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Unsupervised Target Detection in Hyperspectral
Images Using Projection Pursuit
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Abstract—in this paper, we present a projection pursuit (PP) linear mapping that searches for interesting low-dimensional
approach to target detection. Unlike most of developed target de- projections from a high-dimensional data space via a projection
tection algorithms that require statistical models such as linear jqey (P). The Pl is a measure used to explore projections of
mixture, the proposed PP is to project a high dimensional data set . . . . . .
into a low dimensional data space while retaining desired informa- mtergstmgness. In pe_lrtlcul_ar, it can- bg de§|gned to characterlge
tion of interest. It utilizes a projection index to explore projections  nonlinear structures in projected distributions. For example, if
of interestingness. For target detection applications in hyperspec- the desired direction of a Pl is one pointing to data variance, PP
tral imagery, an interesting structure of an image scene is the one js reduced to a well-known technique, principal components
caused by man-made targets in a large unknown background. Such analysis (PCA). Using PP for hyperspectral image classifica-

targets can be viewed as anomalies in an image scene due to the. has b tudied . v in 6. 17 h Ji
fact that their size is relatively small compared to their background 40N has been studied previously in [6], [7], where Jimenez

surroundings. As a result, detecting small targets in an unknown and Landgrebe [6] designed a Pl based on Bhattacharyya’s
image scene is reduced to finding the outliers of background dis- distance to reduce the dimensionality of feature space and
triputions. It is known that “SKGV\.II’IGS.S," is defined by normalized Ifarragaerri and Chang [7] used the information divergence
third moment of the sample distribution, measures the asymmetry (relative entropy) as a Pl looking for interesting projections that

of the distribution and “kurtosis” is defined by normalized fourth deviates f G ian distributi H their techni
moment of the sample distribution measures the flatness of the dis- 4€V1al€S ITOM Laussian distrioutions. HOWever, theirtechniques

tribution. They both are susceptible to outliers. So, using skewness Were developed primarily for image analysis, not specifically
and kurtosis as a base to design a projection index may be effective for target detection. In military applications, man-made target

for target detection. In order to find an optimal projection index,  detection in hyperspectral imagery is important since their size
an evolutionary algorithm is also developed to avoid trapping local 5 ganerally small and sometimes even smaller than the ground
optima. The hyperspectral image experiments show that the pro- lina dist GSD). Such t t detecti t rel
posed PP method provides an effective means for target detection. S&MPIING distance ( _)' uch target daetection must refy on
) ) _ subpixel spectral detection, not pixel-based spatial detection.
Index Terms—Evolutional algorithm, hyperspectral imagery,  prom this point of view, an interesting structure of an image
kurtosis, projection index, projection pursuit (PP), skewness, . .
target detection. scene is the one caused by man-made targets in a large unknown
background. So, the small targets can be viewed as anomalies
in an image scene due to the fact that their size is relatively
. INTRODUCTION small in the spatial sense compared to the image background.
This is primarily due to ground sampling distance genera”pe_background distribution. It may also occur that a small
larger than the size of targets of interest. In this case, targ8gion or set of background pixels can be also detected. Since
detection must be carried out at the subpixel scale. Witheére is no prior knowledge, the detected small targets may
no availability of prior knowledge, it is virtually impossibleinclude man-made targets or natural objects such as tree, grass,
to validate designed algorithms. In this paper, we presdQCcks, and interferers. It is known thakewnessiefined by
a projection pursuit (PP) approach to unsupervised tardimalized third moment of the sample distribution measures
detection. The PP was first developed by Friedman and Tuké asymmetry of the distribution arklrtosis defined by
[1], [2] to be used as a technique for exploratory analysis Bprmalized fourth moment qf the sample distribution measures
multivariate data and has been studied extensively since tiBf flatness of the distribution. They both are susceptible to
[3]-[5]. Unlike most of developed target detection algorithm@utliers. So, using skewness and kurtosis as a base to design a

that require statistical models such as linear mixture, PP ifamay be an effective means for target detection.
Once a PI is determined, finding optimal solutions for

the desired PI is crucial. Unfortunately, there are generally
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methods. On the other hand, a random move-based metAdt#na™X represents aiV-dimensional row vector that is the
such as simulated annealing (SA) can escape from local optioréhogonal projections of all sample data points mapped onto
to some degree, but its success is also determined by the initied directiona, whereT is the matrix transpose. Now if we let
starting points. In this paper, we consider a similar rando#(-) be a function measuring the degree of the interestingness
move-based approach to SA, called evolutionary algorithaf the projectiona™X for a fixed data matrixX, a projection
(EA) [8]-[10] which is more likely to lead solutions to globalindex (PI) is a real-valued function ef, I(a) : R — R
optima. defined by

