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Abstract—Independent component analysis (ICA) has shown
success in blind source separation and channel equalization. Its
applications to remotely sensed images have been investigated in
recent years. Linear spectral mixture analysis (LSMA) has been
widely used for subpixel detection and mixed pixel classification.
It models an image pixel as a linear mixture of materials present in
an image where the material abundance fractions are assumed to
be unknown and nonrandom parameters. This paper considers an
application of ICA to the LSMA, referred to as ICA-based linear
spectral random mixture analysis (LSRMA), which describes an
image pixel as a random source resulting from a random compo-
sition of multiple spectral signatures of distinct materials in the
image. It differs from the LSMA in that the abundance fractions
of the material spectral signatures in the LSRMA are now consid-
ered to beunknown but random independent signal sources. Two
major advantages result from the LSRMA. First, it does not re-
quire prior knowledge of the materials to be used in the linear mix-
ture model, as required for the LSMA. Second, and most impor-
tantly, the LSRMA models the abundance fraction of each material
spectral signature as an independent random signal source so that
the spectral variability of materials can be described by their cor-
responding abundance fractions and captured more effectively in a
stochastic manner. The experimental results demonstrate that the
proposed LSRMA provides an effective unsupervised technique
for target detection and image classification in hyperspectral im-
agery.

Index Terms—Hyperspectral image classification, independent
component analysis (ICA), linear spectral mixture analysis
(LSMA), linear spectral random mixture analysis (LSRMA).

I. INTRODUCTION

OVER the past years, linear spectral mixture analysis
(LSMA) has been widely used for hyperspectral image

analysis such as detection and classification [1], [2]. It assumes
that an image pixel [i.e., digital number (DN)] is linearly mixed
by materials with relative abundance fractions present in the
image. To be more specific, materials will be referred to as
targets in this paper. Two restrictions are generally applied to
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the LSMA. One is that a complete target knowledge must be
given a priori. In many practical applications, obtaining such
a priori information is usually very difficult if not impossible.
To relax this requirement, several unsupervised methods were
proposed to generate target information directly from the
image data, e.g., unsupervised vector quantization [3], target
generation process [4], and least squares error [5]. A second
restriction is that the abundance fractions of targets present
in an image are generally unknown and need to be estimated.
When they are considered as unknown and nonrandom (i.e.,
deterministic) quantities, they can be estimated by methods
such as least squares estimation. On the other hand, it may be
more realistic to assume that the abundance fractions of targets
in a pixel are random quantities rather than deterministic quan-
tities so that targets can be described by their corresponding
random abundance fractions, which can capture their spectral
variability more effectively in a stochastic manner. In order
to appropriately represent such a random linear mixture, the
abundance fraction of each target must be considered as a
random signal source. For example, if the abundance fraction
is modeled as a random parameter in the range [0,1], it means
that can occur anywhere in [0,1] with a certain probability.
By contrast, if is a nonrandom parameter in [0,1], it implies
that must be a number somewhere in [0,1] with probability
one. In other words, a nonrandom parameter is merely a number
opposed to a random parameter which must be defined in a
probability space.

Independent component analysis (ICA) [6]–[12], which has
shown great success in blind source separation and other ap-
plications, provides a feasible approach to solving the random
abundance mixture problem described above. Its application
to remotely sensed imagery has been recently investigated
in [13]–[17]. The ICA is an unsupervised source separation
process. It is different from principal components analysis
(PCA) [18], [19] in many aspects. The PCA decorrelates
the sample data covariance matrix in such a manner that the
data set can be decomposed into a set of uncorrelated and
orthogonal components where each component is oriented by
an eigenvector. Unlike the PCA, the ICA looks for components
which arestatistically independentrather thanuncorrelated;
thus, it requires statistics of orders higher than the second order.
The idea of the ICA makes use of a linear model to describe
a mixture of a set of unknown random signal sources, then
demixes them in separate components so as to achieve signal
detection and classification. If we assume that the abundance
fraction of each target in the LSMA is an unknown and
independent random signal source, the source mixing model
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considered in ICA becomes directly applied to the LSMA, in
which case ICA can be used to solve for random abundance
fractions for the linear mixture model used in the LSMA. Such
an ICA-based LSMA can be viewed as a random version of
the LSMA and will be called linear spectral random mixture
analysis (LSRMA) hereafter in this paper.

In order for the LSRMA to be effective, two major assump-
tions must be made. One is that the source components must
mutually statistically independent. This implies that the spec-
tral signatures of targets present in an image must be distinct.
A second assumption is that, at most, one source component is
allowed to be Gaussian. This is because a sum of Gaussian pro-
cesses is also Gaussian and the ICA cannot separate Gaussian
processes using a linear mixture model.

