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Abstract—In this paper, we present a projection pursuit (PP)
approach to target detection. Unlike most of developed target de-
tection algorithms that require statistical models such as linear
mixture, the proposed PP is to project a high dimensional data set
into a low dimensional data space while retaining desired informa-
tion of interest. It utilizes a projection index to explore projections
of interestingness. For target detection applications in hyperspec-
tral imagery, an interesting structure of an image scene is the one
caused by man-made targets in a large unknown background. Such
targets can be viewed as anomalies in an image scene due to the
fact that their size is relatively small compared to their background
surroundings. As a result, detecting small targets in an unknown
image scene is reduced to finding the outliers of background dis-
tributions. It is known that “skewness,” is defined by normalized
third moment of the sample distribution, measures the asymmetry
of the distribution and “kurtosis” is defined by normalized fourth
moment of the sample distribution measures the flatness of the dis-
tribution. They both are susceptible to outliers. So, using skewness
and kurtosis as a base to design a projection index may be effective
for target detection. In order to find an optimal projection index,
an evolutionary algorithm is also developed to avoid trapping local
optima. The hyperspectral image experiments show that the pro-
posed PP method provides an effective means for target detection.

Index Terms—Evolutional algorithm, hyperspectral imagery,
kurtosis, projection index, projection pursuit (PP), skewness,
target detection.

I. INTRODUCTION

DETECTING small targets in hyperspectral images can be
very difficult, particularly in an unknown environment.

This is primarily due to ground sampling distance generally
larger than the size of targets of interest. In this case, target
detection must be carried out at the subpixel scale. With
no availability of prior knowledge, it is virtually impossible
to validate designed algorithms. In this paper, we present
a projection pursuit (PP) approach to unsupervised target
detection. The PP was first developed by Friedman and Tukey
[1], [2] to be used as a technique for exploratory analysis of
multivariate data and has been studied extensively since then
[3]–[5]. Unlike most of developed target detection algorithms
that require statistical models such as linear mixture, PP is a
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linear mapping that searches for interesting low-dimensional
projections from a high-dimensional data space via a projection
index (PI). The PI is a measure used to explore projections of
interestingness. In particular, it can be designed to characterize
nonlinear structures in projected distributions. For example, if
the desired direction of a PI is one pointing to data variance, PP
is reduced to a well-known technique, principal components
analysis (PCA). Using PP for hyperspectral image classifica-
tion has been studied previously in [6], [7], where Jimenez
and Landgrebe [6] designed a PI based on Bhattacharyya’s
distance to reduce the dimensionality of feature space and
Ifarragaerri and Chang [7] used the information divergence
(relative entropy) as a PI looking for interesting projections that
deviates from Gaussian distributions. However, their techniques
were developed primarily for image analysis, not specifically
for target detection. In military applications, man-made target
detection in hyperspectral imagery is important since their size
is generally small and sometimes even smaller than the ground
sampling distance (GSD). Such target detection must rely on
subpixel spectral detection, not pixel-based spatial detection.
From this point of view, an interesting structure of an image
scene is the one caused by man-made targets in a large unknown
background. So, the small targets can be viewed as anomalies
in an image scene due to the fact that their size is relatively
small in the spatial sense compared to the image background.
As a result, detecting such small targets in an unknown image
scene can be reduced to finding the outliers or deviations from
the background distribution. It may also occur that a small
region or set of background pixels can be also detected. Since
there is no prior knowledge, the detected small targets may
include man-made targets or natural objects such as tree, grass,
rocks, and interferers. It is known thatskewnessdefined by
normalized third moment of the sample distribution measures
the asymmetry of the distribution andkurtosis defined by
normalized fourth moment of the sample distribution measures
the flatness of the distribution. They both are susceptible to
outliers. So, using skewness and kurtosis as a base to design a
PI may be an effective means for target detection.

Once a PI is determined, finding optimal solutions for
the desired PI is crucial. Unfortunately, there are generally
no analytic solutions and they must be solved by numerical
algorithms. Two major principles, “hill-climbing” and “random
move” have widely used to design optimization algorithms.
For a relatively smooth PI where the first derivatives exist,
“hill-climbing”-based gradient descent methods are usually
preferred. However, they may be trapped in local optimal
solutions that are close to the initial starting points. In this case,
a good guess of initial conditions is a key to success of these
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methods. On the other hand, a random move-based method
such as simulated annealing (SA) can escape from local optima
to some degree, but its success is also determined by the initial
starting points. In this paper, we consider a similar random
move-based approach to SA, called evolutionary algorithm
(EA) [8]–[10] which is more likely to lead solutions to global
optima.