Prior to implementation of EA, it generally requires to pre-
serve the translation invariance property of PI. This can be done I(a) = H(a"X). 1)

by centering the original data matrix using a linear translatiE
|

. . S J
followed by an eigen-decomposition method such as singu r‘Pe PI can be easily extended to multiple directigag);_; . In

value decomposition (SVD) to whiten the centered data milS CaseA = [a1 a2 ... aj]isaK x J projection direction

trix. The latter whitening process is referred to as sphering EHTU');’ fa”thhﬁlczrr?S}ggﬂ?,'”g F;;OJ?CUOQ index is also a real-
the PP literature. There are four stage processes implemeﬁ{%&e unction/(A) : R — frgiven by

in EA, which are population selection, crossover, mutation, and I(A) = HATX). 2
termination. Of. particular interest are crossover and mutatlc?ne ghoice of thet(+) in (1) and (2) is application-dependent.
processes. While the crossover process generates a desce

an . . . L
population by combining pairs of individuals randomly chosens purpose is to reveal interesting structures within data sets

) . sulch as clustering. As mentioned in the introduction, in military
from a parent population, the mutation process performs alocal”,. .. S S
plications, man-made target detection is of major interest. In

optimization that makes random changes in individual points 0. . .
. ) o is case, using skewness denoted<hyand kurtosis denoted
search for local optimum points. The EA proposed in this papgr ; L .
s . . . ; Y 14 as a Pl are appropriate criteria for target detection. Four
is little different from the EA referred in the literature in the™” = =~ . " ) . . .
o . . —projection indices defined as follows will be evaluated in this
sense that it includes a zero-detection thresholding to achieve

target detection. Since we are interested in small man-made Raper for target detection:

gets, the outliers resulting from skewness and kurtosis are at- Lyewness(a) =H1(a"X) = 3 3)
trlbgteq to these targets. In order to extract these targets, zero de- Deurtosis(2) =Ha(aTX) = 12 4)
tection is proposed to threshold each projection image so that the o

different desired targets can be segmented by thresholding from Lnix(a) =Hs(a"X) = rj + 1—3 (®)

a sequence of projection images. The algorithm implemente% . _ _
by EA in conjunction with PP and a zero-detection thresholding ereluix(a) is a linear mixture ok; ands,
method is referred to as PPEA in this paper. In order to evaluate Lroduct () = Hy(@"X) = w3 - 83 = (rzra)? (6)
the performance of PPEA, two data sets of hyperspectral im: .
ageg, airborne visible/infrared imaging spectroyrgetef (AVIRIg\fhereI"”’d““(a) is a product ofs3 ands3.
and a standardized hyperspectral digital imagery collection ex-
periment (HYDICE) data set are used. In particular, to make
a quantitative study and analysis possible, a set of custom-deAssume that{x,,}2_; is a set of data samples, aXi =
signed criteria for tallying the number of detected target pixels; xz ... x,] is the corresponding data matrix of which the
in the HYDICE data introduced in [11] is also used for experi-th column vector is thé-th data sample&;. In order to satisfy
ments. the translation invariance property of PI, centering the original
This paper is organized as follows. Section Il considers fodata matrix is required [4]. This can be done by the transforma-
projection indices to be used for projection pursuit. Section ion’Y = X(I — (1/N)11"), wherel is anN x N identity ma-
presents a preprocessing to sphere the data matrix prior to opitk, andx = (1,1, ..., 1)T is anN-dimensional column vector
mization. Section IV describes the procedure of how to imple- —
ment EA. Section V introduces a zero-detection thresholdingth ones in all components. Assume that}?_, are the eigen-
method for target detection. Section VI conducts a series of @glues of the sample covariance mafrixand the transformed
periments. Section VII concludes some comments. data matrix{v; }¥_, are their corresponding eigenvectors. Since
3} is nonnegative definite, all eigenvalues are nonnegative and
there exists a unitary matri® such thad: can be decomposed
into
The term PP was first coined by Friedman and Tukey and T
was used as a technique for exploratory analysis of multivariate QXQ=A (1)
data. The idea is to project a high dimensional data set into
low dimensional data space while retaining the information
interest. It designs a Pl to explore projections of interestingne
Following the approach in [4], we assume that ther Z1/2 o q- N .
are N data points{x,}"_,, each with dimensionalityk, _\TWe 'ﬂ/; /? = diag{ VA;}i_;, multiplying both sides of
X = [x1 X2 ... x,] IsaK x N data matrix, aneh is an K -di- (7) by A results in
mensional column vector, which serves as a desired projection. AT2QTeQAY2 =1 (8)

I1l. SPHERING

Il. PROJECTIONPURSUIT

%ereQ = [v1 v2 ... V,] is a matrix made up of the eigenvec-
rs{v;}'_,, andA = diag{\;}}_, is a diagonal matrix with
i Yo—, in the diagonal line.
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From (7), we obtain the desired sphering matixgiven by

A=QA1/? )

so thatATE A = I. The process of transforming the centered
data matrixXY via the sphering matriA outlined by (6)—(9) is
called “sphering,” which is also known as a whitening process
to uncorrelatéyY'.