In remotely sensed imagery, the number of target pixels of in-
terest, such as small man-made targets, anomalies, or rare min-
erals, is generally small compared to the image background.
From this point of view, an interesting structure of an image
scene is the one resulting from a small number of target pixels
in a large area of unknown background. As a consequence, these
target pixels are main causes of outliers of distributions which
can be detected by a higher order of statistics such as skewness
(third moment) to detect asymmetry of the distribution and kur-
tosis (fourth comment) to detect the flatness of the distribution,
as demonstrated in [20]. Therefore, detecting such small target
pixels in an unknown image scene can be reduced to finding
the outliers or deviations from the background distribution, in
which case the background can be considered a homogeneous
region. In addition, due to spectral variability, the background
may be made up of a number of homogenous regions. If these re-
gions contain large number of pixels, the background pixels can
be assumed to be a Gaussian-like distribution while the target
pixels of interest can be viewed as non-Gaussian signal sources
that create ripples in the Gaussian tails. In this case, target pixels
of interest can be separated by the ICA, as we desire. This is be-
cause the ICA can detect target pixels using statistics of order
higher than the statistics of second-order such as variance. Of
course, if there is a set of background pixels that forms a region
failing to satisfy the Gaussian assumption, they will be detected
as non-Gaussian signal sources. This phenomenon is demon-
strated in the Hyperspectral Digital Image Collection Experi-
ment (HYDICE) experiments. Since small targets are generally
susceptible to outliers, they will be more likely to be detected
by the ICA. However, due to no prior knowledge, the detected
small targets may include man-made targets or natural objects
such as trees, grass, rocks, and interferers. The LSRMA does
not guarantee the detected targets will be the targets of our in-
terest. This must be done in conjunction with spectral database
or verified by ground truth.

The ICA proposed in the LSRMA is slightly different from
the commonly used ICA [6]–[16] in two ways. In general, the
separating matrix (also referred to as unmixing matrix)de-
rived from the ICA is assumed to be a square matrix of full
rank. In this case, the number of signal sources, say, must
be equal to data dimensionality,. As demonstrated in our ex-
periments, this assumption may not be valid for hyperspectral
images where the number of signal sources is generally much
smaller than the number of bands, i.e., . Therefore, the

matrix is not of full rank. As a result, the learning rule de-
rived from inverting may become unstable and may not con-
verge. The problem of this type is called under-complete ICA
and has been investigated in [21]. However, this problem can be
resolved by prewhitening the data. Second, our proposed ICA
approach is based on the constraint that the covariance matrix of
unmixed abundance fractions of targets must be an identity ma-
trix. This advantage allows us to design a learning algorithm to
converge to independent components which can separate spec-
trally similar targets. A similar approach was also investigated
in [22]. The experiments show that such a learning algorithm is
very useful and suitable for target extraction with similar spec-
tral signatures.

The remainder of this paper is organized as follows. Section II
describes the concept of the ICA. Section III develops an ICA
approach to hyperspectral image analysis, LSRMA. Section IV
presents experimental results. Section V suggests an automatic
thresholding method for target detection and conducts a quan-
titative study for the LSRMA in comparison with two com-
monly used linear unmixing methods: 1) orthogonal subspace
projection (OSP) in [23] and 2) constrained energy minimiza-
tion (CEM) in [24]. Section VI includes some concluding re-
marks.

II. I NDEPENDENTCOMPONENTANALYSIS (ICA)

LSMA is a widely used approach to determination and
quantification of multicomponents in remotely sensed imagery.
Since every pixel is acquired by spectral bands at different
wavelengths, it can be represented by a column vector and
a hyperspectral image is actually an image cube. Suppose
that is the number of spectral bands. Letbe an
column pixel vector in a multispectral or hyperspectral image
where the boldface is used for vectors. Let be an
target signature matrix, denoted by where

is an column vector represented by theth target
signature and is the total number of targets in the image. Let

be a abundance column vector
associated with, where denotes the abundance fraction of
the th target signature present in the pixel vector. A classical
approach to solving such a mixed pixel classification problem is
the linear spectral unmixing which assumes that a pixel vector

is linear mixed by the targets with an unknown abundance
vector . In this case, the pixel vector
can be represented by a linear regression model as follows:

(1)

where is noise that can be interpreted as measurement error,
noise, or model error. Here, without confusion, thewill
be used to represent either the pixel vectoror its spectral
signature (i.e., DNs). A spectral linear unmixing method
estimates the unknown abundance fractions
via an inverse of a linear mixture model described in (1). One
requirement of the LSMA is that the target signature matrix
must be knowna priori. Many approaches have been proposed
in the past to obtain directly from the image data in an
unsupervised fashion, such as [3]–[5]. Here, we present a rather
different approach—ICA. It is also based on model (1), but
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does not require the prior knowledge of. Most distinctively,
it assumes that the abundance fractions are
unknown random quantities specified by random signal sources
rather than unknown deterministic quantities, as assumed in
model (1). However, in this case, we need to make the following
three additional assumptions on the random abundance vector

.

1) The target signatures in must be
spectrally distinct.

2) The abundance fractions are mutually
statistically independent random sources.

3) Each of the abundance fractions must
be a zero-mean random source and at most one source is
Gaussian.

Except for these three assumptions, no prior knowledge is as-
sumed about the model (1).

