers 198-20z
at abundance fractions 10%, while reducing the abundance of
red soil and dry grass by multiplying their abundance fractions 1000
by 90%. For example, after the addition of creosote leaves,

7000

6000

nce

3000

2000

the resulting pixel vector 200 contained 10% creosote leaves, S 0 e 8 100 120 140 16
45% red soil, and 45% dry grass. White Gaussian noise was Band number
also added to each pixel vector to achieve a 30:1 SNR, which ®

was defined in [22] as 50% reflectance divided by the standard

deviation of the noise. It should be noted that the NCL&g. 10. HYDICE Forest Radiance data. (a) Thex644 pixel subsection of
method was shown in [30] to be an effective constrainegdYDICE image scene and (b) target locations.

subpixel target detector where this simulation example was

used to evaluate its performance in target detection. In tliism the worst (LS) and the best (FCLS) are shown in Fig. 2.
experiment, the same set of simulated pixel vectors was alsoorder to further compare their capabilities at quantifying
used to evaluate the quantification performance of the NClcgeosote leaves, the squared errors between the actual and
method compared to other methods. Since all six methogstimated abundance fractions of creosote leaves were aver-
performed similarly, only results in detection of creosote leaveged over 400 pixels. The resulting quantification errors for
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Fig. 11. Results of LS, SCLS, NSCLS, NCLS, NNCLS, and FCLS methods, where figures labeled by (a), (b), (c), (d), and (e) are detection and gquantificatio
results of P1, P2, P3, P4, and P5, respectively.

each method were 2.588 107> for LS, 7.850x10° for and sagebrush in these 400 simulated pixels was 0%. In this

SCLS, 3.717x 10°¢ for NSCLS, 1.318x10°° for NCLS, scenario, the signature mati = [m; m, mz my m;]

1.303 x10~® for NNCLS, and 3.715x10~% for FCLS. Ob- was assumed to consist of these five spectral signatures with

viously, the FCLS method produced the best quantificati@bundance fractions given by= (a1, az, as, aq, as)?. Fig. 3

result in the sense of minimizing the average of squared shows the results of the LS, SCLS, NSCLS, NCLS, NNCLS,

rors. It is interesting to note that NSCLS and FCLS metho@snd FCLS methods in detection of creosote leaves. Unlike

performed nearly the same. However, this will not be tru€ig. 2, the performance of the LS, SCLS, and NSCLS methods

in following simulation. was very poor and their respective averaged squared quantifi-
Example 2: Effects of Two Additional, Less Spectraligation errors 2.556< 103 for the LS, 1.945x 102 for the

Distinct, Materials: The material signature matrixI is made SCLS, 7.960x 10~* for the NSCLS were significantly worse

up of the spectral signatures of all materials in the image scetigan those produced by the other three methods, 4x826~°

An image pixel may not necessarily contain all these materidtsr the NCLS, 4.907% 10~ for the NNCLS, and 2.806 10~

and may contain only one or a mixture of only a few of them. Ifor the FCLS. The detection performance of the LS method

order to demonstrate the effects of some materials usdd,in was considerably decreased because the undesired signature

but absent in a pixel, the same simulated mixed pixel vectasnihilator P& used in this method nulled the undesired

used in Section A-1 were used. However, two additional signsignatures, blackbrush and sagebrush whose spectra are similar

tures, blackbrush and sagebrush, were added to the signatarthat of creosote leaves. The performance of the SCLS and

matrix M. These signatures were not actually present in tiNSCLS methods was reduced because they assumed there were

pixel vectors, that is, the abundance fractions of blackbrufbe signatures and their estimated abundance fractions must be



HEINZ AND CHANG: LEAST SQUARES LINEAR SPECTRAL MIXTURE ANALYSIS METHOD 539
FMEAF i

POLE P POLE P2 4, 0@ POILE P L
(1L:3]

Fig. 12. Results of FCLS methods. @)= 1.0 x 10~* and (b)é = 1.0 x 10—2.
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TABLE |

SUM OF QUANTIFICATION RESULTS OVER ALL IMAGE PIXELS FOR LS, SCLS, NSCLS, NCLS, NNSCLS\ND FCLS
METHODS USING MANUALLY SELECTED BACKGROUND SIGNATURES

