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Abstract—Linear spectral mixture analysis (LSMA) is a widely
used technique in remote sensing to estimate abundance fractions
of materials present in an image pixel. In order for an LSMA-based
estimator to produce accurate amounts of material abundance, it
generally requires two constraints imposed on the linear mixture
model used in LSMA, which are the abundance sum-to-one con-
straint and the abundance nonnegativity constraint. The first con-
straint requires the sum of the abundance fractions of materials
present in an image pixel to be one and the second imposes a con-
straint that these abundance fractions be nonnegative. While the
first constraint is easy to deal with, the second constraint is diffi-
cult to implement since it results in a set of inequalities and can only
be solved by numerical methods. Consequently, most LSMA-based
methods are unconstrained and produce solutions that do not nec-
essarily reflect the true abundance fractions of materials. In this
case, they can only be used for the purposes of material detection,
discrimination, and classification, but not for material quantifica-
tion. In this paper, we present a fully constrained least squares
(FCLS) linear spectral mixture analysis method for material quan-
tification. Since no closed form can be derived for this method, an
efficient algorithm is developed to yield optimal solutions. In order
to further apply the designed algorithm to unknown image scenes,
an unsupervised least squares error (LSE)-based method is also
proposed to extend the FCLS method in an unsupervised manner.
A series of computer simulations and real hyperspectral data ex-
periments were conducted to demonstrate the performance of the
proposed FCLS LSMA approach in material quantification.

Index Terms—Fully constrained least squares (FCLS), linear
spectral mixture analysis (LSMA), nonnegatively constrained least
squares (NCLS), sum-to-one constrained least squares (SCLS),
unsupervised FCLS (UFCLS).

NOMENCLATURE

ANC abundance nonnegativity constraint;
ASC abundance sum-to-one constraint;
AVIRIS airborne visible/infrared imaging spectrometer;
FCLS fully constrained least squares;
HYDICE hyperspectral digital imagery collection experi-

ment;
LSE least squares error;
LSMA linear spectral mixture analysis;
LS least squares;
NCLS nonnegatively constrained least squares;
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NNCLS normalized NCLS;
NSCLS normalized SCLS;
OSP orthogonal subspace projection;
SCLS sum-to-one constrained least squares;
UFCLS unsupervised FCLS.

I. INTRODUCTION

SPECTRAL mixture analysis has been widely used in re-
mote sensing for versatile applications such as material dis-

crimination, detection, and classification. A wealth of spectral
mixture analysis techniques have been reported in the litera-
ture [1]–[12]. In multispectral/hyperspectral imagery, a pixel is
generally mixed by a number of materials present in the scene.
Two models have been proposed in the past to describe such
mixing activities. One is the macroscopic mixture [11], which
models a mixed pixel as a linear combination of materials with
relative concentrations. A second model suggested by Hapke in
[12], called the intimate spectral mixture, is a nonlinear mixing
of materials. Nevertheless, Hapke’s model can be linearized by
a method proposed by Johnsonet al. [13]. Consequently, only
linear spectral mixture analysis (LSMA) will be considered in
this paper. By taking advantage of the linear mixture model,
many image processing techniques can be applied. However,
there is a principal difference between pure and mixed pixel
processing, where the former is a spatial analysis technique and
the latter is a spectral analysis technique. For example, mixed
pixel classification attempts to estimate the abundance fractions
of materials of interest in a pixel and classifies these materials in
accordance with their estimated abundance fractions as opposed
to standard class membership assignment-based pure pixel clas-
sification. As a result, the mixed pixel classification generally
generates a gray scale image whose gray level values are de-
termined by the estimated abundance fractions of the materials
resident in the image pixels in contrast to the class-designated
images produced by the pure pixel classification.

LSMA-based methods requirea priori knowledge of the
signatures of materials present in the image scene, which is
generally not available. Under this circumstance, selection of an
appropriate set of material signatures is crucial for successful
performance of any LSMA-based method. In the ideal case,
these signatures would represent pure spectral signatures of
all materials in the image scene. Unfortunately, this case is
rarely true in practical situations since all the signatures to be
used are generally obtained directly from the image scene, in
either a supervised or an unsupervised fashion. Suppose that
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are the signatures of materials resident in an
image scene, and are their associated abundance
fractions. It should be noted that an image pixel does not
necessarily contain all the material signatures For instance,
when some signature, say , is absent from the pixel, its
corresponding abundance will be zero, 0. This implies
that an image scene may contain as many asmaterials, while
a pixel may contain only one or a few materials. In order for an
LSMA-based method to provide accurate and reliable estimates
of signature abundance fractions for material quantification,
two constraints must be imposed on the abundance fractions of
materials in a pixel: 1) abundance sum-to-one constraint (ASC)

1 and 2) abundance nonnegativity constraint (ANC)
0 for all 1 . A fully constrained LSMA method

will simultaneously implement the ASC and the ANC. While
the ASC is easy to deal with, the ANC is difficult to implement
in practice, since the ANC results in a set of inequalities and
cannot be solved analytically. In this case, it must rely on
numerical methods to yield optimal solutions. Due to such
mathematical intractability, many LSMA-based methods are
unconstrained and can only produce suboptimal solutions, e.g.,
minimum distance [14]–[16], singular value decomposition
[17], maximum likelihood estimation (MLE) [18], [19], least
squares method (LSM) [20], [21], subspace projection ap-
proaches [21]–[24], etc. Furthermore, the abundance fractions

estimated by the unconstrained LSMA do not
generally reflect the true and accurate abundance fractions. As
a result, they cannot be used for material quantification.