From a viewpoint of remotely sensed imagery, the first
assumption simply says that there aredistinct types of targets
in a scene and each column vector inrepresents the spectral
signature of one target in the scene. The second assumption
implies that the abundance compositions ofdistinct target
signatures in a pixel are random quantities, one independent
of another. The third assumption suggests that the ICA can
separate targets of interest from the Gaussian-like background
distributions. It classifies different targets by detecting them in
separate independent components. Since we are only interested
in detecting non-Gaussian signal sources, which are generally
described by statistics of order higher than the variance, a
prewhitening process can makerandom abundance fractions

zero-mean and unit-variance, in which case the
first- and second-order of statistics will not play a role in target
detection. It should be noted that if a background distribution is
not Gaussian distributed, it will be detected and classified into
a separate independent component. This may occur when some
part of the image background is made up of only a small group
of pixels.

III. ICA-B ASED LSRMA

In order to implement the ICA using model (1), the mixing
matrix used in the blind source separation is replaced with the
target signature matrix and the unknown signal sources to be
separated with thetarget random abundance fractions, denoted
by . With this interpretation, the ICA finds a
separating matrix and applies it to an image pixelto unmix
the . More specifically, the ICA solves an inverse
problem of model (1) for a separating matrix via the
following equation:

(2)

where is the estimate of abun-
dance fractional vector based on . Since
changing order of components in does not affect their sta-
tistical independence, the estimate of theth abundance fraction

may appear as any component of . Furthermore,
because multiplying random variables by nonzero scalar factors
does not affect the statistical independence, it is also impos-
sible to determine the true amounts of the abundance fractions

from model (1) without additional assumptions.
Unless we are interested in quantification, the order and the true
abundance fractions are generally not crucial in target detection
and classification. In this case, we can normalize each abun-
dance source to unit variance so that the covariance matrix of
the abundance sources becomes the identity matrix. This can be
simply done by a sphering (whitening) process.

A. Relative Entropy-Based Measure for ICA

In order to use the ICA, a criterion is required to measure
the statistical independence among the estimated abun-
dance fractions . According to information
theory [25], relative entropy or Kullback–Leibler infor-
mation distance function is an appropriate measure. Let

be the joint probability
density function (pdf) of the estimated random abundance vector

obtained from (2), and be the marginal pdf of the
th abundance fraction for given by (2). Since

in model (1) are assumed to be independent,
. If we assume that is a source vector

and is the estimate of _ from the observation vector, then
the entropy of relative to (or relative entropy between
relative to ), denoted by , is defined in
[25] by

(3)

where is the entropy of the estimated abundance vector
. Consequently,minimizationof (3) over through in

(2) implies that the smaller the is, the less the
discrepancybetweentwopdfs and is; thus, themore
likely tobe independent the is.Because thepdfofisgener-
allyunknownand needs tobe estimated, the
in(3)mustbereplacedbyitsestimate .
Substituting this estimate into (3) results in

(4)

where is the expectation with respect to and
is the entropy of the th estimated source .

Unfortunately, even in this case, finding the pdf of is also
difficult in practice. In order to mitigate this dilemma, Comon
introduced an alternative criterion in [7] that approximates
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Fig. 1. (a) LCVF subscene of size200 � 200 extracted from Fig. 1(b). (b)
AVIRS LCVF scene of size512 � 614.

in (4). Instead of minimizing

, Comon suggested to maximize
the higher order statistics of the data, called contrast function of

, denoted by which is defined in [7] by

(5)

where is the third-order standardized cumulant of theth
for representing the skewness and is the

fourth standardized cumulant of theth for rep-
resenting the kurtosis. If the skewness ofis sufficiently large,
(5) can be further approximated by . On the other
hand, if the kurtosis of is sufficiently large, a good approx-
imation of (5) is . In either case, (5) is reduced to a
much simpler criterion.

B. Learning Algorithm to Find

Since the second-order statistics can be removed by decorre-
lation, the data vectors are first prewhitened prior to separa-
tion. In this case, data are completely characterized by statistics
with orders higher than 2. Therefore, for simplicity we assume
that the data vectors have been prewhitened. In order to derive a
learning algorithm, we impose a constraint that the covariance
matrix of the estimated abundance vector in (2) must be an
identity matrix. To further simplify notations, we denote
by with . The learning algorithm to be developed
must solve the following constrained optimization problem:

maximize over for

subject to (6)

where is the identity matrix. For such constrained prob-
lems, we use exterior penalty methods discussed in [26] to elim-
inate some or all of the constraints. The idea is to add to the ob-
jective function specified by (6) so-called penalty function terms
which assign a higher cost to infeasible points. In our case, the
penalty function terms imposed on the constraints in (6) are de-
fined by

if
if

(7)

where and
if
if

Fig. 2. Detection and classification results produced by the LSRMA withp =

4 using skewness: (a) cinders; (b) vegetation; (c) center of the playa; and (d)
noise.

Fig. 3. Detection and classification results produced by the LSRMA withp =

4 using kurtosis: (a) anomaly; (b) vegetation; (c) bottom of the playa; and (d)
noise.