LS SCLS NSCLS | NCLS | NNCLS | FCLS FCLS FCLS

d = S = d =
1x10°| 1x10*| 1x107
P1 -73.97 [ -67.72 ] 143.35 ] 106.30 | 105.94 | 107.97 | 109.18 | 106.30

P2 60.05 53.66 152.40 [ 67.29 64.31 608.29 | 355.33 67.33
P3 28.37 27.08 112.67 [ 24.02 22.90 36.66 28.41 24.02
P4 137.45 1 129.06 | 215.44 | 44.34 45.48 169.11 | 123.00 | 44.34
P5 -101.32 | -94.71 139.41 53.93 41.89 26.38 36.59 53.94

TABLE I
SUM OF QUANTIFICATION RESULTS OVER ONLY BLACK AND WHITE-MASKED PIXELS FOR LS, SCLS, NSCLS, NCLS, NNSCL\ND
FCLS METHODS USING MANUALLY SELECTED BACKGROUND SIGNATURES

LS SCLS NSCLS | NCLS | NNCLS FSCLS F('SCLS Fc'5CLS

1x10°| 1x10*| 1x 107

b, 5.99 4.26 3.70 4.08 4.08 4.11 4.11 4.08
b, 3.01 2.09 1.83 1.70 1.69 1.71 1.70 1.70
| 0.50 -1.01 0.01 0.05 0.05 0.00 0.01 0.05
P, 5.89 4.75 4.03 4.74 4.66 7.67 6.40 4.74
p., 0.30 1.40 1.68 1.36 1.30 7.48 4.71 1.36
b, -0.02 0.96 0.78 0.73 0.71 2.49 1.75 0.73
P, 4.39 4.61 3.62 4.59 4.53 3.87 4.14 4.59
b, 3.86 3.80 2.40 1.76 1.71 1.01 1.25 1.76
P 1.28 1.44 0.95 0.58 0.56 0.34 0.39 0.58
b, 4.53 5.89 4.03 3.16 3.05 3.49 3.62 3.16
b, 8.66 5.91 3.78 1.46 1.44 1.50 1.62 1.46
P, 3.48 3.59 2.05 0.44 0.43 0.46 0.43 0.44
b, -0.10 -0.07 3.10 4.12 3.94 3.67 3.61 4.12
b, 0.25 0.75 1.08 1.82 1.81 1.70 1.82 1.82
b, -1.21 -0.88 0.13 0.41 0.40 0.26 0.35 0.41

summed to one. Since the spectrum of creosote leaves is clogee able to effectively select an appropriate subset of material
to those of blackbrush and sagebrush, the estimated abundaigeatures for unmixing. This experiment demonstrated that the
fraction of creosote leaves was forced to share with the non&€LS, NNCLS, and FCLS methods performed significantly
istent blackbrush and sagebrush. As expected, the SCLS aetter than the LS, SCLS, and NSCLS methods as the number
NSCLS methods would not perform well. In contrast, the AN@nd similarity of spectral signatures in the signature matrix M
significantly improved the performance of the NCLS, NNCLSncreases. In both examples, the FCLS method performed the
and FCLS methods. By implementing the ANC, these methobest while the LS method was the worst.
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B. AVIRIS and HYDICE Hyperspectral Image Experiments x10°

Example 3: AVIRIS dataThe data used in the following ex- i |
periments are from the AVIRIS sensor and were the same data 18 L ]
considered in [22]. It is an AVIRIS scene of 260200 pixels
of the Lunar Crater Volcanic Field in Northern Nye County, 16 F 4
Nevada shown in Fig. 4. There are five signatures of interest in
this image: red oxidized basaltic “cinders,” “rhyolite,” “playa 14} .