In past years, some efforts were devoted to solving fully
constrained linear mixing problems. However, the approaches
used to implement these constraints were designed mainly for
a small number of material signatures. For instance, in [20],
Shimabukuro and Smith considered several constrained least
squares mixing models and obtained constrained least squares
solutions by solving an overdetermined system that consisted
of equations with unknowns with , where is
the number of bands andis the number of signatures. Since
there are no closed-form solutions, one must examine possible
solutions in a feasible region bounded by the ASC and ANC.
The use of quadratic programming techniques to impose the
ASC and ANC were investigated in [25]–[27], but the algo-
rithms used were computationally expensive. Another method
presented in [28] also suffered from excessive computational
complexity as the number of materials increases.

In this paper, we consider fully constrained linear mixing
problems in hyperspectral imagery and develop a least squares-
based approach to unmixing materials for quantification. Since
there are no analytical solutions, an efficient numerical algo-
rithm is further designed to generate optimal solutions. The pro-
posed method is based on the least squares approach [29] as
well as the concept of orthogonal subspace projection (OSP)
developed in [22]. It first considers partially constrained least
squares LSMA and then takes advantage of its solutions to solve
for fully constrained linear mixing problems. Two partially con-
strained least squares approaches are our interest, referred to
as sum-to-one constrained least squares (SCLS) and nonneg-
atively constrained least squares (NCLS) methods. While the
SCLS method imposes only the ASC, the NCLS only requires

the ANC to be imposed. The advantage of the SCLS method
is that its solution can be obtained by an LSM and can be fur-
ther expressed by an unconstrained least squares solution plus
an error correction term. The unconstrained least squares solu-
tion in the SCLS method is identical to the least squares orthog-
onal subspace projection classifier derived in [23] or signature
subspace classifier in [21]. In contrast, the NCLS method does
not yield closed-form solutions. Nevertheless, the NCLS algo-
rithm developed in [30] can be used to generate its solutions.
The algorithm utilizes a steering matrix to iteratively force ma-
terial signatures with negative abundance fractions to zero until
an optimal least squares solution is obtained. By implementing
this NCLS algorithm in conjunction with the ASC, an efficient
algorithm, called the fully constrained least squares (FCLS) al-
gorithm, can be developed to solve for fully constrained linear
mixing problems. It is also a quadratic programming technique.
However, it uses a more computationally efficient algorithm for
simultaneously implementing both the ASC and ANC. The sig-
nificant savings in computational cost becomes more evident
when the FCLS method is extended to an unsupervised FCLS.
In order to better compare the SCLS method and NCLS method
against the proposed FCLS method in terms of material quan-
tification, a normalized SCLS (NSCLS) method and normalized
NCLS (NNCLS) method are also included. The NSCLS method
is the same approach presented in [27] that set to zero all nega-
tive abundance estimates and rescaled the remaining abundance
estimates so that they summed to one. The NNCLS method
simply rescales the NCLS-estimated abundance fractions to sum
to one.

One common drawback of LSMA methods is the requirement
of the complete prior knowledge of material signatures present
in an image scene. Unfortunately, finding such information is
generally difficult. This is particularly true for hyperspectral im-
agery. For example, the hyperspectral digital imagery collection
experiment (HYDICE) sensor has significantly improved spec-
tral resolution of 10 nm and spatial resolution from 1–4 m when
compared to multispectral sensors. With such fine spatial and
spectral resolutions, the HYDICE sensor can detect targets with
size as small as 1–4 m for the purpose of target detection, dis-
crimination, classification, and identification. However, the HY-
DICE sensor may also extract many unknown signal sources or
materials in an image scene. Obtaining prior knowledge of all
material sources is a serious issue for LSMA-based methods.
In order to resolve this problem, an unsupervised constrained
least squares error (LSE)-based approach is further proposed to
extend the FCLS algorithm to an unsupervised FCLS (UFCLS)
algorithm so that the FCLS method can be implemented on an
unknown image scene with no required prior knowledge.

The remainder of this paper is organized as follows. Sec-
tion III briefly reviews the linear mixture model to be used
throughout this paper. Sections IV and Section V describe un-
constrained and partially constrained LSMA methods, respec-
tively. Section VI presents the FCLS and UFCLS algorithms.
Section VII conducts a series of computer simulations and hy-
perspectral imagery experiments to evaluate the performance of
unconstrained, partially constrained, and fully constrained least
squares-based methods. Finally, Section VIII concludes with
some remarks.
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II. L INEAR MIXTURE MODEL

Linear spectral mixture analysis is a widely used approach to
determine and quantify materials in remotely sensed imagery.
Since every pixel is acquired by spectral bands at different wave-
lengths, they can be represented as column vectors, and a hyper-
spectral image is actually an image cube. Suppose thatis the
number of spectral bands. Letbe an 1 column pixel vector
in a multispectral or hyperspectral image where the bold face
is used for vectors. Let M be an material signature ma-
trix denoted by , where is an 1 column
vector represented by the signature of theth material resident
in the image scene, andis the number of materials in the image
scene. Let be a 1 abundance column
vector associated with, where denotes the abundance frac-
tion of the th signature present in the pixel vector.A classical
approach to solving mixed pixel classification problem is linear
unmixing, which assumes that there arematerials in an image
scene and the spectral signature of an image pixel vectoris
linearly mixed by these material signatures. In this case, the
spectral signature of a pixel vectorcan be represented by a
linear regression model as follows:

(1)

where is noise or can be interpreted as a measurement error.
Here, without confusion, the will be used to represent either
the pixel vector or its spectral signature (i.e., digital numbers,
[DNs]). A linear unmixing method attempts to unmix the un-
known abundance fractions via an inverse of the linear mixture
model specified by (1) so as to achieve the tasks of material dis-
crimination, detection, classification, quantification, etc.