[V. EVOLUTIONARY ALGORITHM (EA)

After the centered data matrix is sphered, an optimization al-
gorithm will be used to find optimal solutions for a selected PI.
For simplicity, the notation for sphered centered data matrix will
be still represented b¥X. The optimization algorithm proposed
in this section is the EA developed in [8]-[10] and can be imple-

mented by four stage processes, population selection, crossover,

mutation, and termination, each of which is briefly described as
follows. For details we refer to [8]—[10].

1)

2)

3)

Initial population.

Unlike gradient methods and simulated annealing, an EA
requires an initial population to start with to perform a multi4
directional search for optimal points simultaneously during
each iteration. A population is made up of possible projec-
tion vectors, each of which can be viewed as individuals. To
initialize EA, an initial population can be created randomly
or with prior knowledge if there is any. A simple way to
form an initial population is to include all basis vectors of
the space to projected.

Population Selection Process.

Once a population is formed, each individual in the popu-
lation will be evaluated by a fithess function specified by the
desired projection indeX(x). The individual that has better
fitness will have more chances to generate new population
in the next iteration. The procedure is described as follows.

a) Calculatef(v;) for each individuak,.

b) Calculate the probability of selectingv;
pi = F(v)IS, F(v)).

c) Calculate the cumulative probability for f(v;) by

d) Generate a random numbein the rang€g0, 1].

e) Select thé-th individualv; such thaiy;_; < r < ¢;.

f) Repeat steps (d) and (e) until a desired population is
formed.

by

needed to produce crossover offspring. This numhat.is-
|_pc Nk_] Withpc'Nk -1< |_pc Nk_] < Pc'Nk, WhereNk

is the size of population at theth iteration. The crossover
is performed as follows.

a) For each individua¥ in the current population, gen-
erate a random numbeiin the rangdo, 1]. If » < p,,
the v will be selected as a candidate for crossover.
The selection procedure will be continued to form
a crossover vector group until the expectation of
number of selected crossover vectors is equa¥ to

b) For each pair of two individuals andw in the se-
lected crossover group, form their two crossover off-
springv’ = av+(1—a)wandw’ = (1 —a)v+aw,
whereq is a random number generated from the uni-
form distribution in the rangf, 1], since this requires
N, to be even. So ifV, is odd, we need select one
more individual randomly to make it even.

Through the crossover process, we get a more effective

means to find more competitive projections other than the

ones already in the population.

) Mutation Process.

Like the mutation defined in genetic algorithm, the
mutation in EA is also performed on a bit-by-bit basis.
For each individualv [v1 v2 ... wy,], each compo-
nent, i.e.,v;, is expressed in a binary expansion with
precisions byv; = w;1v2...v;. Thenv can be rep-
resented by a binary string formed by concatenating
the [-precision binary expansions of all components
V = UV1VU2...Vy = V11V12 ... V1] ... Un1Un2 ... Unl, which
is called a chromosome. Now the mutation process will
be performed on the chromosome bit by bit. g} a
predetermined probability of mutation which determines
the number of bits needed to be mutated, denaigd
which is the expectation of the number of mutated bits is
equal to|p,, - N. -n - 1].
a) Encode each individual in the current population into
a chromosome

b) For each bit in the chromosome, generate a random
numberr from the uniform distribution in the range
[0,1]. If » < p., mutate the bit by flipping the bit
between 0 and 1.

c) Decode each chromosome into a new individual.

The goal of the mutation is to explore the neighborhood of

It should be noted that the above selection process is sto- €&ch individual to find an optimal projection.
chastic and some individuals may be selected more thah Términation Process.

once. This is in accordance with the natural principle of
“survival of fitness,” which says that the best individuals get

There are several ways to terminate EA. 1) The algorithm
reaches an optimal solution. 2) No significant changes are

more descendants while the average stays even and the worsf"@de. 3) The number of iterations exceeds a predetermined

dies off.
Crossover Process.

The crossover process used in EA is called arithmetical
crossover, which can be defined as follows. Assume there
are two individuals, denoted by two vectarandw. Then

limit.