(dry lakebed),” “vegetation,” and “shade.” For this experiment,
representative pixels of each signature were manually extracted 12} 1
from the image scene and their average was used to represent
the signature. The signature for the playa was obtained by av-
eraging 5033 pixels located at the bottom right corner of the
image scene. The shade signature was generated by averaging
pixels in a 5x 5 square located in the darkest area of the scene. 06 L \ |
Each of the signatures for cinders and rhyolite was produced by '
averaging four pixels in the scene and one pixel was extracted 04
for a vegetation signature. Three experiments were conducted
using different degrees of prior signature information. 0.2
Experiment 1: Complete Prior Signature Informa-
tion: Using these five manually selected signatures, a signature 0 - - .
matrix M was formed. Fig. 5 shows the quantification results 10 20 30 40 50
of LS, SCLS, NSCLS, NCLS, NNCLS, and FCLS methods
where figures labeled (a)—(e) were generated by using cinders,
playa, rhyolite, vegetation, and shade as the desired signatufés 13- Plotof maximum LSE values, LSE(r) for HYDICE image, where
. . . rior knowledge of P1, P2, P3, P4, and P5 was assumed.
respectively. The estimated abundance fraction values for e&ch
signature correspond directly to the gray scale values for each
image and the range of abundance fraction values for edohimplementation of the LS, SCLS, NSCLS, NCLS, NNCLS,
image is indicated in the image title. As we can see, fromand FCLS methods. The results are shown in Fig. 8. Compared
detection point of view, all six methods performed similarlyto the images in Fig. 5, the images in Fig. 8 are similar, but
However, in terms of quantification, the performances of thguantification results are worse, particularly for playa and
NSCLS, NCLS, NNCLS, and FCLS methods are very closhade. This is primarily due to the fact that only a single pixel
and better than the LS and SCLS methods. was used to generate each of signaturaslirWhen relatively
Experiment 2: Partial Prior Signature Informationtn this large areas such as dry lakebed and shade need to be classified,
experiment, only one of five signatures was assumed to &esingle pixel can not well represent these areas due to their
known a priori. In this case, the UFCLS algorithm was usedpectral variability. One way to resolve this dilemma is to add
to generate additional signatures to form a desired signatumere sample pixels to generate a more robust signature. These
matrix M to quantify this particular signature. Fig. 6(a) showadditional sample pixels can be selected by using spectral mea-
the results of cinders after 16 iterations of the UFCLS asures such as, Euclidean distance [14], spectral angle mapper
gorithm. Similarly, Fig. 6(b)—(e) shows the results of playgSAM) [1] or spectral information divergence (SID) [37], [38].
rhyolite, vegetation, and shade after 3, 19, 25, and 5 iterationsExample 4: HYDICE data:The data to be used in this ex-
respectively. Compared to Fig. 5, both results were very similample were HYDICE data after geometric correction. The low
Experiment 3: No Prior Signature InformationiThe fol- signal/high noise bands were bands 1-3 and bands 202-210,
lowing experiment is interesting and designed to explore theater vapor absorption bands were bands 101-112, and bands
utility of UFCLS algorithm when no prior information is 137-153 were removed. Fig. 9(a) shows a HYDICE image
assumed. In order to initialize the algorithm, a prescribed errecene of size 64 64 with 1.5 m spatial resolution and 10 nm
threshold:= and an initial material signatue@, were required. spectral resolution. Fig. 9(b) provides ground truth locations
To determine a value fog, we used the UFCLS algorithmfor 15 panels of interest in the scene where the black-masked
and plotted the maximum LSE values resulting from (19), gsxels indicate the panel center pixels, and white-masked pixels
shown in Fig. 7. Since the plot leveled off at iteratibn= 5, a indicate pixels that may contain some abundance fraction of a
threshold value of 5 10* was selected far. The UFCLS was panel. These 15 panels were located in a large grass field and
performed and resulted in six signaturag,, m;, m», my, and were arranged in a % 3 matrix with each element denoted
m;, which specified playa, shade, cinders, vegetation, and rtay p;;, wherei is the row index andj is the corresponding
olite, respectively, anehns, which corresponded to an anomalycolumn index. For each rowv= 1, - - -, 5, and the three panels
that could not identified by visual inspection. This experiment;, p;2, ;s were made of the same material, but have different
shows that the UFCLS can be used to detect anomalies, a tsigles. For each columy the five panel®.;, paj, paj, paj, Ps;
that cannot be accomplished by the supervised FCLS. Thésal the same size, but consisted of different materials. The
six signatures were then used to form a signature madfix sizes of the panels in the first, second, and third columns are
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Fig. 14. Results of UFCLS methods, where prior knowledge of P1, P2, P3, P4, and P5 was assumedi.(ax 10%, (b)e = 4.0 x 102, (c)e = 2.0 x 105.

