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Abstract—independent component analysis (ICA) has shown the LSMA. One is that a complete target knowledge must be
success in blind source separation and channel eq_uallza_tlon. |t$givena priori. In many practical applications, obtaining such
applications to remotely sensed images have been investigated iny gy information is usually very difficult if not impossible.

recent years. Linear spectral mixture analysis (LSMA) has been T lax th . ¢ | ised thod
widely used for subpixel detection and mixed pixel classification. 0 relax this requirement, several unsupervised methods were

It models an image pixel as a linear mixture of materials presentin Proposed to generate target information directly from the
an image where the material abundance fractions are assumed to image data, e.g., unsupervised vector quantization [3], target
be unknown and nonrandom parametersThis paper considers an generation process [4], and least squares error [5]. A second
application of ICA to the LSMA, referred to as ICA-based linear  yaqtriction is that the abundance fractions of targets present
spectral random mixture analysis (LSRMA), which describes an . . .

image pixel as a random source resulting from a random compo- in an image are gengrally unknown and need to be est|majced.
sition of multiple spectral signatures of distinct materials in the When they are considered as unknown and nonrandom (i.e.,
image. It differs from the LSMA in that the abundance fractions deterministic) quantities, they can be estimated by methods
of the material spectral signatures in the LSRMA are now consid- such as least squares estimation. On the other hand, it may be
ered to beunknown but random independent signal sourceSwo e reglistic to assume that the abundance fractions of targets

major advantages result from the LSRMA. First, it does not re- . ixel d titi ther than det nisti
quire prior knowledge of the materials to be used in the linear mix- In a pixel are random quantities rather than detérministic quan-

ture model, as required for the LSMA. Second, and most impor- tities so that targets can be described by their corresponding
tantly, the LSRMA models the abundance fraction of each material random abundance fractions, which can capture their spectral
spectral signature as an independent random signal source so that variability more effectively in a stochastic manner. In order

the spectral variability of materials can be described by their cor- to appropriately represent such a random linear mixture, the

responding abundance fractions and captured more effectively in a bund fracti f h t t tb idered
stochastic manner. The experimental results demonstrate that the abundance fraction or each target must be considered as a

proposed LSRMA provides an effective unsupervised technique random signal source. For example, if the abundance fraation
for target detection and image classification in hyperspectral im- is modeled as a random parameter in the range [0,1], it means

agery. thata can occur anywhere in [0,1] with a certain probability.

Index Terms—Hyperspectral image classification, independent BY contrast, ife is @ nonrandom parameter in [0,1], it implies
component analysis (ICA), linear spectral mixture analysis thata must be a number somewhere in [0,1] with probability

(LSMA), linear spectral random mixture analysis (LSRMA). one. In other words, a nonrandom parameter is merely a number
opposed to a random parameter which must be defined in a
. INTRODUCTION probability space.

) ) _ Independent component analysis (ICA) [6]-[12], which has
O VER the past years, linear spectral mixture analysihown great success in blind source separation and other ap-
(LSMA) has been widely used for hyperspectral imaggiications, provides a feasible approach to solving the random
analysis such as detection and classification [1], [2]. It assUMgSndance mixture problem described above. Its application
that an image pixel [i.e., digital number (DN)] is linearly mixed remotely sensed imagery has been recently investigated
by materials with relative abundance fractions present in the [13]-[17]. The ICA is an unsupervised source separation
image. To be more specific, materials will be referred to &ocess. It is different from principal components analysis
targets in this paper. Two restrictions are generally applied (eca) [18], [19] in many aspects. The PCA decorrelates