III. U NCONSTRAINEDLSMA METHODS: OSP APPROACH

The model given by (1) represents an unconstrained linear
mixing problem. Many methods have been developed in the past
to address this problem [1]–[11], [16]–[24]. In this section, we
are particularly interested in the OSP approach in [21]–[23] that
will lead to the proposed FCLS method.

A. Orthogonal Subspace Projection (OSP)

In the OSP approach, a single material signature of interest is
selected from the material signature matrixfor classification.
Without loss of generality, this desired material signature is as-
sumed to be , and is the un-
desired material signature matrix made up of the remaining1
undesiredmaterial signatures in.Model (1) canbe rewrittenas

(2)

where is the abundance vector associated with. Equation
(2) allows us to design an orthogonal subspace projector to an-
nihilate from prior to classification which results in an or-
thogonal subspace projection (OSP) operator derived in [22] and
given by

(3)

where

(4)

Fig. 1. Simulated AVIRIS reflectance spectra with atmospheric water bands
removed.

is the pseudo-inverse of and the nota-
tion indicates that the projector maps into the orthog-
onal complement of , denoted by .

B. Least Squares (LS) Projection Classifier

In the OSP classifier given by (3), the abundance vector
is assumed to be knowna priori. In reality, is generally not
known, and needs to be estimated. In order to estimate

from the observed data, several tech-
niques have been developed in [21], [23] based ona posteriori
information obtained from the image data to be processed. The
least squares estimate of, for model (1) is given by

(5)

and the LS classifier, denoted by , is given by

(6)

IV. PARTIALLY CONSTRAINED LSMA METHODS

The classifier specified by (6) imposed no constraints on
the abundance vector . Therefore, it only
provides a suboptimal solution. In order to find a constrained
version of , we first consider a partially constrained least
squares linear mixing problem that imposes only the ASC on

, then derive the sum-to-one constrained least squares (SCLS)
method.

A. SCLS Method

Imposing the ASC on (1) results in the following SCLS linear
mixing problem:

subject to

(7)
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Fig. 2. Results of the LS and FCLS methods in detection and quantification of creosote leaves, whereM consisted of three materials: dry grass, red soil, and
creosote leaves.

The solution to (7) can be obtained by

(8)

where is given by (5) and

(9)

with . Note that the same solution given by

(8) was also derived in [27].
Since the SCLS method is based only on the constraint

1, its solution does not guarantee the
estimated abundance fractions are nonnegative, i.e., 0
for each 1 . In the following section, we consider
imposing the ANC ( 0 for each ) on linear
mixing problems while discarding the ASC.

B. Nonnegativity Constrained Least Squares (NCLS) Method

Unlike the SCLS method which produces a closed-form so-
lution, the NCLS method does not have an analytical solution
since the ANC is formed by a set oflinear inequalities rather
than equalities. In general, an NCLS problem can be described
by the following optimization problem:

Minimize LSE over

subject to

(10)

where the LSE is used as the criterion for optimality and 0
represents the nonnegativity constraint 0 for all 1 .
Since 0 is a set of inequalities, the Lagrange multiplier
method is not applicable to solving optimal solutions. In order
to mitigate this dilemma, we introduce an unknown p-dimen-
sional positive constraint constant vector
with 0 for 1 to take care of the nonnegativity
constraint. Through, we can form a Lagrangian as follows:

(11)

with and

(12)

which results in the following two iterative equations given by

(13)

and

(14)

These can be used to solve the optimal solution and the
Lagrange multiplier vector .

In order to solve the NCLS problem, an iterative algorithm
proposed in [30] can be used to generate the solution to (10).
Two index sets, called a passive setconsisting of all indices
corresponding to positive components in the estimategiven
by (5) and an active set containing all indices corresponding
to negative (or zero) components in the estimate were used
to iterate (13) and (14). It was shown in [32] that when an op-
timal NCLS solution was found, the Lagrange multiplier vector

must satisfy the following Kuhn-Tucker conditions:

(15)

Using the conditions given by (15), the NCLS algorithm in [30]
can effectively select a passive setfrom the material sig-
natures for unmixing. It is this selection process that makes
the ANC so important and advantageous to the performance
of NCLS and FCLS methods. Simulations and real data exper-
iments conducted in Section VII will demonstrate the signifi-
cance of the ANC. We refer the details of the NCLS algorithm
implementation to [30].

It is worth noting that a more general form of a weighted least
squares problem can be considered by replacing the LSE in (11)
with

(16)

where is introduced as a loading factor matrix to weight the
significance of each band. For example,can be chosen to be
the inverse of the noise covariance matrix or a diagonal matrix.
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Fig. 3. Results of LS, SCLS, NSCLS, NCLS, NNCLS, and FCLS methods in detection and quantification of creosote leaves, where M consisted of five materials:
dry grass, red soil, creosote leaves, sagebrush, and blackbrush.