3mx3m,2mx 2m,and 1 mx 1 m, respectively. So, the 15FCLS and UFCLS methods. In order to demonstrate its effect
panels consisted of five different materials and three differeoh performance of the FCLS method, the same experiment was
sizes. Since paneis 1, po1, pa1, pa1, ps1 are of size 3mx 3m, conducted withs = 1.0 x 107* andé = 1.0 x 10~2. These
the 1.5 m-spatial resolution of the image scene results inrasults are shown in Fig. 12. Comparison of these results with
least one image pixel with an abundance fraction of 1.0 ftiose of the NCLS method in Fig. 11 illustrates the increasingly
each of these panels. similar performance as the value®divas increased. This effect
Experiment 1: Complete Prior Signature Informatioin was expected, singecontrols the impact of the ASC constraint
order to form a desired signature matrix for M, the black pixeknd a reduction of this impact should correspond to increased
in the first column of row i were averaged to create a signatursimilarity between results of the FCLS and NCLS methods.
denoted by Pi to represent the signatures of panels in row i. SoAn advantage of using panels for experiments is that ground
there are five panel signatures, P1, P2, P3, P4, and P5. Fig. 1@{#h provides their exact dimensions and we can use this infor-
shows the radiance spectra for each of these signatures, whaggion to quantify the amount of each panel material present in
all the panels have very similar spectra. In addition to the pangk scene. Since eachimage pixel is approximately 3.6 m,
signatures, four more signatures were generated to represgifti an area-per-pixel of 2.25 fnwe can determine the quan-
the background. A tree signature was obtained by averagifg of panel materials by dividing the area of the 3>m3 m,
768 pixels in a large rectangle of pixels from the left side af m x 2 m, and 1 mx 1 m panels by the area-per-pixel, which
the image. A grass signature was generated by averaging 1i&slilts in quantification values 4.0, 1.78, and 0.44 pixels, respec-
pixels from two large rectangles, one located between the tregely. Consequently, the image contains a quantity of approxi-
and the panels, and the second at the right side of the imageately 6.22 pixels of each panel material. Table | contains the
Averaging eight pixels from the gravel road and seven pixeifiage quantification results for each of the methods. As we can
of shade located along the tree line produced road and shgde, each method performed poorly. In order to determine how
signatures, respectively. Since most of the road was shadeslch of the methods performed in quantification of each of the
it is very difficult to see in Fig. 10. The spectra of these fouhree panel sizes, Table Il contains quantification results for each
background signatures are shown in Fig. 10(b). By includirgf the methods using only the black-masked and white-masked
the four background signatures with the five panel signaturespiaels of each panel. For instance, the quantification results for
total of nine signatures were used to fovh Fig. 11 shows the p;; in row 1 of Table Il were calculated using only the 25 pixels
performance of the LS, SCLS, NSCLS, NCLS, NNCLS andorresponding tp;;’s black and white mask. These results show
FCLS methods where figures labeled by (a)—(e) are detectittrat the NCLS, NNCLS, and FCLS (= 1.0 x 10~2) methods
results for panels from rows 1 to 5, respectively. Until now, weerformed better than other methods in terms of both detection
have simply set the value éfaté = 1.0 x 10~ for use in the and quantification.
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However, since the large background field was not well

TABLE Il

represented by the four manually generated background sigrﬁ%@" OF QUANTIFICATION RESULTSOVER ALL IMAGE PIXELS USING UFCLS
METHOD WITH PARTIAL PRIOR SIGNATURE KNOWLEDGE FORTHREE

tures, all the methods performed poorly. As noted, the HYDICE
sensor can extract objects as small as 1 m, and consequentlv.