V. THRESHOLDING OF PROJECTIONIMAGES USING
ZERO-DETECTION

the two vectors formed by’ = av + (1 — a)w andw’ = Like PCA, PPEA produces a sequence of projection images
(1—a)v+aw are called crossover offspringefandw with  that show the information in the decreasing order of magnitudes
a € [0,1]. Let p, be the preselected crossover probabilitgf projection values produced by a PI. It should be noted that
that will be used to determine the number of individualthe magnitude referred to here is the absolute projection values
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where the projection values of a Pl can be positive or negative. 2500 oy
These projection images can be used for target detection. As- I |
sume thah; is the projection vector that maximizes a PI. Using 2000
a; we can project the data matik into a projection space gen- 1500

erated by} = alx,,, where the data matriX is formed by all

pixel vectors in the image, i.e., 1000

500 Enlarged in (b)

X = [x1 X2 -.. Xg)- J """"""""" -

For example, if we assume that the histogram of the projection
values{z; }1_, is described by a Gaussian distribution, the out- (a)
liers are generally caused by small targets that create ripples

on either side of tails of the Gaussian distribution. So, the first

values in the histogram that occur at zero will be selected as 60

the desired thresholds. Then those projected pixels with gray 50 l i
scales excessive the thresholds were extracted and considered ‘ :
to be target pixels. As a result, two images can be obtained by 40 | |
such zero-detection thresholding, one for target detection and 30 Threshold Point |
the other for the use of next projection. The one used for target 20 ]
detection is a binary image obtained by setting those pixels ex- |
ceed the thresholds to 1 and zero, otherwise. This binary thresh- 10 1
olded image, denoted [, will be used to tally target pixels 0

[ 5 10 15 20
detected by this particular projection image. A second image is

a gray scale image and obtained by assigning 0 to all the pixg#& 1. (a) Gaussian-ike histogram produced 4y = aTx. using the
in the binary imagé3; while the gray scales of the pixels not inHYDICE data in Fig. 4(a) and (b) enlarged right Gaussian tail of Fig. 1(a).
the B; remaining unchanged. This resulting image is referred
to as the first projection imag¥; and will be used for the next
projection. The reason for producing such projection images is
to prevent the target pixels detectedBa from being consid-
ered again in the new projection imae. A second projection
vectora, is then found again by maximizing a PI based on the
first projection imageX; and generated by a projection space
formed by{z}}X_, that are generated by = alX; via as.
Similarly, a binary imageB. threshold fromz? can be found

by zero-detection in the same manner tBatwas generated.

In analogy with findingX, a second projection imag€, can

be also formed by setting to zero the gray scales of pixels in the
binary imageB- while the pixels not in the binary imad#, re-
main unchanged. The same procedure is continued to generate
the third projection vectoas, which maximizes Pl based on
the second projection imagé, to form two projection images Fig. 2. AVIRIS scene.
z3, X3 and a third binary thresholded imaBg for subsequent

target detection, etc. until the PPEA converges. Accordinglytis case, the projection index using the skewness was able to

set of the desired targets can be extracted from a sequenc@ebct small targets in Figs. 7 and 8 that caused ripples.
{B,} which are resulting from a sequence of projection images

{z’} by zero-detection thresholding.

As an illustrative example, Fig. 1(a) shows a Gaussian-like
histogram generated by the first projection space formed byTwo sets of hyper_spectral data were used to evaluate the per-
{1} | thatwere generated by = aTx = (2,2, ... )T formance of PPEA in target detection.
via 2, = alx, using the HYDICE data in Fig. 4(a). The his- )
togram in Fig. 1(a) was plotted based on the number of projected AVIRIS Data Experiments
pixels versus their projection values generated:hy= alx, The 224-band AVIRIS data used in the experiments were
for 1 < n < N. Since the right tail of the histogram does nothe same data considered in [12]. It is a subscene of 200
clearly show ripples, Fig. 1(b) enlarges its long and flat rigt200 pixels extracted from the upper left corner of the Lunar
tail. As we can see, there are many ripples and the first valQeater Volcanic Field in Northern Nye County, NV, shown in
that detects zero will be selected as the desired threshold vdhig 2, where five signatures of interest in these images were
as pointed by an arrow. It should be noted that the histogramviere demonstrated in [12], “red oxidized basaltic cinders,”
Fig. 1(a) is a Gaussian-like distribution, but it is asymmetric. lfrhyolite,” “playa (dry lakebed),” “shade,” and “vegetation.” It

amomialy

VI. EXPERIMENTS
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Pl = skrwne=s Pl = kericas Pl = misiere Pl = procha

Fropection Irmags | Progection Image | Pregection Irmage 1 Propectaon Image |
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Projection Imsge 3 Projecoon lmage 3