V. FCLS METHOD AND UNSUPERVISEDFCLS METHODS

One simple approach to solving for fully constrained linear
mixing problems is to take advantage of partially constrained
solutions. For an SCLS solution, we simply throw out the mate-
rial signatures with negative abundance fractions and normalize
the abundance fractions of the remaining material signatures
to unity. The resulting solution is called a normalized SCLS
(NSCLS) solution. For an NCLS solution, we can normalize it
to unity, which results in the normalized NCLS (NNCLS) so-
lution. Unfortunately, as will be shown in the experiments, nei-
ther the NSCLS nor the NNCLS method will yield optimal so-
lutions since the ANC and the ASC are carried out in sequence
and not simultaneously. A method that simultaneously imple-
mented ANC and ASC was recently proposed in [31]. However,
it still produced only a nearly optimal solution because it did not
satisfy (15). In this section, we present an FCLS algorithm that
will generate an optimal solution by making use of the NCLS
algorithm developed in the previous section in conjunction with
the ASC. Simultaneously requiring both the ASC and the ANC
allows us to use the proposed FCLS algorithm to find accurate

Fig. 4. The 200� 200 pixel subsection of an AVIRIS image scene (Lunar
Crater Volcanic Field).

material signature abundance fractions in a linear mixture. The
FCLS method is the same one considered in [32] that extended
the nonnegative least squares algorithm in [33] by including the
ASC.
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Fig. 5. Results of LS, SCLC, NSCLS, NCLS, NNCLS, and FCLS methods, where figures labeled by (a), (b), (c), (d), and (e) are detection and quantification
results of cinders, playa, rhyolite, vegetation, and shade, respectively.

A. FCLS Method

In order to take care of the ASC, we include the ASC in the
signature matrix by introducing a new signature matrix, de-
noted by , defined by

(17)

with and a vector by

(18)

The utilization of in (17), (18) controls the impact of the ASC.
Using these two equations, an FCLS algorithm can be derived
directly from the NCLS algorithm described in the previous sec-
tion by replacing and used in the NCLS algorithm with
and .

B. Unsupervised FCLS Method

The FCLS method requires a complete knowledge of the ma-
terial signature matrix . In order for it to apply to a situation
where noa priori information is available, we need an unsu-
pervised process to generate the required material information
to apply the FCLS method. Two criteria were previously de-
veloped for this purpose. One was the nearest neighbor rule,
from which an unsupervised vector quantization method was
derived to find unknown material or signals in an image scene
[24]. Another is the target generation process proposed in [34],
[35], which was based on the principle of orthogonality. In this
section, we propose an LSE-based criterion as an alternative be-
cause the methods studied in this paper are also based on the
least squares approach. The LSE criterion minimizes the good-
ness of fit between the linear mixture model and estimated mea-
surements. The idea can be described as follows.
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Fig. 6. Results of UFCLS method for (a) cinders, (b) playa, (c) rhyolite, (d) vegetation, and (e) shade with partial material knowledge, where for eachimage only
the material of interest was knowna priori.

Initially, we make an attempt to select a pure pixel vector of a
material present in the image scene as an initial desired material
signature denoted by . If there is knowledge of a material
signature availablea priori, then it can become . Also, the
initial material signature is not necessarily limited to one
signature. If there is a set of material signatures known to be in
the image scene, then these signatures can be formed as an ini-
tial material signature set. However, when there is no prior in-
formation available about materials, a good choice may be the
pixel vector with the maximum length, which is the brightest
pixel in the image scene. One reason for this selection is based
on the simple fact that the brightest pixel may correspond to a
pixel containing a material with the largest radiance spectrum in
the image scene. Another reason is because the LSE measures
the Euclidean distance, i.e., length between the linear mixture
model and a target material pixel. In this case, the initial material
pixel and the pixel that has the maximum distance from it tend to
be a pair of the brightest and darkest pixels. So, if the brightest
pixel is not selected as an initial material pixel, it most likely will
be picked in a subsequent selection. Nevertheless, this does not
have to be the only way to make the initial selection. Once the
initial material pixel is selected, we then assume that all pixel
vectors in an image scene are pure pixels made up ofwith
100% abundance. Of course, this is generally not true, so we find
a pixel vector that has the largest LSE between itself andand
select it as the second material pixel denoted by. Because
the LSE between and is the largest, it can be expected
that is most distinct from . We then form a material sig-
nature matrix and create the matrix and
using (17) and (18). The FCLS algorithm is used to estimate the
abundance fractions for and , denoted by and

for each pixel vector, respectively. Here, is included

Fig. 7. Plot of maximum LSE values: LSE(r) for AVIRIS image.

in the estimated abundance fractions and to em-
phasize that and are functions of , and they vary
with . The superscript indicates the number of iterations cur-
rently being executed. Using and , we then cal-
culate the least squares error (LSE) betweenand its estimated
linear mixture for all image pixel vec-
tors . A pixel that yields the largest LSE will be selected to
be the third material pixel . The same procedure of using
the FCLS algorithm with is repeated until
the resulting LSE is small enough and below a prescribed error
threshold. Techniques for determining the error threshold will
be discussed in Section VII. The procedure outlined as above is
called Unsupervised FCLS (UFCLS) Algorithm, which can be
summarized as follows.
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Fig. 8. Resulting LSE (r) images (a)k = 0, (b)k = 1, (c)k = 2, (d)k = 3, (e)k = 4, and (f)k = 5.

Unsupervised FCLS (UFCLS) Algorithm:
1 ) Initial condition:

Select to be a prescribed error threshold, and let
where is run over all image pixel

vectors. Let .
2 ) Find that yields the largest LSE

, i.e., LSE .
3 ) Let 1, and apply the FCLS algorithm with the

signature matrix , and
to estimate the abundance fractions of , ,

, , , and .
4 ) Find the least squares error defined by

LSE

(19)

and check the error if LSE for all . If it is, the
algorithm stops, otherwise continue.

5 ) Find LSE . Go to step 3.

It should be noted thatLSE is a monotonically de-
creasing sequence at, thus, it converges. Additionally, an anal-
ogous approach to UFCLS can also be used to extend LS, SCLS,
NSCLS, NCLS, and NNCLS methods to Unsupervised LS, Un-
supervised SCLS, Unsupervised NSCLS, Unsupervised NCLS,
and Unsupervised NNCLS [36].