DIFFERENT ERROR THRESHOLD VALUES

many unknown materials may also be picked up by the sens
This is indeed the case in Fig. 11. Unfortunately, the knowled: &

of these unidentified materials cannot be obtaiagdiori. This 72

is a situation where the UFCLS method finds its most usef gj

UECLS UFCLS UFCLS
£=7.0x10° e =4.0x10° £=2.0x10°
19.7649 13.9114 7.3021
109.4454 41.2200 19.9960
20.3169 14.8010 23.0000
15.2187 11.5537 9.4493
21.5999 11.2960 10.2822

applications. 55

Experiment 2: Partial Prior Signature Informationtn this
experiment, only the five panel signatures were assumed to be
knowna priori. In this case, the UFCLS algorithm was used to TABLE IV
generate additional signatures to represent the background. B0& oF QUANTIFICATION RESULTS OVER ONLY BLACK AND WHITE-MASKED
five panel signatures from Experiment 1 were selected as the PXELS USING UFCLS METHOD WITH PARTIAL PRIOR SIGNATURE
initial material signature set to initialize the UFCLS algorithm. ~ KNOWLEDGE FORTHREE DIFFERENTERROR THRESHOLDVALUES
Itis interesting to note that at iteration 11 the UFCLS algorithi

! UFCLS UFCLS UFCLS
selected the top black-masked pixel for panel P5 as a new m £=7.0x10° £=4.0x%10° £=2.0x10°
rial signature. This indicated that one of the two black-mask gn fg?gé ?;g; 3.3822
pixels was actuglly a mixed pixel. In order.to determin.e whic p= 0033 50493 5;0;‘2;,
was the mixed pixel, the UFCLS method, with no prior signatui P.; 19350 42786 72530
knowledge (Experiment 3.in Example 3) was used. It select E;j ;;;‘;2; 3323; 5;2;‘;5
a bottom black-masked pixel. Consequently, only the botto P, 39199 40814 43011
black-masked pixel was used to represent panel P5 in this 52 s IBLEL: N
periment. As stated before, the UFCLS method requires a p . 2.9124 31241 2.9777

. . . P, 1.6915 1.5367 1.7529
;crlbed error thrt_ashold to determine how many targgts WI'|| ] Po X} ST0q 753
included in the signature matriXI. In order to determine this P 37763 38227 3.9043
value, we used the UFCLS algorithm and plotted the maximu §= T RIS IBLIE
LSE values resulting from (19). Fig. 13 shows the results fL= .
iterations of%k from 10 to 49. The plot starts to level off after
about 18 iterations of the UFCLS algorithm. In order to see ho~ .
the threshold value effects the UFCLS method, three threshc | [
values (7.0x 10°, 4.0 x 10° and 2.0x 10°) were selected, »?
each of which was thresholded by a horizontal line in Fig. 10 o
Fig. 14 shows the results of the UFCLS method using these thi o7
threshold values. As we can see from Fig. 14(a), when the er : gos
threshold is too large it results in an insufficient number of me; ** fo
terial signatures to represent the image background. Tables * €04
and IV contain quantification results for the entire image and fc s 1 03
the black and white-masked pixels respectively. Aswe cans : 02
from the quantification values in these two tables, the UFCL s} ol
method using partial prior material knowledge performed si¢ 0

.pe . 10 20 30 40 50 10 20 30 40 50
nificantly better than the FCLS method using manually selectt © X

material signatures.

Experiment 3: No Prior Signature InformationThe pre-
vious experiments assumed that a priori knowledge of the
material signatures was available. In this final experiment Wehis is the same method used to determine the number of
conclude by assuming that no prior material knowledge ffiaterials or codewords for an unsupervised vector quantization
given. As before, we must prescribe an error threshold valuerfethod in [39]. This function is plotted in Fig. 15(b) and shows
terminate the UFCLS algorithm. Again, we used the UFCL&significant drop at values of 11, 23, and 40. A prescribed error
algorithm and plotted the maximum LSE values resultingyreshold of- = 2.54 x 10°, which corresponded to the drop
from (19), as shown in Fig. 15(a). In order to determine ag 40 was selected for the UFCLS algorithm and resulted in
appropriate threshold the difference between every fifth sampie generation of 41 signatures. These 41 signatures were used
was calculated using the following equation: to form a signature matrid. Using thisM, the LS, SCLS,
NSCLS, NCLS, and NNCLS methods were implemented.
Fig. 16(a)—(f) shows results fang, mssz, my, mso, ms;, and
mgz where panel P1, P2, P3, P4, P4, and P5 were detected,
respectively. In each case, a black-masked pixel was selected
as a material signature, except fars, which turned out to be