Now, using the penalty function terms specified by (6) and
(7), we can define a penalty function by

(8)
where are called penalty parameters or penalty multi-
pliers (typically all ). Thus, maximizing the constrained
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Fig. 4. Detection and classification results produced by the LSRMAp = 5 using skewness: (a) cinders; (b) vegetation; (c) center of the playa; and (d)–(e) noise.

problem described by (6) is equivalent to maximizing the fol-
lowing cost function:

(9)

which subtracts the penalty function given by (8) from the ob-
jective function in (6). In order to find the separating matrix

where is the th matrix element in ,
we calculate gradient of the cost function by differenti-

ating and with respect to , respectively

(10)

(11)
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Fig. 5. Detection and classification results produced by the LSRMA withp = 5 using kurtosis: (a) anomaly; (b) vegetation; (c) cinders; and (d) shade.

Equations (10) and (11) can be expressed in terms of matrix
forms as follows:

(12)

(13)

where and
is the diagonal matrix with the th diag-

onal element given by . From (12) and (13), a learning
algorithm to generate the separating matrixcan be designed
by

(14)

where and are learning parameters for (12) and (13), respec-
tively. It is found empirically that controls the convergence
speed and should be less than 1 whilecontrols the constraint
and should be greater than. In this paper, the and are set
to and for all the experiments conducted in Sec-
tion IV. In order for the proposed learning algorithm to converge,
a stopping rule is used to terminate the algorithm. It measures
the normalized difference between two consecutive and

resulting from (6), denoted by which is de-
fined by

(15)

If is less than a prescribed threshold, the algorithm
stops; otherwise, it continues. In all the experiments conducted
in Section IV, the threshold was set to 10.

IV. EXPERIMENTS

In this section, two sets of real hyperspectral image data, air-
borne visible/infrared imaging spectrometer (AVIRIS), and HY-
DICE were used for experiments to evaluate the performance of
the LSRMA. In addition, two criteria, skewness [ in (6)]
and kurtosis [ in (6)] were also used for performance
analysis.

A. AVIRIS Data

The data to be used were obtained from an AVIRIS scene
of pixels shown in Fig. 1(a) and extracted from the
lunar crater volcanic field (LCVF) in Northern Nye County, NV,
shown in Fig. 1(b) which has been studied extensively [23] and
provides a good case for comparative analysis. It was acquired
by 224 spectral channels ranging from 0.4 m to 2.5 m with
10-nm spectral resolution and 20-m spatial resolution. After
water bands and low signal-to-noise ratio (SNR) bands are re-
moved, only 158 bands remain (i.e., ).

According to the ground truth in [23], there were five targets
of interest: cinders, rhyolite, playa (dry lake), vegetation, and
shade. Therefore, at least five components, , are needed
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Fig. 6. Detection and classification results produced by the LSRMAp = 9 using skewness: (a) cinders; (b) vegetation; (c) center of playa; (d) rhyolite; (e) playa;
(f) shade; and (g)–(h) noise.

to classify and separate these five targets. If we assume that no
prior knowledge is available about the image scene, the number
of targets in an image scenemust be estimated from the data.
As shown in [5], there was a single two-pixel anomaly located at
the top edge of the lake shown inside a circle marked in Fig. 1(a).
This anomaly cannot be seen or detected visually from the scene
and was not identified by the ground truth. It was extracted by
an unsupervised constraint subpixel detection method [5] and
also detected by an anomaly detector, RX algorithm in [27] and
[28]. In order for the LSRMA to detect this anomaly in addition
to the five targets of interest, themust be greater than five,
so that the five targets (cinders, rhyolite, playa dry lake, vege-
tation, and shade) and the anomaly can be detected and classi-
fied in separate components. In [16], Tu proposed a noise ad-
justed transformed Gershgorin disk (NATGD) to estimate the
for the same identical image scene in Fig. 1(a), which was four.
Unfortunately, this number was underestimated. With ,

the shade and the anomaly were not detected in [16]. However,
here we use the number produced by a Neyman–Pearson de-
tector-based eigen-thresholding method described in [28] and
[29], which was estimated to be eight. Therefore, in this case,

with one extra component included to accommodate the
noise. It should be noted that P is only an estimate. It
does not imply that there were exactly eight targets present in
the image scene. In order to demonstrate the impact of different
values of on the performance, we conducted experiments with

estimated by NATGD, estimated by a method de-
veloped by Harsanyiet al.in [28]–[30], and . The learning
parameters and used in (14) for the following experiments
were empirically set to and .