@
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Meg. Proj. Image 2 Meg. Proj. Image 2 M. Proy. Image 2

-

Meg. Proj. Image 3 Mig. Proj. lmage 3 Mg Proy. limage 5
Figure 3 {b)

(b)

Fig. 3. (a) First three projection images of skewness, kurtosis, mixture and product. (b) First three negative projection images of skewisgssixturéoand
product.

has been shown that in general there was no need to use allfig). 2. This anomaly cannot be seen or detected visually, and
bands for image classification [14], only 12 bands that wefts detection was also missed in [11], [12] because the method
uniformly selected among 224 bands were used in the followinged, orthogonal subspace projection (OSP) was supervised.
experiments to ease computation of PPEA. Additionally, it wddg. 3(a) shows the detection results of the first three projection
also shown in [13] that there was a single two-pixel anomalgnages of all the four Pls proposed in this paper while Fig. 3(b)
located at the top edge of the lake marked by a dark circle shows their negative counterparts of Fig. 3(b). The reason that
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Fig. 4. (a) HYDICE image scene and (b) panel pixels in the scene in (a) masked by BLACK and WHITE.
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Fig. 5. Typical mask of B and W pixels.

"
. d.

we also included negative projections in Fig. 3(b) is because
the projection values are not necessarily positive and they cat
be negative. The significance of interestingness of a projectior
is determined by its magnitude not signs. As shown, all the six
signatures were detected in Fig. 3, specifically, the anomaly was
detected in all the four Pls. Since kurtosis is more interesting
than skewness in many other applications, we use kurtosis a
an example for illustration. The cinders showed in the first
projection positive image while the vegetation was detected in
its negative counterpart. In the second projection, the vegetatiol
and the rhyolite were extracted in the positive projection image,
while the shade and anomaly were detected in its negative
counterpart. In third projection, the playa was pulled out from
the positive image. It turned out that both positive and negative
projection images were very similar. We also noted that if a
signature is interesting, it generally shows in more than one
projection image such as the vegetation in Fig. 3. anijectin
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B. Hydice Data Experiments

The HYDICE data used in the following experiments were di-
rectly extracted from the HYDICE image scene of size84
shown in Fig. 4(a). There are 15 panels located on the field anc = srsecise &
arranged in a 5¢< 3 matrix. The low signal/high noise bands:
bands 1-3 and bands 202-210 and water vapor absorption bam@ss. Six gray scale projection images produced by four different Pls: (a)
bands 101-112 and bands 137-153 were removed. So a t&kayness, (b) kurtosis, (c) mixture, and (d) product.
of 169 bands were used for the experiments. The spatial res-
olution is 1.5 m and spectral resolution is 10 nm. The grourehch row:, the three panelg;:, p;2, p;z were made from the
truth of the image scene is shown in Fig. 4(b) and provides teeame material but have three different sizes. For each column
precise spatial locations of these 15 panels. Black pixels grethe five panelyy, p2, p3, p4, p5 have the same size but were
panel center pixels and the pixels in the white masks are panedde from five different materials. The sizes of the panels in
boundary pixels mixed with background pixels. Each elemetite first, second and third columns are 308 m, 2 mx 2 m,
in this matrix is a square panel and denotegygywith row in- and 1 mx 1 m, respectively. The 1.5 m-spatial resolution of
dexed byi = 1,2,...,5and column indexed by = a,b,c. For the image scene suggests that exceppforpsi, ps1, pa1, P51,

SNECTIRT
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PI = skewness PI = kurtosis PI = mixture PI = product

projection 1 projection 1 projection |

projection 1

projection 2 projection 2 projection 2 projection 2

projection 3 projection 3 projection 3 projection 3

Fig. 7. Binary projection images resulting from thresholding the first three projection images in Fig. 6: (a) skewness, (b) kurtosis, (c) ndixt)rpreduct.

which are two-pixel panels, all the remaining panels are onlyz(p) total number of B-masked pixels in the papel

one-pixel in size. Apparently, without ground truth, it is diffi- Ny (p) total number of W-masked pixels in the papel

cult to locate these panels in the scene. Surprisingly, as will Bggw)p(p) total number of either B-masked or W-masked

shown in the experiments in Section VI, these panels can be ac- pixels detected in the pangj

curately extracted by the proposed PPEA. Ngp total number of B-masked pixels detected in the
Like the AVIRIS data, we also used 12 bands selected uni- panelp;

formly for experiments to ease computation of PPEA. As wilNwp(p) total number of W-maskeg pixels detected in

be shown in the following experiments, 12 bands are sufficient the panel;

to retain all necessary information for PPEA to effectively deNrpr(p) total number of false alarmed pixels, i.e., total

tect target pixels. Since Fig. 4(b) provides a ground truth map, number of pixels that are neither B-masked nor

we can evaluate the performance of the PPEA by actually tal- W-masked detected in the panel

lying number of panel pixels detected in the binary threshold€drpy (p) total number of B-masked or W-masked pixels

images B generated by the PPEA. missed in the panel.