Fig. 15. HYDICE UFCLS error. (a) LSE and (b) differential LSE.

max, {LSE*~?) (1)} — max, {LSE®(r)}

ALSEW = —
max, {LSE* ™) (r)}

(20)
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Fig. 16. Results of LS, SCLS, NSCLS, NNCLS, and UFCLS methods using endmembers generated by the UFCLS algorithm.

a white-masked pixel next to top black-masked pixel of pankhe. Tables V and VI contain quantification results for the entire
Po1. image and for the black and white-masked pixels respectively.
It should be noted that in this unsupervised case, the UFCIAS we can see from the quantification values in these two tables,
algorithm actually detected the panels in row 4 in two separatee NCLS, NNCLS and UFCLS performed significantly better
images. This separation could have been avoided if the UFCtian the other methods.
algorithm was terminated at iteration 34 or 35. However, de- This last experiment was able to show that the UFCLS
termining the most appropriate stopping threshold is generaihyethod could effectively detect and quantify materials in an
difficult due to the lack of prior information. As we can seainknown image scene. However, since the UFCLS method was
from these images, the NCLS, NNCLS and UFCLS methodsmpletely unsupervised, further analysis would be required to
performed the best and significantly better than the LS, SCligentify all the unknown materials. This can generally be done
and NSCLS methods. A similar anomaly detection to that shovay calibrating the spectra of the extracted material signatures
in Fig. 8(d) was also observed in Fig. 16(g), where there was and comparing them against a reference database such as a
unknown signature detected in the upper left corner of the trggectral library for material quantification.
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TABLE V
SUM OF QUANTIFICATION RESULTSOVER ALL IMAGE PIXELS FORLS, SCLS,
NSCLS, NCLS, NNSCLSAND UFCLS METHODS USING MATERIAL
SIGNATURES GENERATED BY THE UFCLS METHOD

LS SCLS NSCLS NCLS NNCLS UFCLS
m, -49.2866 -53.4773 8.5554 9.0078 9.0037 9.5068
m; 22.6381 37.7144 34.2775 34,4859 34.7202 28.3764
m, 45.0890 45.0504 23.0562 22.9769 22.9950 249895
m,, 186.1792 | 202.9720 | 109.4225 7.0436 6.9863 8.7071
mi; -135.597T [ -143.8910{ 52.4539 3.2501 3.1987 6.5286
m, 7.5093 -1.95281 9.8006 8.8974 8.8122 8.4374

TABLE VI

SUM OF QUANTIFICATION RESULTSOVER ONLY BLACK AND WHITE-MASKED
PIXELS FORLS, SCLS, NSCLS, NCLS, NNSCL3ND UFCLS METHODS
USING MATERIAL SIGNATURES GENERATED BY THEUFCLS METHOD

LS SCLS NSCLS NCLS NNCLS FCLS
P 321 3.14 1.74 3.14 3.12 2.96
Pu 1.02 0.97 0.49 1.29 1.28 1.26
J UK -0.23 -0.23 0.06 0.09 0.09 0.05
Pa 5.21 4.96 2.37 3.70 3.69 3.37
P2 1.20 1.30 0.56 1.20 1.17 1.43
Pas 0.47 0.52 0.23 0.57 0.56 0.61
P 4.01 4.01 1.91 4.09 4.10 4.03
Pa 2.52 2.52 0.86 1.95 1.94 1.96
Pas 0.77 0.77 0.25 0.49 0.49 0.50
Pa 470 + - 4779 + - 218+ 1201 194 + T57[ 190 + 1.54 ] 1.97 + 2.05
0.97 1.01
Pa -0.19 + 012 +266[038+090 | 142+033[141+033]147 +035
2.82
Pa: 0.81 + - 0.93 + - 0.29 + 0.08 054 + 0 053 +0 0.60 + 0
0.12 0.18
Ps 4.51 4.54 2.14 385 3.81 3.69
Ps 1.51 1.51 0.50 1.85 .84 1.79
Ps: 0.28 0.19 0.09 0.47 0.46 0.45

VII. CONCLUSION
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