Example 1 : Fig. 2 shows the results generated by
the LSRMA using skewness as a criterion. From the ground
truth in [23], only the cinders, vegetation, and center of playa
were classified in Fig. 2(a) and (c) and the fourth component
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Fig. 7. Detection and classification results produced by the LSRMA withp = 9 using kurtosis: (a) anomaly; (b) vegetation; (c) cinders; (d) center of playa; (e)
the edge of playa; (f) bottom of playa; and (g)–(h) noise.

showed very little information in the image. It missed the de-
tection of the rhyolite, shade, and part of playa. Fig. 3(a)–(d)
shows the results produced by the LSRMA using kurtosis where
only vegetation and the bottom part of playa were classified in
Fig. 3(b) and (c). Once again, the fourth component did not de-
tect any meaningful targets. It also missed the detection of the
cinders, rhyolite, shade, and a large portion of playa. Interest-
ingly, Fig. 3(a) detected the anomaly observed in [5]. This ex-
periment demonstrated that skewness and kurtosis performed
very differently, but the kurtosis seemed more effective to de-
tect small targets. However, more experiments are required to
substantiate our conclusion.

Example 2 : In this example, we conducted an ex-
periment similar to Example 1 with . Figs. 4 and 5 were
results obtained for skewness and kurtosis, respectively. Com-
paring Fig. 4 to Fig. 2, there was not much changed in results for
skewness except that the fifth component showed nothing but
noise. However, when the kurtosis was used, there was a drastic

change between Figs. 3 and 5. Both detected the anomaly in
their first components shown in Figs. 3(a) and 5(a). However,
the cinders and shade which were extracted in Fig. 5(c)–(d),
respectively, were missed in Fig. 3. Unfortunately, it still also
missed the detection of the rhyolite and the playa.

Example 3 : A similar experiment was also con-
ducted for the case of . Figs. 6 and 7 show the results
produced by the LSRMA using skewness and kurtosis, respec-
tively, where the skewness and kurtosis demonstrated different
strengths in target extraction. The cinders, the vegetation, the
playa, the rhyolite, and the shade were detected by skewness
in the first six components shown by Fig. 6(a)–(f). Interest-
ingly, the playa was detected in two separate components in
Fig. 6(c) and (e) and the anomaly was detected along with the
shade in Fig. 6(f). By contrast, kurtosis extracted the anomaly,
vegetation, and cinders in the first three components shown by
Fig. 7(a)–(c), while the playa was extracted in the next three
separate components in Fig. 7(d)–(f). Unfortunately, the rhy-
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olite and the shade which were extracted in Fig. 6(c) and (f)
by skewness were not detected by the kurtosis. Since the playa
covers a very large area of the image scene, i.e., dry lake on the
crater, we may expect that its spectral variability could be rela-
tively large. Therefore, the playa was classified in three separate
components with the center detected in Figs. 6(c) and 7(d), the
edge detected in Fig. 7(e), and the bottom detected in Figs. 6(e)
and 7(f). This phenomenon was also observed in [5] and [31].
Such subtle spectral variations were overlooked in [23] because
the playa signature was obtained by averaging most part of the
dry lake area using visual inspection. Using this averaged spec-
tral signature as the prior knowledge, the entire playa was ex-
tracted, and the single two-pixel anomaly was averaged out and
could not be detected. A similar problem was also found in [16]
where the lake was detected as an entity, and the shade and
anomaly were not detected. This resulted from the fact that the
estimated was too small and the learning rule was derived by
the orthogonality of , not . These experiments demon-
strate that skewness may be a good criterion for classification
of large areas while the kurtosis may be effective in extracting
small targets or insignificant targets.

One comment is noteworthy. In general, the number of inde-
pendent components should be equal to the number of spectral
dimensionality, which is . However, after the ex-
ceeds a certain number, there is very little change in the projec-
tion vectors of the components that are beyond this number. In
this case, we did not include these components. Therefore, in
order to determine how many components should be generated,
the Euclidean distance difference between the projection vectors
of two consecutive components is compared. If it is less than
a prescribed value—in our case, it was set to 10—then the
LSRMA stops generating new components. That is why there
were various numbers of components generated for different
values of . However it should be noted that different values
of will generate different numbers of components.

To conclude the AVIRIS experiments, variable values of
were also evaluated by skewness and kurtosis. The results for

and were not as good as those obtained by
. For the results of and , we

refer the reader to [17]. In order to find which number is appro-
priate for , we ran additional experiments for .
There was little change in the first few components and the per-
formance of both criteria was not significantly improved except
that more components were used to detect different portions of
image scene. In this case, may be a good estimate.

B. HYDICE Data

The HYDICE data used in the following experiments were di-
rectly extracted from the HYDICE image scene of size
shown in Fig. 8(a). The image data were acquired by the air-
borne HYDICE sensor in August 1995 from a flight altitude
of 10 000 ft with the ground sampling distance approximately
1.5 m. It has 210 spectral channels ranging from 0.4m to 2.5

m with spectral resolution 10 nm. The low signal/high noise
bands: bands 1–3 and bands 202–210; and water vapor absorp-
tion bands: bands 101–112 and bands 137–153, were removed.
Therefore, a total of 169 bands were used for the experiments.
There are 15 panels located on a grass field and arranged in a

(c)

Fig. 8. (a) A 15-panel HYDICE scene; (b) ground truth map of Fig. 8(a); and
(c) five panel signatures obtained by averaging B pixels in the 15 panels.