VI. COMPUTERSIMULATIONS AND EXPERIMENTS

This section contains a series of computer simulations and
experiments to evaluate comparative performance of the LS,
SCLS, NSCLS, NCLS, NNCLS, and FCLS methods and their
corresponding unsupervised versions. First, we conducted com-
puter simulations to demonstrate advantages of the FCLS and



HEINZ AND CHANG: LEAST SQUARES LINEAR SPECTRAL MIXTURE ANALYSIS METHOD 537

Fig. 9. Results of LS, SCLS, NSCLS, NCLS, NNCLS, and UFCLS methods using material pixels generated by the UFCLS algorithm.

UFCLS methods. Then real hyperspectral image data were used
to show the superior performance of the FCLS and UFCLS
methods in comparison to other methods. In implementing the
FCLS and UFCLS methods, the value ofused in (17) and (18)
was fixed at 1.0 10 , except for HYDICE experiments
where various values were explored for study.

A. Computer Simulations

In the following simulations, two experiments were designed
to demonstrate the performance of the LS, SCLS, NSCLS,
NCLS, NNCLS, and FCLS methods 1) when the information
of all material signatures is completely known, and 2) when
some false information is used.

Example 1: Signature Matrix with Three Distinct Material
Signatures: A set of reflectance spectra considered in [22]
was used for performance evaluation. The set contained five
reflectance spectra, dry grass, red soil, creosote leaves, black-
brush, and sagebrush. These spectra were convolved to 10
nm spectral bands and atmospheric water bands were re-
moved, as shown in Fig. 1. A signature matrix was formed
from the dry grass, red soil, and creosote leaves signatures

, with their associated abundance fractions
given by . The simulation consisted of 400
mixed pixel vectors. We started the first pixel vector with
100% red soil and 0% dry grass, then began to increase 0.25%
dry grass and decrease 0.25% red soil every pixel vector until
the 400th pixel vector, which contained 100% dry grass. We
then added creosote leaves to pixel vector numbers 198–202
at abundance fractions 10%, while reducing the abundance of
red soil and dry grass by multiplying their abundance fractions
by 90%. For example, after the addition of creosote leaves,
the resulting pixel vector 200 contained 10% creosote leaves,
45% red soil, and 45% dry grass. White Gaussian noise was
also added to each pixel vector to achieve a 30:1 SNR, which
was defined in [22] as 50% reflectance divided by the standard
deviation of the noise. It should be noted that the NCLS
method was shown in [30] to be an effective constrained
subpixel target detector where this simulation example was
used to evaluate its performance in target detection. In this
experiment, the same set of simulated pixel vectors was also
used to evaluate the quantification performance of the NCLS
method compared to other methods. Since all six methods
performed similarly, only results in detection of creosote leaves

Fig. 10. HYDICE Forest Radiance data. (a) The 64� 64 pixel subsection of
a HYDICE image scene and (b) target locations.

from the worst (LS) and the best (FCLS) are shown in Fig. 2.
In order to further compare their capabilities at quantifying
creosote leaves, the squared errors between the actual and
estimated abundance fractions of creosote leaves were aver-
aged over 400 pixels. The resulting quantification errors for
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Fig. 11. Results of LS, SCLS, NSCLS, NCLS, NNCLS, and FCLS methods, where figures labeled by (a), (b), (c), (d), and (e) are detection and quantification
results of P1, P2, P3, P4, and P5, respectively.

each method were 2.588 10 for LS, 7.850 10 for
SCLS, 3.717 10 for NSCLS, 1.318 10 for NCLS,
1.303 10 for NNCLS, and 3.715 10 for FCLS. Ob-
viously, the FCLS method produced the best quantification
result in the sense of minimizing the average of squared er-
rors. It is interesting to note that NSCLS and FCLS methods
performed nearly the same. However, this will not be true
in following simulation.

Example 2: Effects of Two Additional, Less Spectrally
Distinct, Materials: The material signature matrix is made
up of the spectral signatures of all materials in the image scene.
An image pixel may not necessarily contain all these materials
and may contain only one or a mixture of only a few of them. In
order to demonstrate the effects of some materials used in,
but absent in a pixel, the same simulated mixed pixel vectors
used in Section A-1 were used. However, two additional signa-
tures, blackbrush and sagebrush, were added to the signature
matrix . These signatures were not actually present in the
pixel vectors, that is, the abundance fractions of blackbrush

and sagebrush in these 400 simulated pixels was 0%. In this
scenario, the signature matrix
was assumed to consist of these five spectral signatures with
abundance fractions given by . Fig. 3
shows the results of the LS, SCLS, NSCLS, NCLS, NNCLS,
and FCLS methods in detection of creosote leaves. Unlike
Fig. 2, the performance of the LS, SCLS, and NSCLS methods
was very poor and their respective averaged squared quantifi-
cation errors 2.556 10 for the LS, 1.945 10 for the
SCLS, 7.960 10 for the NSCLS were significantly worse
than those produced by the other three methods, 4.82310
for the NCLS, 4.907 10 for the NNCLS, and 2.806 10
for the FCLS. The detection performance of the LS method
was considerably decreased because the undesired signature
annihilator used in this method nulled the undesired
signatures, blackbrush and sagebrush whose spectra are similar
to that of creosote leaves. The performance of the SCLS and
NSCLS methods was reduced because they assumed there were
five signatures and their estimated abundance fractions must be
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Fig. 12. Results of FCLS methods. (a)� = 1.0� 10 and (b)� = 1.0� 10 .