Following a similar study in [11], black and white pixels were With the help of the above notations, we can further define
used to tally results of target detection. The size of a mask uskd B panel pixel detection rafézrp(p) for the panep by
for a panel varies. A typical masked target of size 4is shown Ngp(p)
in Fig. 5, with B pixels centered in the mask where a B and a W Rero(p) = — o) (10)
represent a B-masked pixel and a W-masked pixel, respectiv%lrx B\P
y

Two types of tally will be used for panel detection: 1) the numb d the W panel pixel detection rak&yrp(p) for the panep

of panel pixelshit and 2) the number of panel pixedetected
Here we make a subtle difference between a pdetctecand Nwn(p)
a panehit. When a panel is detected, it means that at least one Rwrn(p) = Neoln) (11)
B target pixel is detected. When a panel is hit, it means that at w(p)
least either one B or one W pixel is detected. As long as oneSince B pixels represent panel center pixels and W pixels may
of these B or W pixels is detected, we declare the panel is ik panel pixels mixed by the background pixels, a good detec-
So by way of this definition, a panel detected always impliestgn algorithm must have higher number of panel B pixels de-
panel hit, but not vice versa. tectedNgp(p). On the other hand, detecgjim W pixel does not

In the following experiments, we will tally: 1) how many Bnecessarily mean a panel detected. Nevertheless, we can declare

panel pixels are detected; 2) how many W panel pixels are qge panel to be hit. For this purpose, we define the panel hit rate
tected; 3) how many pixels are false alarmed for a panel, Bru(p) for panelp by

which case neither a B-masked pixel nor a W-masked pixel is N .

detected; and 4) how many B panel pixels are missed. In order Rru(p) = M_

to quantitatively study the detection performance of PPEA, the Neyw(p)

following definitions introduced in [11] were used. So from (12), a higher panel hit raférx(p) does notimply a

N total number of sample pixel vectors; higher panel detection rafegn(p) or vice versa. This is be-

D specific panel to be detected:; cause the number of W pixels are generally much greater than

Npyw(p)  total number of B-masked and W-masked pixelthat of R pixels, thus it may eventually dominate the perfor-
in the panelp; mance ofRru(p).

(12)



CHIANG et al: UNSUPERVISED TARGET DETECTION

Fig. 8.

TABLE |

VALUES OF FOUR PIs

projection 1 projection 2 | projection 3 projection 4 projection 5 projection 6
skewness 1419172 198.5295 61.5250 22.1880 7.7661 6.1439
kurtosis 43665.6554 53827.0905 18125.6193 839.2410 1423.0965 194.3417
mixture 1141.7817 1137.9477 495.5014 25.8405 4.4355 1.7345
product 12880834 10769387 20991206 22674 1099 245
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(c)

Images resulting from combining the first three binary thresholded projection images in Fig. 7: (a) skewness, (b) kurtosis, (c) mixdyprpdndt(

(d)

In addition to (10)—(12), we are also interested in panel falseFig. 6 shows the detection results based on the first six projec-
alarm rateRrpr(p) and panel miss rat&rpy(p) defined as tions using the proposed four Pls where projection images were

follows:

fined as

whereprob(p;) =

Rrpr(p) =

Rop(l) =

Nrer(p)
N — Npyw(p)

Rrpm(p) =1 — Rru(p) =
:NB-l—VV(p)

Nrrm(p)
No+w(p)
Ni+wyn(p)

Ne1+w(p)
If there areg panelsI’ = {p;}{_, needed to be detected, th
overall detection rat&®on (") for a class of panels, can be de-

Z prob(p;) Rprp(p:)
=1

N(pi)/ EZ:Z

N(py)for1 <i<gq.