matrix where there is a forest on the left edge of the scene
and a road on the right edge of the scene. A ground truth map of
this 15-panel scene is shown in Fig. 8(b) and provides the pre-
cise spatial locations of these 15 panels. Black pixels are panel
center pixels, considered to be pure pixels, and the pixels in the
white masks are panel boundary pixels mixed with background
pixels, considered to be mixed pixels. Each element in this ma-
trix is a square panel and is denoted by with row indexed
by and column indexed by . For each
row , the three panels , , and were made from the
same material but have three different sizes. For each column,
the five panels , , , , and have the same size but
were made from five different materials. The sizes of the panels
in the first, second, and third columns are 3 m3 m, 2 m 2
m, and 1 m 1 m, respectively. The 1.5-m spatial resolution of
the image scene suggests that, except for, , , and ,
which are two-pixel panels, all of the remaining panels are only
one pixel in size. Five spectral signatures were obtained from
the center pixels of the 15 panels in Fig. 8(b) to represent five
different panel signatures. They were denoted by, , ,

, and where is the th panel signature obtained by av-
eraging the black panel center pixels in rowand their spectra
are shown in Fig. 8(c).

Example 4 (Computer Simulations):In this experiment,
we simulated a scene with size of , which is similar to
Fig. 8(a). It consists of 25 single-pixel panels simulated by,

, , , and in Fig. 8(c). These 25 pixels are arranged
in five rows with five pixels in each row, and were generated to
simulate the 15-panel HYDICE scene in Fig. 8(a). The 25 pixels
were simulated by the panel signature, shown in Fig. 8(c),
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Fig. 9. (a) Abundance fractions map assigned to the 25 simulated pixels. (b) Background scene simulated by tree and grass signatures uniformly.

Fig. 10. Detection and classification results produced by the LSRMA withSNR = 5 dB using skewness: (a) panels in row 5; (b) panels in row 4; (c) panels in
rows 2 and 3; and (d) panels in row 1.

with the assigned abundance fraction map shown in Fig. 9(a).
The pixels in the same column have the same abundance fraction
contributed by five different panel signatures, , , , and

. The pixels in the same row contain the same panel signature
with abundance fractions assigned by 1.0, 0.8, 0.6, 0.4, and 0.2,
respectively, i.e., . In this case,
the mixing matrix is formed by . In
addition, a background scene shown in Fig. 9(b) was also added
to these 25 simulated pixels. It was simulated by two background
signatures, tree and grass uniformly with their abundance frac-
tions being positive and summed to one. In addition, a zero-mean
Gaussian noise with different variances is added to achieve dif-
ferent levels of SNR. In the following simulations, six scenarios
were simulated to achieve different SNR, with dB,
dB, dB, dB, dB, and dB were conducted to evaluate
the performance of the LSRMA for skewness and kurtosis. In
the skewness case, the ICA converged to five components for

dB, dB, dB, dB, and dB, and all 25 panel
pixels were detected and accurately classified into their own
classes in these five components. For the case of dB,

the LSRMA converged to only four components and the panel
pixels in rows 2 and 3 were detected but forced to be classified
into one class. This is because the spectra ofand are very
similar, as demonstrated in [32, Table IV]. For comparison, only
results for dB and dB are shown in Figs. 10 and 11,
respectively, where the amounts of detected abundance fractions
are also plotted for reference. Unlike the case of skewness,
the LSRMA using kurtosis produced a very large number of
components for dB, dB, dB, dB, dB,and
dB,butall 25panel pixelswere detectedandaccuratelyclassified
into their own classes in the first five components. Since the
results for all the cases were similar except for different amounts
of abundance fractions detected by different SNRs, only results
for the case of dB is shown in Fig. 12. It is worth noting
that there were also interferers and background signatures with
relatively small abundance fractions detected in the components
beyond the first five components. Furthermore, as the SNR
was increased, the number of converged components was also
increased, but the amount of detected abundance fractions are
more accurate and close to the true abundance fractions. This
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Fig. 11. Detection and classification results produced by the LSRMA withSNR = 10 dB using skewness: (a) panels in row 5; (b) panels in row 4; (c) panels in
row 3; (d) panels in row 1; and (e) panels in row 2.

implies that more interferers background signatures were also
detected, each of which was classified into a separate and indi-
vidual component. These computer simulations demonstrated
that kurtosis is veryeffective butalsosensitive to targetdetection.
In addition, the performance of both criteria is also proportional
to the strength of SNR.