TABLE I
SUM OF QUANTIFICATION RESULTS OVER ALL IMAGE PIXELS FOR LS, SCLS, NSCLS, NCLS, NNSCLS,AND FCLS

METHODSUSING MANUALLY SELECTED BACKGROUND SIGNATURES

TABLE II
SUM OF QUANTIFICATION RESULTS OVER ONLY BLACK AND WHITE-MASKED PIXELS FOR LS, SCLS, NSCLS, NCLS, NNSCLS,AND

FCLS METHODSUSING MANUALLY SELECTED BACKGROUND SIGNATURES

summed to one. Since the spectrum of creosote leaves is close
to those of blackbrush and sagebrush, the estimated abundance
fraction of creosote leaves was forced to share with the nonex-
istent blackbrush and sagebrush. As expected, the SCLS and
NSCLS methods would not perform well. In contrast, the ANC
significantly improved the performance of the NCLS, NNCLS,
and FCLS methods. By implementing the ANC, these methods

were able to effectively select an appropriate subset of material
signatures for unmixing. This experiment demonstrated that the
NCLS, NNCLS, and FCLS methods performed significantly
better than the LS, SCLS, and NSCLS methods as the number
and similarity of spectral signatures in the signature matrix M
increases. In both examples, the FCLS method performed the
best while the LS method was the worst.
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B. AVIRIS and HYDICE Hyperspectral Image Experiments

Example 3: AVIRIS data:The data used in the following ex-
periments are from the AVIRIS sensor and were the same data
considered in [22]. It is an AVIRIS scene of 200200 pixels
of the Lunar Crater Volcanic Field in Northern Nye County,
Nevada shown in Fig. 4. There are five signatures of interest in
this image: red oxidized basaltic “cinders,” “rhyolite,” “playa
(dry lakebed),” “vegetation,” and “shade.” For this experiment,
representative pixels of each signature were manually extracted
from the image scene and their average was used to represent
the signature. The signature for the playa was obtained by av-
eraging 5033 pixels located at the bottom right corner of the
image scene. The shade signature was generated by averaging
pixels in a 5 5 square located in the darkest area of the scene.
Each of the signatures for cinders and rhyolite was produced by
averaging four pixels in the scene and one pixel was extracted
for a vegetation signature. Three experiments were conducted
using different degrees of prior signature information.

Experiment 1: Complete Prior Signature Informa-
tion: Using these five manually selected signatures, a signature
matrix was formed. Fig. 5 shows the quantification results
of LS, SCLS, NSCLS, NCLS, NNCLS, and FCLS methods
where figures labeled (a)–(e) were generated by using cinders,
playa, rhyolite, vegetation, and shade as the desired signatures,
respectively. The estimated abundance fraction values for each
signature correspond directly to the gray scale values for each
image and the range of abundance fraction values for each
image is indicated in the image title. As we can see, from a
detection point of view, all six methods performed similarly.
However, in terms of quantification, the performances of the
NSCLS, NCLS, NNCLS, and FCLS methods are very close
and better than the LS and SCLS methods.

Experiment 2: Partial Prior Signature Information:In this
experiment, only one of five signatures was assumed to be
known a priori. In this case, the UFCLS algorithm was used
to generate additional signatures to form a desired signature
matrix M to quantify this particular signature. Fig. 6(a) shows
the results of cinders after 16 iterations of the UFCLS al-
gorithm. Similarly, Fig. 6(b)–(e) shows the results of playa,
rhyolite, vegetation, and shade after 3, 19, 25, and 5 iterations,
respectively. Compared to Fig. 5, both results were very similar.

Experiment 3: No Prior Signature Information:The fol-
lowing experiment is interesting and designed to explore the
utility of UFCLS algorithm when no prior information is
assumed. In order to initialize the algorithm, a prescribed error
threshold and an initial material signature were required.
To determine a value for, we used the UFCLS algorithm
and plotted the maximum LSE values resulting from (19), as
shown in Fig. 7. Since the plot leveled off at iteration 5, a
threshold value of 5 10 was selected for. The UFCLS was
performed and resulted in six signatures,, , , , and

, which specified playa, shade, cinders, vegetation, and rhy-
olite, respectively, and , which corresponded to an anomaly
that could not identified by visual inspection. This experiment
shows that the UFCLS can be used to detect anomalies, a task
that cannot be accomplished by the supervised FCLS. These
six signatures were then used to form a signature matrix

Fig. 13. Plot of maximum LSE values, LSE(r) for HYDICE image, where
prior knowledge of P1, P2, P3, P4, and P5 was assumed.

for implementation of the LS, SCLS, NSCLS, NCLS, NNCLS,
and FCLS methods. The results are shown in Fig. 8. Compared
to the images in Fig. 5, the images in Fig. 8 are similar, but
quantification results are worse, particularly for playa and
shade. This is primarily due to the fact that only a single pixel
was used to generate each of signatures in. When relatively
large areas such as dry lakebed and shade need to be classified,
a single pixel can not well represent these areas due to their
spectral variability. One way to resolve this dilemma is to add
more sample pixels to generate a more robust signature. These
additional sample pixels can be selected by using spectral mea-
sures such as, Euclidean distance [14], spectral angle mapper
(SAM) [1] or spectral information divergence (SID) [37], [38].