. . ) the sample data covariance matrix in such a manner that the
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considered in ICA becomes directly applied to the LSMA, imatrix W is not of full rank. As a result, the learning rule de-
which case ICA can be used to solve for random abundamieed from invertingW may become unstable and may not con-
fractions for the linear mixture model used in the LSMA. Sucherge. The problem of this type is called under-complete ICA
an ICA-based LSMA can be viewed as a random version ahd has been investigated in [21]. However, this problem can be
the LSMA and will be called linear spectral random mixtureesolved by prewhitening the data. Second, our proposed ICA
analysis (LSRMA) hereafter in this paper. approach is based on the constraint that the covariance matrix of
In order for the LSRMA to be effective, two major assumpunmixed abundance fractions of targets must be an identity ma-
tions must be made. One is that the source components nitigt This advantage allows us to design a learning algorithm to
mutually statistically independent. This implies that the specenverge to independent components which can separate spec-
tral signatures of targets present in an image must be distirteally similar targets. A similar approach was also investigated
A second assumption is that, at most, one source componennii22]. The experiments show that such a learning algorithm is
allowed to be Gaussian. This is because a sum of Gaussian peyy useful and suitable for target extraction with similar spec-
cesses is also Gaussian and the ICA cannot separate Gaudsihisignatures.
processes using a linear mixture model. The remainder of this paper is organized as follows. Section ||
In remotely sensed imagery, the number of target pixels of iflescribes the concept of the ICA. Section Il develops an ICA
terest, such as small man-made targets, anomalies, or rare rafiproach to hyperspectral image analysis, LSRMA. Section IV
erals, is generally small compared to the image backgroufdesents experimental results. Section V suggests an automatic
From this point of view, an interesting structure of an imagé@resholding method for target detection and conducts a quan-
scene is the one resulting from a small number of target pixditative study for the LSRMA in comparison with two com-
in a large area of unknown background. As a consequence, thely used linear unmixing methods: 1) orthogonal subspace
target pixels are main causes of outliers of distributions whigtiojection (OSP) in [23] and 2) constrained energy minimiza-
can be detected by a higher order of statistics such as skewriggs (CEM) in [24]. Section VI includes some concluding re-
(third moment) to detect asymmetry of the distribution and kuraarks.
tosis (fourth comment) to detect the flatness of the distribution,
as demonstrated in [20]. Therefore, detecting such small target  |l. INDEPENDENTCOMPONENTANALYSIS (ICA)
pixels ir_] an unkno_wrj image scene can be redu_cec_i to_ﬁndi_ngLSMA is a widely used approach to determination and
the outliers or deviations from the background d|str|but|on,;g)

hich he back q b idered a h uantification of multicomponents in remotely sensed imagery.
which case the background can be considered a homogenegiiz every pixel is acquired by spectral bands at different

region. In addition, due to spectral variability, thg baCkgrouqﬂavelengths, it can be represented by a column vector and
may be made up of a number of homogenous regions. Iftheseéehyperspectral image is actually an image cube. Suppose

gions contain large number of pixels, the background pixels c3iL; 1 is the number of spectral bands. Lete anL x 1

be assumed to be a Gaussian-like distribution while the tar%%liumn pixel vector in a multispectral or hyperspectral image

pixels of mte_rest can be V|eweq as npn—Gau_ssmn signal soqrﬁ;‘z]%re the boldface is used for vectors. Ikt be anL x p
that create ripples in the Gaussian tails. In this case, target pg%

o . oo the ICA oo This fet signature matrix, denoted by, m, ... m,] where
of interest can be separated by the ICA, as we desire. Thisis be=ic 2" """ ¢olumn vector represented by thth target

cause the ICA can queCt target pixels using statistics_ of or Cé{nature ang is the total number of targets in the image. Let
higher than the_statlstlcs of second-order such as variance. Of (a, @z, ..., )" be ap x 1 abundance column vector
course, i thgre Is aset of packground p|xels that fprms arediflsociated withr, wherec; denotes the abundance fraction of
failing to satlsfy the _Gaus:yan assumption, they will be Qetect jth target signature present in the pixel veato classical

as non-Qaussmn signal SOurces. This phenomengn is de Jroach to solving such a mixed pixel classification problem is
strated in the Hyperspectral D'.g'tal Image Collection Experwe linear spectral unmixing which assumes that a pixel vector
ment (HYDICE) experiments. Since small targets are generajlyq jinaar mixed by they targets with an unknown abundance
susceptible to outliers, they will be more likely to be detect

. ctora = (o, ao, ..., a,)%. In this case, the pixel vectar

by the ICA. However, due to no prior knowledge, the detected, po represented by a linear regression model as follows:
small targets may include man-made targets or natural objects
such as trees, grass, rocks, and interferers. The LSRMA does r=Ma+n (1)
not guarantee the detected targets will be the targets of our in-
terest. This must be done in conjunction with spectral databagkeren is noise that can be interpreted as measurement error,
or verified by ground truth. noise, or model error. Here, without confusion, thewill