Prior to implementation of EA, it generally requires to pre-
serve the translation invariance property of PI. This can be done
by centering the original data matrix using a linear translation
followed by an eigen-decomposition method such as singular
value decomposition (SVD) to whiten the centered data ma-
trix. The latter whitening process is referred to as sphering in
the PP literature. There are four stage processes implemented
in EA, which are population selection, crossover, mutation, and
termination. Of particular interest are crossover and mutation
processes. While the crossover process generates a descendant
population by combining pairs of individuals randomly chosen
from a parent population, the mutation process performs a local
optimization that makes random changes in individual points to
search for local optimum points. The EA proposed in this paper
is little different from the EA referred in the literature in the
sense that it includes a zero-detection thresholding to achieve
target detection. Since we are interested in small man-made tar-
gets, the outliers resulting from skewness and kurtosis are at-
tributed to these targets. In order to extract these targets, zero de-
tection is proposed to threshold each projection image so that the
different desired targets can be segmented by thresholding from
a sequence of projection images. The algorithm implemented
by EA in conjunction with PP and a zero-detection thresholding
method is referred to as PPEA in this paper. In order to evaluate
the performance of PPEA, two data sets of hyperspectral im-
ages, airborne visible/infrared imaging spectrometer (AVIRIS)
and a standardized hyperspectral digital imagery collection ex-
periment (HYDICE) data set are used. In particular, to make
a quantitative study and analysis possible, a set of custom-de-
signed criteria for tallying the number of detected target pixels
in the HYDICE data introduced in [11] is also used for experi-
ments.

This paper is organized as follows. Section II considers four
projection indices to be used for projection pursuit. Section III
presents a preprocessing to sphere the data matrix prior to opti-
mization. Section IV describes the procedure of how to imple-
ment EA. Section V introduces a zero-detection thresholding
method for target detection. Section VI conducts a series of ex-
periments. Section VII concludes some comments.

II. PROJECTIONPURSUIT

The term PP was first coined by Friedman and Tukey and
was used as a technique for exploratory analysis of multivariate
data. The idea is to project a high dimensional data set into a
low dimensional data space while retaining the information of
interest. It designs a PI to explore projections of interestingness.

Following the approach in [4], we assume that there
are data points , each with dimensionality ,

is a data matrix, and is an -di-
mensional column vector, which serves as a desired projection.

Then represents an -dimensional row vector that is the
orthogonal projections of all sample data points mapped onto
the direction , where is the matrix transpose. Now if we let

be a function measuring the degree of the interestingness
of the projection for a fixed data matrix , a projection
index (PI) is a real-valued function of,
defined by

(1)

The PI can be easily extended to multiple directions . In
this case, is a projection direction
matrix, and the corresponding projection index is also a real-
valued function given by

(2)

The choice of the in (1) and (2) is application-dependent.
Its purpose is to reveal interesting structures within data sets
such as clustering. As mentioned in the introduction, in military
applications, man-made target detection is of major interest. In
this case, using skewness denoted byand kurtosis denoted
by as a PI are appropriate criteria for target detection. Four
projection indices defined as follows will be evaluated in this
paper for target detection:

(3)

(4)

(5)

where is a linear mixture of and

(6)

where is a product of and .

III. SPHERING

Assume that is a set of data samples, and
is the corresponding data matrix of which the

-th column vector is the-th data sample . In order to satisfy
the translation invariance property of PI, centering the original
data matrix is required [4]. This can be done by the transforma-
tion , where is an identity ma-
trix, and is an -dimensional column vector

with ones in all components. Assume that are the eigen-
values of the sample covariance matrix, and the transformed
data matrix are their corresponding eigenvectors. Since

is nonnegative definite, all eigenvalues are nonnegative and
there exists a unitary matrix such that can be decomposed
into

(7)

where is a matrix made up of the eigenvec-
tors , and is a diagonal matrix with

in the diagonal line.
If we let , multiplying both sides of

(7) by results in

(8)
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From (7), we obtain the desired sphering matrixgiven by

(9)

so that . The process of transforming the centered
data matrix via the sphering matrix outlined by (6)–(9) is
called “sphering,” which is also known as a whitening process
to uncorrelate .