Example 4: HYDICE data:The data to be used in this ex-
ample were HYDICE data after geometric correction. The low
signal/high noise bands were bands 1–3 and bands 202–210,
water vapor absorption bands were bands 101–112, and bands
137–153 were removed. Fig. 9(a) shows a HYDICE image
scene of size 64 64 with 1.5 m spatial resolution and 10 nm
spectral resolution. Fig. 9(b) provides ground truth locations
for 15 panels of interest in the scene where the black-masked
pixels indicate the panel center pixels, and white-masked pixels
indicate pixels that may contain some abundance fraction of a
panel. These 15 panels were located in a large grass field and
were arranged in a 5 3 matrix with each element denoted
by , where is the row index and is the corresponding
column index. For each row 1, , 5, and the three panels

were made of the same material, but have different
sizes. For each column, the five panels
had the same size, but consisted of different materials. The
sizes of the panels in the first, second, and third columns are
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Fig. 14. Results of UFCLS methods, where prior knowledge of P1, P2, P3, P4, and P5 was assumed: (a)" = 7:0� 10 , (b) " = 4:0� 10 , (c) " = 2:0� 10 .

3 m 3 m, 2 m 2 m, and 1 m 1 m, respectively. So, the 15
panels consisted of five different materials and three different
sizes. Since panels are of size 3 m 3 m,
the 1.5 m-spatial resolution of the image scene results in at
least one image pixel with an abundance fraction of 1.0 for
each of these panels.

Experiment 1: Complete Prior Signature Information:In
order to form a desired signature matrix for M, the black pixels
in the first column of row i were averaged to create a signature,
denoted by Pi to represent the signatures of panels in row i. So,
there are five panel signatures, P1, P2, P3, P4, and P5. Fig. 10(a)
shows the radiance spectra for each of these signatures, where
all the panels have very similar spectra. In addition to the panel
signatures, four more signatures were generated to represent
the background. A tree signature was obtained by averaging
768 pixels in a large rectangle of pixels from the left side of
the image. A grass signature was generated by averaging 1152
pixels from two large rectangles, one located between the trees
and the panels, and the second at the right side of the image.
Averaging eight pixels from the gravel road and seven pixels
of shade located along the tree line produced road and shade
signatures, respectively. Since most of the road was shaded,
it is very difficult to see in Fig. 10. The spectra of these four
background signatures are shown in Fig. 10(b). By including
the four background signatures with the five panel signatures, a
total of nine signatures were used to form. Fig. 11 shows the
performance of the LS, SCLS, NSCLS, NCLS, NNCLS and
FCLS methods where figures labeled by (a)–(e) are detection
results for panels from rows 1 to 5, respectively. Until now, we
have simply set the value ofat for use in the

FCLS and UFCLS methods. In order to demonstrate its effect
on performance of the FCLS method, the same experiment was
conducted with 1.0 10 and 1.0 10 . These
results are shown in Fig. 12. Comparison of these results with
those of the NCLS method in Fig. 11 illustrates the increasingly
similar performance as the value ofwas increased. This effect
was expected, sincecontrols the impact of the ASC constraint
and a reduction of this impact should correspond to increased
similarity between results of the FCLS and NCLS methods.

An advantage of using panels for experiments is that ground
truth provides their exact dimensions and we can use this infor-
mation to quantify the amount of each panel material present in
thescene.Sinceeach imagepixel isapproximately1.5m1.5m,
with an area-per-pixel of 2.25 m, we can determine the quan-
tity of panel materials by dividing the area of the 3 m3 m,
2 m 2 m, and 1 m 1 m panels by the area-per-pixel, which
results in quantification values 4.0, 1.78, and 0.44 pixels, respec-
tively. Consequently, the image contains a quantity of approxi-
mately 6.22 pixels of each panel material. Table I contains the
image quantification results for each of the methods. As we can
see, each method performed poorly. In order to determine how
each of the methods performed in quantification of each of the
three panel sizes, Table II contains quantification results for each
of the methods using only the black-masked and white-masked
pixels of each panel. For instance, the quantification results for

in row 1 of Table II were calculated using only the 25 pixels
corresponding to ’s black and white mask. These results show
that the NCLS, NNCLS, and FCLS ( 1.0 10 ) methods
performed better than other methods in terms of both detection
and quantification.
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However, since the large background field was not well
represented by the four manually generated background signa-
tures, all the methods performed poorly. As noted, the HYDICE
sensor can extract objects as small as 1 m, and consequently,
many unknown materials may also be picked up by the sensor.
This is indeed the case in Fig. 11. Unfortunately, the knowledge
of these unidentified materials cannot be obtaineda priori. This
is a situation where the UFCLS method finds its most useful
applications.

Experiment 2: Partial Prior Signature Information:In this
experiment, only the five panel signatures were assumed to be
knowna priori. In this case, the UFCLS algorithm was used to
generate additional signatures to represent the background. The
five panel signatures from Experiment 1 were selected as the
initial material signature set to initialize the UFCLS algorithm.
It is interesting to note that at iteration 11 the UFCLS algorithm
selected the top black-masked pixel for panel P5 as a new mate-
rial signature. This indicated that one of the two black-masked
pixels was actually a mixed pixel. In order to determine which
was the mixed pixel, the UFCLS method, with no prior signature
knowledge (Experiment 3 in Example 3) was used. It selected
a bottom black-masked pixel. Consequently, only the bottom
black-masked pixel was used to represent panel P5 in this ex-
periment. As stated before, the UFCLS method requires a pre-
scribed error threshold to determine how many targets will be
included in the signature matrix . In order to determine this
value, we used the UFCLS algorithm and plotted the maximum
LSE values resulting from (19). Fig. 13 shows the results for
iterations of from 10 to 49. The plot starts to level off after
about 18 iterations of the UFCLS algorithm. In order to see how
the threshold value effects the UFCLS method, three threshold
values (7.0 10 , 4.0 10 and 2.0 10 ) were selected,
each of which was thresholded by a horizontal line in Fig. 13.
Fig. 14 shows the results of the UFCLS method using these three
threshold values. As we can see from Fig. 14(a), when the error
threshold is too large it results in an insufficient number of ma-
terial signatures to represent the image background. Tables III
and IV contain quantification results for the entire image and for
the black and white-masked pixels respectively. As we can see
from the quantification values in these two tables, the UFCLS
method using partial prior material knowledge performed sig-
nificantly better than the FCLS method using manually selected
material signatures.