The ICA proposed in the LSRMA is slightly different frombe used to represent either the pixel veatoor its spectral
the commonly used ICA [6]-[16] in two ways. In general, theignature (i.e., DNs). A spectral linear unmixing method
separating matrix (also referred to as unmixing maitW)de- estimates the unknown abundance fractiens as,..., oy
rived from the ICA is assumed to be a square matrix of fullia an inverse of a linear mixture model described in (1). One
rank. In this case, the number of signal sources,sayust requirement of the LSMA is that the target signature masiix
be equal to data dimensionality, As demonstrated in our ex- must be knowra priori. Many approaches have been proposed
periments, this assumption may not be valid for hyperspectialthe past to obtaifM directly from the image data in an
images where the number of signal sources is generally muglsupervised fashion, such as [3]-[5]. Here, we present a rather
smaller than the number of bands, ig.< L. Therefore, the different approach—ICA. It is also based on model (1), but
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does not require the prior knowledgedE. Most distinctively, «;, s, ..., «, from model (1) without additional assumptions.

it assumes that the abundance fractions;, «»,...,«;, are Unless we are interested in quantification, the order and the true
unknown random quantities specified by random signal sourc@sundance fractions are generally not crucial in target detection
rather than unknown deterministic quantities, as assumedaind classification. In this case, we can normalize each abun-
model (1). However, in this case, we need to make the followimnce source to unit variance so that the covariance matrix of
three additional assumptions on the random abundance vetherabundance sources becomes the identity matrix. This can be

a = (a1, 00,...,0p)%. simply done by a sphering (whitening) process.
1) Thep target signaturesn;, mo, ..., m, in M must be A Relative Entroov-B
spectrally distinct. . py-Based Measure for ICA
2) Thep abundance fractionay, s, ..., «, are mutually ~ In order to use the ICA, a criterion is required to measure
statistically independent random sources. the statistical independence among the estimated abun-
3) Each of thep abundance fractionay, «ws, . .., @, must dance fractionsé;, as,...,a;,. According to information
be a zero-mean random source and at most one sourctheory [25], relative entropy or Kullback-Leibler infor-
Gaussian. mation distance function is an appropriate measure. Let
Except for these three assumptions, no prior knowledge is &&(r)) = p(a1(r), Ga(r), ..., &,(r)) be the joint probability
sumed about the model (1). density function (pdf) of the estimated random abundance vector

From a viewpoint of remotely sensed imagery, the first(r) obtained from (2), ang(é;) be the marginal pdf of the
assumption simply says that there aristinct types of targets Jth abundance fractio@; for 1 < j < p given by (2). Since
in a scene and each column vectoidhrepresents the spectrala1, @z, - .., @, in model (1) are assumed to be independent,
signature of one target in the scene. The second assumptibr) = [[5—; p(«;). If we assume that is a source vector
implies that the abundance compositionspoflistinct target andé(r) is the estimate of _ from the observation veatathen
signatures in a pixet are random quantities, one independerih€ entropy ofx relative toi(r) (or relative entropy betweesm
of another. The third assumption suggests that the ICA ckglative toi(r)), denoted byD (p(&(r))||p(e)), is defined in
separate targets of interest from the Gaussian-like backgrouagl by
distributions. It classifies different targets by detecting them in P
separate independent components. Since we are only interested D | p(&(r))||p(e) = Hp(aj)
in detecting non-Gaussian signal sources, which are generally j=1

described by statistics of order higher than the variance, a . p(&(r))

prewhitening process can makeandom abundance fractions = Zp(a(r)) log < (@) )

ag, o, ..., ap ZEro-mean and unit-variance, in which case the )

first- and second-order of statistics will not play a role in target _ Z p(é(r)) log p(&(r))

detection. It should be noted that if a background distribution is ?:1 p(ey)

not Gaussian distributed, it will be detected and classified into

a separate independent component. This may occur when some = _—H(a(r)) = Y pla(r Z log(p(c;)) 3)
part of the image background is made up of only a small group

of pixels.

whereH (&(r)) is the entropy of the estlmated abundance vector
&(r). Consequently, minimization of (3) ové(r) throughW in
lll. ICA-B ASED LSRMA (2) implies that the smaller th@ (p(&(r))||p(«)) is, the less the