Example 5 (Real HYDICE Scene):In this example, we con-
ducted experiments based on the real scene in Fig. 8(a) where
the number of mixing targets was estimated to be

by the Neyman–Pearson eigen-thresholding method
proposed in [28] and [29]. Figs. 13 and 14 show the results gen-
erated by the LSRMA using skewness and kurtosis, respectively.
As we can see from these figures, the LSRMA was able to de-
tect all 15 panels in the second through sixth components in both
cases where the panels in the third column were barely visible.
This is because these panels are of size 1 m1 m, while the
spatial resolution is 1.5 m 1.5 m. In this case, the detection
of the panels of 1 m 1 m is actually subpixel detection. Inter-
estingly, a strong interferer located in the left upper corner in
the forest of Fig. 8(a) was detected by both skewness and kur-
tosis in their first component. By visual inspection of the scene
in Fig. 8(a), there is no way to identify this interferer. The de-
tection of the unidentified interferer in Fig. 8 and the anoma-
lous target in Fig. 1(a) demonstrates that the LSRMA can be
used as an anomaly detector to detect unknown targets. How-
ever, it was unable to discriminate panels in row 2 from those
in row 3. This also was witnessed in Fig. 10(a) by the computer

simulation using the skewness with dB. In order to
make a comparison, we also conducted a similar experiment for

. The results for skewness and kurtosis are shown
in Figs. 15 and 16, respectively, where the interferer and all 15
panels were detected and classified into six separate compo-
nents. Like previous experiments, both skewness and kurtosis
have the same difficulty with discriminating panels in row 2
from those in row 3. It should be noted that only 6 and 13 compo-
nents were produced by the skewness and the kurtosis, respec-
tively. This implies that is greater than the number of targets
(six in this example), and the number of the components will be
eventually reduced no matter how large the value ofis.

According to our experiments running from 5 to 40, it
turned out that when , the LSRMA using skewness
and kurtosis became stable in the sense that all 15 panels
and the interferer were detected in the first six independent
components. The remaining components beyond six contain
mostly noise and background signatures such as grass, forest,
tree, road, etc. In this case, our estimate produced by
the proposed eigen-thresholding method in [28] and [29] was
reasonably close to 18.

V. AUTOMATIC THRESHOLDINGMETHOD

In view of the fact that the images generated by LSRMA are
generally grayscale, the detection is usually carried out by vi-
sual inspection. The interpretation of detection and classifica-



386 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 2, FEBRUARY 2002

Fig. 12. Detection and classification results produced by the LSRMA withSNR = 5 dB using kurtosis: (a) panels in row 5; (b) panels in row 4; (c) panels in
row 3; (d) panels in row 1; (e) panels in row 2; and (f)–(h) noise or interferers.

tion results can be subjective and vary with human judgment.
In order to avoid such human intervention and to make an ob-
jective assessment, we develop a computer-automated thresh-
olding method in this section. The suggested threshold criterion
was proposed in [33], and can be used to automatically extract
the anomalous target pixels and segment them from the back-
ground.

Let be the abundance fraction of an image pixel
resulting from LSRMA, which will represent gray level value of
. It should be noted that is generally a real number

and does not necessarily lie in the range [0,1]. For a given gray
level value , we define a rejection region, denoted by

, by a set made up of all the image pixels in
the LSRMA-generated image whose gray level values less than
the .Wethenuse thehistogramof theLSRMA-generated image
to define the rejection probability as

(16)

A threshold value can be used to segment targets out from the
background by a prescribed confidence coefficientsuch that

(17)

More precisely, assume that the confidence coefficient is set to
with . If , will be detected as a
target pixel and a background pixel, otherwise. It should be noted
that the confidence coefficient can be adjusted and is determined
by target size. For small targets such as panels in Fig. 8(a), a panel
size of 3 m 3 m with pixel resolution 1.5 m would have at most
four pixels. Therefore, the ratio of a panel with four pixels to the
entire image size with 6464 pixels is no more than
0.001. In this case, a reasonable estimate of the confidence coef-
ficient would be approximately . Ta-
bles Iand II tally the numberofpanel B pixels detected inFigs. 13
and 14 with and , respectively. When

, both skewness and kurtosis can achieve 0% false
alarmrate, theyalsomisseddetectionofsixBpixels.On theother
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Fig. 13. Detection and classification results produced by the LSRMA withp = 21 using skewness: (a) interferer; (b) panels in row 1; (c) panels in row 4; (d)
panels in row 5; (e) panels in row 3; (f) panels in row 2; and (g)–(r) noise or interferers.

hand, when wasdecreased to0.997,bothskewness and kurtosis
detected all the 19 B pixels of the 15 panels at the expense of de-
tecting nine and seven false alarm pixels, respectively. Fig. 17(a)
and (b) shows the binary images resulting from thresholding the
images in Figs. 13(b)–(f) and 14(b)–(f) using as the
confidence coefficient in (17). As we can see from these images,
the five B pixels of panels in the third column (i.e., , , ,

, and in Fig. 8(b), one for each row) were effectively de-
tected in Fig. 17(a) and (b) by both skewness and kurtosis with

. It should be noted that these five B panel pixels,
, , , and cannot be seen from visual inspection of

Fig. 8(a) because their size is merely of 1 m1 m and smaller
thanthe1.5mpixelresolution.Thisexamplefurtherdemonstrates

abilityoftheLSRMAinsubpixeldetection.Moreimportantly, the
experiments also suggest that the three assumptions made for the
LSRMAin the introductionseemtobereasonableandacceptable
in our applications.