Experiment 3: No Prior Signature Information:The pre-
vious experiments assumed that a priori knowledge of the
material signatures was available. In this final experiment we
conclude by assuming that no prior material knowledge is
given. As before, we must prescribe an error threshold value to
terminate the UFCLS algorithm. Again, we used the UFCLS
algorithm and plotted the maximum LSE values resulting
from (19), as shown in Fig. 15(a). In order to determine an
appropriate threshold the difference between every fifth sample
was calculated using the following equation:

LSE
LSE LSE

LSE
(20)

TABLE III
SUM OF QUANTIFICATION RESULTSOVER ALL IMAGE PIXELS USING UFCLS

METHOD WITH PARTIAL PRIOR SIGNATURE KNOWLEDGE FORTHREE

DIFFERENTERRORTHRESHOLDVALUES

TABLE IV
SUM OF QUANTIFICATION RESULTSOVER ONLY BLACK AND WHITE-MASKED

PIXELS USING UFCLS METHOD WITH PARTIAL PRIOR SIGNATURE

KNOWLEDGE FORTHREE DIFFERENTERRORTHRESHOLDVALUES

Fig. 15. HYDICE UFCLS error. (a) LSE and (b) differential LSE.

This is the same method used to determine the number of
materials or codewords for an unsupervised vector quantization
method in [39]. This function is plotted in Fig. 15(b) and shows
a significant drop at values of 11, 23, and 40. A prescribed error
threshold of 2.54 10 , which corresponded to the drop
at 40 was selected for the UFCLS algorithm and resulted in
the generation of 41 signatures. These 41 signatures were used
to form a signature matrix . Using this , the LS, SCLS,
NSCLS, NCLS, and NNCLS methods were implemented.
Fig. 16(a)–(f) shows results for , , , , , and

where panel P1, P2, P3, P4, P4, and P5 were detected,
respectively. In each case, a black-masked pixel was selected
as a material signature, except for , which turned out to be
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Fig. 16. Results of LS, SCLS, NSCLS, NNCLS, and UFCLS methods using endmembers generated by the UFCLS algorithm.

a white-masked pixel next to top black-masked pixel of panel
.

It should be noted that in this unsupervised case, the UFCLS
algorithm actually detected the panels in row 4 in two separate
images. This separation could have been avoided if the UFCLS
algorithm was terminated at iteration 34 or 35. However, de-
termining the most appropriate stopping threshold is generally
difficult due to the lack of prior information. As we can see
from these images, the NCLS, NNCLS and UFCLS methods
performed the best and significantly better than the LS, SCLS
and NSCLS methods. A similar anomaly detection to that shown
in Fig. 8(d) was also observed in Fig. 16(g), where there was an
unknown signature detected in the upper left corner of the tree

line. Tables V and VI contain quantification results for the entire
image and for the black and white-masked pixels respectively.
As we can see from the quantification values in these two tables,
the NCLS, NNCLS and UFCLS performed significantly better
than the other methods.

This last experiment was able to show that the UFCLS
method could effectively detect and quantify materials in an
unknown image scene. However, since the UFCLS method was
completely unsupervised, further analysis would be required to
identify all the unknown materials. This can generally be done
by calibrating the spectra of the extracted material signatures
and comparing them against a reference database such as a
spectral library for material quantification.
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TABLE V
SUM OF QUANTIFICATION RESULTSOVER ALL IMAGE PIXELS FOR LS, SCLS,

NSCLS, NCLS, NNSCLS,AND UFCLS METHODS USING MATERIAL

SIGNATURES GENERATED BY THE UFCLS METHOD

TABLE VI
SUM OF QUANTIFICATION RESULTSOVER ONLY BLACK AND WHITE-MASKED

PIXELS FOR LS, SCLS, NSCLS, NCLS, NNSCLS,AND UFCLS METHODS

USING MATERIAL SIGNATURES GENERATED BY THEUFCLS METHOD

VII. CONCLUSION

Unconstrained linear unmixing has been used for hyperspec-
tral image classification for mathematical tractability. In this
case, the solved abundance fractions of material signatures may
be negative and their sum within an image pixel may not neces-
sarily be one. As a consequence, such unconstrained solutions
are generally not optimal in terms of material quantification.
This paper presented an FCLS linear unmixing method. It is a
least squares approach that simultaneously imposes two con-
straints, the ASC and the ANC, on the linear mixture model.
Since there is no closed form solved for fully constrained linear
mixing problems, an efficient algorithm is further developed
to generate the desired optimal solutions. In implementing the
FCLS method, a complete knowledge of material signatures is
required. In order to relax this requirement, an unsupervised
constrained LSE-based approach is also proposed to extend the
FCLS method in an unsupervised fashion, so that all the desired
material information can be obtained directly from an unknown
image scene. Despite a slight degradation in quantification per-
formance, this resulting unsupervised FCLS (UFCLS) method
has a significant advantage that the FCLS does not have. That is,
it can be used for finding and quantifying anomalies. This has
been demonstrated by computer simulations and real hyperspec-
tral image experiments. It was shown that the NCLS, NNCLS
and FCLS methods performed significantly better than the LS,
SCLS, and NSCLS methods as the number of material signa-
tures in the signature matrix is increased or as the signatures of
materials become more similar.
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