produced by skewness, kurtosis, mixture and product and are la-
(13) beled by (a), (b), (c), and (d), respectively. As we can see from
these images in Fig. 6, all the panels were extracted in the first
three projection images. Fig. 7 shows the binary thresholded im-
ages of the first three projection images in Fig. 6 where all the
four PlIs detected the panels in the first row in their third pro-
(14) jection images, the panels in the second and third rows in one
éorojection image and the panels in the fourth and fifth row in an-
other projection image. The reason that the panels in the second
and third rows were detected by the same projection image is be-
cause their spectra are very similar. It is also true for the panels
in the fourth and fifth rows. As shown in Fig. 7, all the 15 panels
were successfully detected and extracted. These detection re-
sults are impressive by the fact that no panels of X hm in
Fig. 4(a) can be detected by visual inspection. Table | tabulates

(15)
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TABLE I
DETECTION RATES FOR THEPI USING SKEWNESS
T | Ngsw | M8 | Nw | Ne+wip | Mep | Nwp | Nrem | Remp Rwtp Ru Rrpm
P1 50 3 47 15 3 12 35 1.0000 | 0.2553 | 0.3000 | 0.7000
P2 45 4 41 11 4 7 34 1.0000 | 0.1707 | 0.2444 | 0.7556
P3 41 4 37 12 4 8 29 1.0000 | 0.2162 | 0.2927 | 0.7073
P4 44 4 40 12 4 8 32 1.0000 | 0.2000 | 0.2727 | 0.7273
P5 43 4 39 17 4 13 26 1.0000 | 0.3333 | 0.3953 | 0.6047
TABLE 1lI
DETECTION RATES FOR THEPI USING KURTOSIS
T | Np+w | M3 | Nw | Ne+wpp | Nep | Nwp | Nrem | Rem Rwip Ry Rrpm
Pl 50 3 47 15 3 12 35 1.0000 | 0.2553 | 0.3000 | 0.7000
P2 45 4 41 8 4 4 37 1.0000 | 0.0976 | 0.1778 | 0.8222
P3 41 4 37 9 4 5 32 1.0000 | 0.1351 0.2195 | 0.7805
P4 44 4 40 8 3 5 36 0.7500 | 0.1250 | 0.1818 | 0.8182
P5 43 4 39 12 4 8 31 1.0000 | 0.2051 | 0.2791 | 0.7209
TABLE IV
DETECTION RATES FOR THEPI USING MIXTURE
T | Me+w | N8 | Nw | MNe+wip | Mo | Nwp | Nrem | Rep Rwrp Ry Rypm
Pl 50 3 47 15 3 12 35 1.0000 | 0.2553 | 0.3000 | 0.7000
P2 45 4 41 8 4 4 37 1.0000 | 0.0976 | 0.1778 | 0.8222
P3 41 4 37 9 4 5 32 1.0000 | 0.1351 | 0.2195 | 0.7805
P4 44 4 40 11 4 7 33 1.0000 | 0.1750 | 0.2500 | 0.7500
Ps 43 4 39 18 4 14 25 1.0000 | 0.3590 | 0.4186 | 0.5814
TABLE V
DETECTION RATES FOR THEPI USING PRODUCT
T | Nesw | Mg | Nw | Ne+wip | Nsp | Nwp | Nrem | Remp Rwtp Ru Rrem
P1 50 3 47 15 3 12 35 1.0000 | 0.2553 | 0.3000 | 0.7000
P2 45 4 41 8 4 4 37 1.0000 | 0.0976 | 0.1778 | 0.8222
P3 41 4 37 9 4 5 32 1.0000 | 0.1351 | 0.2195 | 0.7305
P4 44 4 40 11 4 7 33 1.0000 | 0.1750 | 0.2500 | 0.7500
Ps 43 4 39 16 4 12 27 1.0000 | 0.3077 | 0.3721 0.6279
TABLE VI
OVERALL DETECTION RATES FORFOUR PIs
N = 4096 Np+w =223 Npg=19 Ny =204
Pl Nge+wp | Nep Nwp Nrep Nrem Rpp Rwrp Ry Rrpe Rrem
skewness 67 19 48 4 156 1.0000 | 0.2353 | 0.3004 | 0.0010 | 0.6996
kurtosis 52 18 34 3 171 0.9474 | 0.1667 | 0.2332 | 0.0008 | 0.7668
mixture 6l 19 42 4 162 1.0000 | 0.2059 | 0.2735 | 0.0010 | 0.7256
product 59 19 40 4 164 1.0000 | 0.1961 | 0.2646 | 0.0010 | 0.7354

the values of PlIs of the first six projection images for these fol
Pls. Table | also shows that the values of the first three valu
of all the four Pls are significantly greater than those of the
remaining Pls. This observation is consistent with the detecti
results in Figs. 6 and 7 and provides a clue that only three pi
jections may be sufficiently enough for target detection.