IV. EVOLUTIONARY ALGORITHM (EA)

After the centered data matrix is sphered, an optimization al-
gorithm will be used to find optimal solutions for a selected PI.
For simplicity, the notation for sphered centered data matrix will
be still represented by . The optimization algorithm proposed
in this section is the EA developed in [8]–[10] and can be imple-
mented by four stage processes, population selection, crossover,
mutation, and termination, each of which is briefly described as
follows. For details we refer to [8]–[10].

1) Initial population.
Unlike gradient methods and simulated annealing, an EA

requires an initial population to start with to perform a multi-
directional search for optimal points simultaneously during
each iteration. A population is made up of possible projec-
tion vectors, each of which can be viewed as individuals. To
initialize EA, an initial population can be created randomly
or with prior knowledge if there is any. A simple way to
form an initial population is to include all basis vectors of
the space to projected.

2) Population Selection Process.
Once a population is formed, each individual in the popu-

lation will be evaluated by a fitness function specified by the
desired projection index . The individual that has better
fitness will have more chances to generate new population
in the next iteration. The procedure is described as follows.

a) Calculate for each individual .
b) Calculate the probability of selecting by

.
c) Calculate the cumulative probability for by

.
d) Generate a random numberin the range .
e) Select the-th individual such that .
f) Repeat steps (d) and (e) until a desired population is

formed.

It should be noted that the above selection process is sto-
chastic and some individuals may be selected more than
once. This is in accordance with the natural principle of
“survival of fitness,” which says that the best individuals get
more descendants while the average stays even and the worst
dies off.

3) Crossover Process.
The crossover process used in EA is called arithmetical

crossover, which can be defined as follows. Assume there
are two individuals, denoted by two vectorsand . Then
the two vectors formed by and

are called crossover offspring ofand with
. Let be the preselected crossover probability

that will be used to determine the number of individuals

needed to produce crossover offspring. This number is
with , where

is the size of population at the-th iteration. The crossover
is performed as follows.

a) For each individual in the current population, gen-
erate a random numberin the range . If ,
the will be selected as a candidate for crossover.
The selection procedure will be continued to form
a crossover vector group until the expectation of
number of selected crossover vectors is equal to.

b) For each pair of two individuals and in the se-
lected crossover group, form their two crossover off-
spring and ,
where is a random number generated from the uni-
form distribution in the range , since this requires

to be even. So if is odd, we need select one
more individual randomly to make it even.

Through the crossover process, we get a more effective
means to find more competitive projections other than the
ones already in the population.

4) Mutation Process.
Like the mutation defined in genetic algorithm, the

mutation in EA is also performed on a bit-by-bit basis.
For each individual , each compo-
nent, i.e., , is expressed in a binary expansion with
precisions by . Then can be rep-
resented by a binary string formed by concatenating
the -precision binary expansions of all components

, which
is called a chromosome. Now the mutation process will
be performed on the chromosome bit by bit. Let a
predetermined probability of mutation which determines
the number of bits needed to be mutated, denoted
which is the expectation of the number of mutated bits is
equal to .

a) Encode each individual in the current population into
a chromosome

b) For each bit in the chromosome, generate a random
number from the uniform distribution in the range

. If , mutate the bit by flipping the bit
between 0 and 1.

c) Decode each chromosome into a new individual.

The goal of the mutation is to explore the neighborhood of
each individual to find an optimal projection.

5) Termination Process.
There are several ways to terminate EA. 1) The algorithm

reaches an optimal solution. 2) No significant changes are
made. 3) The number of iterations exceeds a predetermined
limit.

V. THRESHOLDING OFPROJECTIONIMAGES USING

ZERO-DETECTION

Like PCA, PPEA produces a sequence of projection images
that show the information in the decreasing order of magnitudes
of projection values produced by a PI. It should be noted that
the magnitude referred to here is the absolute projection values
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where the projection values of a PI can be positive or negative.
These projection images can be used for target detection. As-
sume that is the projection vector that maximizes a PI. Using

we can project the data matrix into a projection space gen-
erated by , where the data matrix is formed by all
pixel vectors in the image, i.e.,