In order to evaluate the performance of LSRMA, two linear
unmixing methods, OSP, in [23] and CEM in [24] were used
for comparative analysis. Such selections were made based on
two reasons. One is that both OSP and CEM have shown suc-
cess in target detection and classification and have been used in
hyperspectral image analysis. Another is from a target knowl-
edge viewpoint. The OSP requires complete target knowledge,
whereas the CEM only needs the knowledge of the desired target
of interest. Compared to the OSP and the CEM, the LSRMA
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Fig. 14. Detection and classification results produced by the LSRMA withp = 21 using kurosis: (a) interferer; (b) panels in row 1; (c) panels in row 5; (d) panels
in row 4; (e) panels in row 3; (f) panels in row 2; and (g)–(i) noise or interferers.

Fig. 15. Detection and classification results produced by the LSRMA withp = 169 using skewness: (a) interferer; (b) panels in row 1; (c) panels in row 4; (d)
panels in row 5; (e) panels in row 3; and (f) panels in row 2.

does not require any prior target knowledge except, which is
the number of targets assumed to be present in the image scene.
However, if can be estimated reliably, in fact, the LSRMA
does not need any information at all.

Tables III and IV tally the results produced by the
OSP and the CEM using the same confidence coefficients

and where the OSP used the five
panel signatures in Fig. 8(c) as its complete target knowledge
while the CEM only used as its desired target signature to
detect panels in row. Interestingly, if we compare Table IV
to Tables I and II, the LSRMA performed as well as the CEM
and their results were nearly the same, even if the LSRMA did
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Fig. 16. Detection and classification results produced by the LSRMA withp = 169 using kurosis: (a) interferer; (b) panels in row 1; (c) panels in row 5; (d)
panels in row 4; (e) panels in row 3; (f) panels in row 2; and (g)–(l) noise or interferers.

TABLE I
TALLY OF NUMBER OF PANEL B PIXELS

DETECTED INFIG. 13(B)–(F) WITH 
 = 0:997; 0:998; AND 0:999

not assume any target knowledge. On the other hand, Table III
shows that the OSP performed very poorly. This is because the
target knowledge used in the OSP did not well represent the
image scene. It was made up of only the five panel signatures

and did not include background signatures
such as the large grass field, the forest on the left edge and the
road on the right edge of the scene.

TABLE II
TALLY OF NUMBER OF PANEL B PIXELS DETECTED IN FIG. 14(B)–(F) WITH


 = 0:997; 0:998; AND 0:999

VI. CONCLUSION

This paper presented an ICA-based LSRMA approach to
hyperspectral target detection and classification. It is different
from the commonly used ICA approach in that the learning
algorithm is derived from the orthogonality constraint imposed
on the abundance vector rather than the separating matrix

. In addition, the separating matrix is not necessarily
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(a)

(b)
Fig. 17. (a) Image in Fig. 13(b)–(f) thresholded by the values of� that were
determined by
 = 0:997 via (17). (b) Image in Fig. 14(b)–(f) thresholded by
the values of� that were determined by
 = 0:997 via (17).

a square matrix of full rank nor is the mixing matrix
orthogonal. These advantages are very useful in hyperspectral
image classification. Since hyperspectral sensors are capable
of uncovering targets with subtle differences, their spectral

TABLE III
TALLY OF NUMBER OF PANEL B PIXELS PRODUCED BY THEOSP WITH


 = 0:997; 0:998; AND 0:999

TABLE IV
TALLY OF NUMBER OF PANEL B PIXELS PRODUCED BY THECEM WITH


 = 0:997; 0:998; AND 0:999

signatures are generally similar to some degree and not orthog-
onal. The new designed learning algorithm is able to converge
to nonorthogonal independent components. The proposed
LSRMA offers several advantages over existing LSMA-based
techniques which require complete knowledge forused in
the linear model. It has been shown in [34] that LSMA-based
techniques were sensitive to target knowledgeand noise.
The proposed LSRMA does not have this sensitivity problem
since there is no target knowledge required for theused
in LSRMA. Second, the LSMA-based techniques generally
use the least squares error as an optimal criterion which is the
second-order statistics. However, the criteria such as relative
entropy, skewness and kurtosis used in LSRMA go beyond
the second-order statistics and have been shown effective
in target detection in [20] and [35]. Third, assuming that
abundance fractions as random signal sources seems more
appropriate to nonstationary environments. Furthermore, in
order to obtain an objective assessment without appealing for
human interpretation, an automatic thresholding method is
also introduced in this paper. In particular, a quantitative study
is also conducted in this paper for comparative analysis with
two commonly used methods, OSP which requires complete
target knowledge and CEM which only needs partial target
knowledge. As shown in experiments, the LSRMA performed
as well as CEM and significantly better than OSP. Interestingly,
as also demonstrated by experiments, skewness and kurtosis
used in the LSRMA have different strengths in classification.
Because the skewness measures asymmetry of a distribution, it
generally can detect changes in large areas. On the other hand,
the kurtosis measures the flatness of a distribution, thus it can
detect small targets.
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