In order to calculate various detection rates specified |
(10)—(15), Fig. 8(a)—(d) was obtained by combining the firs
three binary thresholded projection images in Fig. 7 to tal
detected panel pixels. Interestingly, three pixels in the tr
line detected in Fig. 8(a) and (d) by skewness and kurtos
and four pixels detected in Fig. 8(c) and (d) by mixture an
product were not panel pixels but simply interferers. It shou - —— v E——
be noted that for each PI the sets of pixels detected by Eilh. 9. Six componentimages resulting from principal components analysis.
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projection 6

(a) skewness

Fig. 10.

projection 6

(b) kurtosis

projection 6

(c) mixture

projection 6

(d) product

(a) Plot of six learning curves of the Pl using skewness corresponding to Fig. 6(a), (b) plot of six learning curves of the Pl using kedpsisding to

Fig. 6(b), (c) plot of six learning curves of the Pl using mixture corresponding to Fig. 6(c), and (d) plot of six learning curves of the PI usinggredponcling

to Fig. 6(d).

the three binary thresholded projection images were disjoiaiso close to 1. On the other hand, all of the four Pls yielded
So, the overall detected pixels by a particular Pl is simply tHew W-target pixel detection rateRwrp and the target hit
sum of pixels detected by its first three binary thresholdedtes Rti. This shows that the proposed PPEA using four
projection images. All four Pls produced comparable resul®s are indeed very effective since a highésrp reduces

as shown in Tables 1I-VI. It is worth noting that no falsekwrp. In addition, andRrpr is very low and less than or
alarm rate was calculated for Tables 1I-V and only Table \@qual to 0.1%. By contrast, the panel miss rdlery is
has the overall panel false alarm rdfe-rr. This is because very high and close to 70%-75%. This is due to the fact that
we were interested in detecting all panel pixels in the scef&ry takes into account W panel pixels for target detection.
rather than individual panel pixels. From Table VI, we can sde reality, W-pixels are generally not real panel pixels, and
that the overall B-target pixel detection ra&rp are 100% even if they are, they may be mixed by background pixels.
except of lurtosis(a) = 3, which produced 0.9474 and wasA high Rtpy; does not necessarily imply lodRgrp. This
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is particularly true when the number of W-pixels is relativelyectively extracted by PPEA using only a few projections. Al-
large compared to that of B-pixels. though the experiments are conducted for PPEA for unsuper-

In order to further demonstrate the performance of PPE®sed target detection, it can be also used in conjunction with
PCA was also studied for comparison. It is known that PCA candatabase or spectral library for classification and identifica-
be considered to be a special case of PP with data variance ussu For this purpose, a spectral metric such as Euclidean dis-
as a projection index. The results of the first 6 component itence [16], spectral angle [17] or spectral information diver-
ages are shown in Fig. 9. Comparing to Fig. 6, the four proposgence [18], [19] is required to measure the spectral similarity be-
Pls extracted all the 15 panels in their first three projection intween the detected pixels and database to achieve classification.
ages while PCA picked up these panels in the fourth, fifth arkdnally, due to the nature of EA, the computational complexity
sixth component images. This is because the panels are conefdPPEA is generally very expensive. However, this can be com-
ered to be small targets in the scene and they do not genegaasated for high computer powers. As a concluding remark, it
significant information as opposed to that provided by the large worth noting that an independent component analysis-based
grass field and tree line. As a consequence, the grass and lirear mixture analysis recently developed in [20] took a similar
line were extracted in the first three principal component imapproach, which also used the third and fourth moments as cri-
ages in Fig. 9. Interestingly, the interferers in the tree line weteria for unsupervised subpixel detection. It can be considered
also shown in the first and third component images. This eas a special case of the projection pursuit presented in this paper
ample shows that PCA can be used for preserving target infarhere the background distribution is modeled by a Gaussian
mation but not for the purpose of detecting targets. It should beocess and the abundance fractions of image endmembers were
noted that in order to account for nonstationarity of the data, taesumed to be random sources rather than nonrandom unknown
sample correlation matrix instead of sample covariance matrxantities as are considered in most of linear unmixing methods
was used for PCA. such as orthogonal subspace projection in [12]. When an image

To conclude our experiments, we further plotted in Fig. 18cene is made up of several homogeneous background regions,
the learning curves of the first six projections using PPEA f@ach of which consists of a very large number of pixels, and
four Pls specified by (3)—(6) respectively with theaxis being in this case, we can assume that these background regions can
the number of iterations and theaxis being the values of Pls. be described by Gaussian distributions. Using this assumption,
In all cases, no more 200 iterations are required in each optinsatall targets can be detected effectively as demonstrated by ex-
projection search. In particular, only approximate 150 iteratioperiments in [21].
are needed to achieve the optimal search for the first three pro-
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