For example, if we assume that the histogram of the projection
values is described by a Gaussian distribution, the out-
liers are generally caused by small targets that create ripples
on either side of tails of the Gaussian distribution. So, the first
values in the histogram that occur at zero will be selected as
the desired thresholds. Then those projected pixels with gray
scales excessive the thresholds were extracted and considered
to be target pixels. As a result, two images can be obtained by
such zero-detection thresholding, one for target detection and
the other for the use of next projection. The one used for target
detection is a binary image obtained by setting those pixels ex-
ceed the thresholds to 1 and zero, otherwise. This binary thresh-
olded image, denoted by will be used to tally target pixels
detected by this particular projection image. A second image is
a gray scale image and obtained by assigning 0 to all the pixels
in the binary image while the gray scales of the pixels not in
the remaining unchanged. This resulting image is referred
to as the first projection image and will be used for the next
projection. The reason for producing such projection images is
to prevent the target pixels detected in from being consid-
ered again in the new projection image. A second projection
vector is then found again by maximizing a PI based on the
first projection image and generated by a projection space
formed by that are generated by via .
Similarly, a binary image threshold from can be found
by zero-detection in the same manner that was generated.
In analogy with finding , a second projection image can
be also formed by setting to zero the gray scales of pixels in the
binary image while the pixels not in the binary image re-
main unchanged. The same procedure is continued to generate
the third projection vector , which maximizes PI based on
the second projection image to form two projection images

, and a third binary thresholded image for subsequent
target detection, etc. until the PPEA converges. Accordingly, a
set of the desired targets can be extracted from a sequence of

which are resulting from a sequence of projection images
by zero-detection thresholding.

As an illustrative example, Fig. 1(a) shows a Gaussian-like
histogram generated by the first projection space formed by

that were generated by
via using the HYDICE data in Fig. 4(a). The his-
togram in Fig. 1(a) was plotted based on the number of projected
pixels versus their projection values generated by
for . Since the right tail of the histogram does not
clearly show ripples, Fig. 1(b) enlarges its long and flat right
tail. As we can see, there are many ripples and the first value
that detects zero will be selected as the desired threshold value
as pointed by an arrow. It should be noted that the histogram in
Fig. 1(a) is a Gaussian-like distribution, but it is asymmetric. In

Fig. 1. (a) Gaussian-like histogram produced byz = a x using the
HYDICE data in Fig. 4(a) and (b) enlarged right Gaussian tail of Fig. 1(a).

Fig. 2. AVIRIS scene.

this case, the projection index using the skewness was able to
detect small targets in Figs. 7 and 8 that caused ripples.

VI. EXPERIMENTS

Two sets of hyperspectral data were used to evaluate the per-
formance of PPEA in target detection.

A. AVIRIS Data Experiments

The 224-band AVIRIS data used in the experiments were
the same data considered in [12]. It is a subscene of 200
200 pixels extracted from the upper left corner of the Lunar
Crater Volcanic Field in Northern Nye County, NV, shown in
Fig. 2, where five signatures of interest in these images were
were demonstrated in [12], “red oxidized basaltic cinders,”
“rhyolite,” “playa (dry lakebed),” “shade,” and “vegetation.” It
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(a)

(b)

Fig. 3. (a) First three projection images of skewness, kurtosis, mixture and product. (b) First three negative projection images of skewness, kurtosis, mixture and
product.

has been shown that in general there was no need to use all full
bands for image classification [14], only 12 bands that were
uniformly selected among 224 bands were used in the following
experiments to ease computation of PPEA. Additionally, it was
also shown in [13] that there was a single two-pixel anomaly
located at the top edge of the lake marked by a dark circle in

Fig. 2. This anomaly cannot be seen or detected visually, and
its detection was also missed in [11], [12] because the method
used, orthogonal subspace projection (OSP) was supervised.
Fig. 3(a) shows the detection results of the first three projection
images of all the four PIs proposed in this paper while Fig. 3(b)
shows their negative counterparts of Fig. 3(b). The reason that
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Fig. 4. (a) HYDICE image scene and (b) panel pixels in the scene in (a) masked by BLACK and WHITE.

Fig. 5. Typical mask of B and W pixels.

we also included negative projections in Fig. 3(b) is because
the projection values are not necessarily positive and they can
be negative. The significance of interestingness of a projection
is determined by its magnitude not signs. As shown, all the six
signatures were detected in Fig. 3, specifically, the anomaly was
detected in all the four PIs. Since kurtosis is more interesting
than skewness in many other applications, we use kurtosis as
an example for illustration. The cinders showed in the first
projection positive image while the vegetation was detected in
its negative counterpart. In the second projection, the vegetation
and the rhyolite were extracted in the positive projection image,
while the shade and anomaly were detected in its negative
counterpart. In third projection, the playa was pulled out from
the positive image. It turned out that both positive and negative
projection images were very similar. We also noted that if a
signature is interesting, it generally shows in more than one
projection image such as the vegetation in Fig. 3.

B. Hydice Data Experiments

The HYDICE data used in the following experiments were di-
rectly extracted from the HYDICE image scene of size 6464
shown in Fig. 4(a). There are 15 panels located on the field and
arranged in a 5 3 matrix. The low signal/high noise bands:
bands 1-3 and bands 202-210 and water vapor absorption bands:
bands 101-112 and bands 137-153 were removed. So a total
of 169 bands were used for the experiments. The spatial res-
olution is 1.5 m and spectral resolution is 10 nm. The ground
truth of the image scene is shown in Fig. 4(b) and provides the
precise spatial locations of these 15 panels. Black pixels are
panel center pixels and the pixels in the white masks are panel
boundary pixels mixed with background pixels. Each element
in this matrix is a square panel and denoted bywith row in-
dexed by and column indexed by . For

Fig. 6. Six gray scale projection images produced by four different PIs: (a)
skewness, (b) kurtosis, (c) mixture, and (d) product.

each row , the three panels were made from the
same material but have three different sizes. For each column
, the five panels have the same size but were

made from five different materials. The sizes of the panels in
the first, second and third columns are 3 m3 m, 2 m 2 m,
and 1 m 1 m, respectively. The 1.5 m-spatial resolution of
the image scene suggests that except for ,
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Fig. 7. Binary projection images resulting from thresholding the first three projection images in Fig. 6: (a) skewness, (b) kurtosis, (c) mixture, and (d) product.

which are two-pixel panels, all the remaining panels are only
one-pixel in size. Apparently, without ground truth, it is diffi-
cult to locate these panels in the scene. Surprisingly, as will be
shown in the experiments in Section VI, these panels can be ac-
curately extracted by the proposed PPEA.

Like the AVIRIS data, we also used 12 bands selected uni-
formly for experiments to ease computation of PPEA. As will
be shown in the following experiments, 12 bands are sufficient
to retain all necessary information for PPEA to effectively de-
tect target pixels. Since Fig. 4(b) provides a ground truth map,
we can evaluate the performance of the PPEA by actually tal-
lying number of panel pixels detected in the binary thresholded
images B generated by the PPEA.

Following a similar study in [11], black and white pixels were
used to tally results of target detection. The size of a mask used
for a panel varies. A typical masked target of size 44 is shown
in Fig. 5, with B pixels centered in the mask where a B and a W
represent a B-masked pixel and a W-masked pixel, respectively.
Two types of tally will be used for panel detection: 1) the number
of panel pixelshit and 2) the number of panel pixelsdetected.
Here we make a subtle difference between a paneldetectedand
a panelhit. When a panel is detected, it means that at least one
B target pixel is detected. When a panel is hit, it means that at
least either one B or one W pixel is detected. As long as one
of these B or W pixels is detected, we declare the panel is hit.
So by way of this definition, a panel detected always implies a
panel hit, but not vice versa.

In the following experiments, we will tally: 1) how many B
panel pixels are detected; 2) how many W panel pixels are de-
tected; 3) how many pixels are false alarmed for a panel, in
which case neither a B-masked pixel nor a W-masked pixel is
detected; and 4) how many B panel pixels are missed. In order
to quantitatively study the detection performance of PPEA, the
following definitions introduced in [11] were used.

total number of sample pixel vectors;
specific panel to be detected;
total number of B-masked and W-masked pixels
in the panel ;

total number of B-masked pixels in the panel;
total number of W-masked pixels in the panel;
total number of either B-masked or W-masked
pixels detected in the panel;
total number of B-masked pixels detected in the
panel ;
total number of W-masked pixels detected in
the panel ;
total number of false alarmed pixels, i.e., total
number of pixels that are neither B-masked nor
W-masked detected in the panel;
total number of B-masked or W-masked pixels
missed in the panel.

With the help of the above notations, we can further define
the B panel pixel detection rate for the panel by

(10)

and the W panel pixel detection rate for the panel
by

(11)

Since B pixels represent panel center pixels and W pixels may
be panel pixels mixed by the background pixels, a good detec-
tion algorithm must have higher number of panel B pixels de-
tected . On the other hand, detecting a W pixel does not
necessarily mean a panel detected. Nevertheless, we can declare
the panel to be hit. For this purpose, we define the panel hit rate

for panel by

(12)

So from (12), a higher panel hit rate does not imply a
higher panel detection rate or vice versa. This is be-
cause the number of W pixels are generally much greater than
that of R pixels, thus it may eventually dominate the perfor-
mance of .
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TABLE I
VALUES OF FOUR PIS

Fig. 8. Images resulting from combining the first three binary thresholded projection images in Fig. 7: (a) skewness, (b) kurtosis, (c) mixture, and (d) product.

In addition to (10)–(12), we are also interested in panel false
alarm rate and panel miss rate defined as
follows:

(13)

(14)

If there are panels, needed to be detected, the
overall detection rate for a class of panels, can be de-
fined as

(15)

where for .

Fig. 6 shows the detection results based on the first six projec-
tions using the proposed four PIs where projection images were
produced by skewness, kurtosis, mixture and product and are la-
beled by (a), (b), (c), and (d), respectively. As we can see from
these images in Fig. 6, all the panels were extracted in the first
three projection images. Fig. 7 shows the binary thresholded im-
ages of the first three projection images in Fig. 6 where all the
four PIs detected the panels in the first row in their third pro-
jection images, the panels in the second and third rows in one
projection image and the panels in the fourth and fifth row in an-
other projection image. The reason that the panels in the second
and third rows were detected by the same projection image is be-
cause their spectra are very similar. It is also true for the panels
in the fourth and fifth rows. As shown in Fig. 7, all the 15 panels
were successfully detected and extracted. These detection re-
sults are impressive by the fact that no panels of 1 m1 m in
Fig. 4(a) can be detected by visual inspection. Table I tabulates
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TABLE II
DETECTION RATES FOR THEPI USING SKEWNESS

TABLE III
DETECTION RATES FOR THEPI USING KURTOSIS

TABLE IV
DETECTION RATES FOR THEPI USING MIXTURE

TABLE V
DETECTION RATES FOR THEPI USING PRODUCT

TABLE VI
OVERALL DETECTION RATES FORFOUR PIS

the values of PIs of the first six projection images for these four
PIs. Table I also shows that the values of the first three values
of all the four PIs are significantly greater than those of their
remaining PIs. This observation is consistent with the detection
results in Figs. 6 and 7 and provides a clue that only three pro-
jections may be sufficiently enough for target detection.

In order to calculate various detection rates specified by
(10)–(15), Fig. 8(a)–(d) was obtained by combining the first
three binary thresholded projection images in Fig. 7 to tally
detected panel pixels. Interestingly, three pixels in the tree
line detected in Fig. 8(a) and (d) by skewness and kurtosis,
and four pixels detected in Fig. 8(c) and (d) by mixture and
product were not panel pixels but simply interferers. It should
be noted that for each PI the sets of pixels detected by allFig. 9. Six component images resulting from principal components analysis.
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Fig. 10. (a) Plot of six learning curves of the PI using skewness corresponding to Fig. 6(a), (b) plot of six learning curves of the PI using kurtosis corresponding to
Fig. 6(b), (c) plot of six learning curves of the PI using mixture corresponding to Fig. 6(c), and (d) plot of six learning curves of the PI using product corresponding
to Fig. 6(d).

the three binary thresholded projection images were disjoint.
So, the overall detected pixels by a particular PI is simply the
sum of pixels detected by its first three binary thresholded
projection images. All four PIs produced comparable results
as shown in Tables II–VI. It is worth noting that no false
alarm rate was calculated for Tables II–V and only Table VI
has the overall panel false alarm rate . This is because
we were interested in detecting all panel pixels in the scene
rather than individual panel pixels. From Table VI, we can see
that the overall B-target pixel detection rate are 100%
except of , which produced 0.9474 and was

also close to 1. On the other hand, all of the four PIs yielded
low W-target pixel detection rates and the target hit
rates . This shows that the proposed PPEA using four
PIs are indeed very effective since a higher reduces

. In addition, and is very low and less than or
equal to 0.1%. By contrast, the panel miss rate is
very high and close to 70%-75%. This is due to the fact that

takes into account W panel pixels for target detection.
In reality, W-pixels are generally not real panel pixels, and
even if they are, they may be mixed by background pixels.
A high does not necessarily imply low . This
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is particularly true when the number of W-pixels is relatively
large compared to that of B-pixels.

In order to further demonstrate the performance of PPEA,
PCA was also studied for comparison. It is known that PCA can
be considered to be a special case of PP with data variance used
as a projection index. The results of the first 6 component im-
ages are shown in Fig. 9. Comparing to Fig. 6, the four proposed
PIs extracted all the 15 panels in their first three projection im-
ages while PCA picked up these panels in the fourth, fifth and
sixth component images. This is because the panels are consid-
ered to be small targets in the scene and they do not generate
significant information as opposed to that provided by the large
grass field and tree line. As a consequence, the grass and tree
line were extracted in the first three principal component im-
ages in Fig. 9. Interestingly, the interferers in the tree line were
also shown in the first and third component images. This ex-
ample shows that PCA can be used for preserving target infor-
mation but not for the purpose of detecting targets. It should be
noted that in order to account for nonstationarity of the data, the
sample correlation matrix instead of sample covariance matrix
was used for PCA.

To conclude our experiments, we further plotted in Fig. 10
the learning curves of the first six projections using PPEA for
four PIs specified by (3)–(6) respectively with the-axis being
the number of iterations and the-axis being the values of PIs.
In all cases, no more 200 iterations are required in each optimal
projection search. In particular, only approximate 150 iterations
are needed to achieve the optimal search for the first three pro-
jections.

A final comment is noteworthy. The proposed PPEA was first
studied in [15] where AVIRIS data were used for analysis. Two
major differences in the experiments were conducted in [15]
and this paper. One is the spatial resolution of the data, 1.5 m
for HYDICE data as opposed to 20 m for AVIRIS data. Since
the fine spatial resolution generally uncovers small targets that
caused the outliers of the background distribution, the PPEA
approach is expected to perform better for HYDICE data than
for AVIRIS data. In fact, this was the case supported by the
above experiments. Another is that the spatial locations of the
panels in HYDICE data in Fig. 4(b) can be specified by B and
W pixels. In this case, we can actually tally how many of panel
pixels detected to substantiate the PPEA approach.

VII. CONCLUSION

PP has received considerable interests in multivariate anal-
ysis because it can be used to explore interesting projections by
which a high dimensional data set can be projected into a low
dimensional space for various applications. This paper presents
a new application of PP in unsupervised target detection for hy-
perspectral imagery. Since targets are small compared to their
surrounding background, these targets can be viewed as pixels
that cause outliers of the background distribution. Four projec-
tion indices are suggested based on the third and fourth moments
to capture targets. In order to find the optimal projections, a
revised PPEA is proposed where a zero-detection thresholding
technique is introduced for the purpose of target detection. Tar-
gets, which cannot be detected by visual inspection, can be ef-

fectively extracted by PPEA using only a few projections. Al-
though the experiments are conducted for PPEA for unsuper-
vised target detection, it can be also used in conjunction with
a database or spectral library for classification and identifica-
tion. For this purpose, a spectral metric such as Euclidean dis-
tance [16], spectral angle [17] or spectral information diver-
gence [18], [19] is required to measure the spectral similarity be-
tween the detected pixels and database to achieve classification.
Finally, due to the nature of EA, the computational complexity
of PPEA is generally very expensive. However, this can be com-
pensated for high computer powers. As a concluding remark, it
is worth noting that an independent component analysis-based
linear mixture analysis recently developed in [20] took a similar
approach, which also used the third and fourth moments as cri-
teria for unsupervised subpixel detection. It can be considered
as a special case of the projection pursuit presented in this paper
where the background distribution is modeled by a Gaussian
process and the abundance fractions of image endmembers were
assumed to be random sources rather than nonrandom unknown
quantities as are considered in most of linear unmixing methods
such as orthogonal subspace projection in [12]. When an image
scene is made up of several homogeneous background regions,
each of which consists of a very large number of pixels, and
in this case, we can assume that these background regions can
be described by Gaussian distributions. Using this assumption,
small targets can be detected effectively as demonstrated by ex-
periments in [21].
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