In order to implement the ICA using model (1), the mixingliscrepancy betweentwo pdf&x) andp(é(r)) is; thus, the more
matrix used in the blind source separation is replaced with thikely to be independentth#&r) is. Because the pdf efis gener-
target signature matrikI and the unknown signal sources to bally unknown and needs to be estimatedzthe) = [T,_, p(a;)
separated with thetarget random abundance fractions, denoted(3) mustbereplacedbyitsestimatéi(r)) = [T/_, p(d;(r)).
by ay, as,. .., ap. With this interpretation, the ICAfindsax L. Substituting this estimate into (3) results in
separating matri¥% and applies it to an image pixeto unmix
theay, ao, .. ., . More specifically, the ICA solves an inverse D | p(a(r)||p(a H pl&
problem of model (1) for @ x L separating matri¥ via the
following equation:

r
4(r) = Wr @ =B |- log(;(r) | — H(a(r))
j=1
wherea(r) = (é1(r),...,4,(r))T is the estimate of abun- P
dance fractional vectofay, az, ..., «,)T based onr. Since = ZH(&j(r)) — H(&(r)) 4)
changing order of componentsdir) does not affect their sta- j=1

tistical independence, the estimate of ttieabundance fraction where E[] is the expectation with respect to(é(r)) and
«; may appear as any componéni(r) of &(r). Furthermore, H(&;(r)) is the entropy of thejth estimated sourcé;(r).
because multiplying random variables by nonzero scalar factdsfortunately, even in this case, finding the pdfddf) is also
does not affect the statistical independence, it is also impahfficult in practice. In order to mitigate this dilemma, Comon
sible to determine the true amounts of the abundance fractionsoduced an alternative criterion in [7] that approximates
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“1 anomaly

(a) LCVF subscene (200x200) (b) AVIRIS LCVE scene (512x614)

(a) cinders (b) vegetation

Fig. 1. (a) LCVF subscene of si280 x 200 extracted from Fig. 1(b). (b)
AVIRS LCVF scene of sizé12 x 614.

D (p(&(r))|| TTj=, p(d;(r))) in (4). Instead of minimizing

D (p(a(r)|| ITj=, p(é&;(r)) ), Comon suggested to maximize
the higher order statistics of the data, called contrast function
W, denoted by)(W) which is defined in [7] by

p

VW) =D 45 + W55+ T = 6655505555 (5)
1

(c) center of the lake ) (d) noise

J
\’A\Ihereﬁjﬁ IS the third-order S_tandardlzed cumulant O_f e Fig.2. Detection and classification results produced by the LSRMAwith
é;(r) forl < j < prepresenting the skewness ang;; isthe 4 using skewness: (a) cinders; (b) vegetation; (c) center of the playa; and (d)
fourth standardized cumulant of thih &; (r) for1 < j < prep- noise.
resenting the kurtosis. If the skewnesgwfis sufficiently large,
(5) can be further approximated ﬁﬁle nfjj. On the other
hand, if the kurtosis of; (r) is sufficiently large, a good approx-
imation of (5) iszf=1 ;«aﬁjjj. In either case, (5) is reduced to a
much simpler criterion.

B. Learning Algorithm to FindwW

Since the second-order statistics can be removed by decol
lation, the data vectors are first prewhitened prior to separa-
tion. In this case, data are completely characterized by statist
with orders higher than 2. Therefore, for simplicity we assurr
that the data vectors have been prewhitened. In order to deriv
learning algorithm, we impose a constraint that the covarian§
matrix of the estimated abundance vect¢r) in (2) must be an
identity matrix. To further simplify notations, we denaiér)
by y with y; = &;(r). The learning algorithm to be developeci
must solve the following constrained optimization problem:

(a) anomaty (b) vegetation

p
maximize (W) =>_ E[y}'] overW form >3
j=1

subjectto £ [ny] =1 (6) (c) bttom of the lake

wherel is thep X p Idemlty matrix. For such constrained prOb-Fig. 3. Detection and classification results produced by the LSRMA with

lems, we use exterior penalty methods discussed in [26] to elifsing kurtosis: (a) anomaly; (b) vegetation; (c) bottom of the playa; and (d)
inate some or all of the constraints. The idea is to add to the algise.

jective function specified by (6) so-called penalty function terms

which assign a higher cost to infeasible points. In our case, thENow, using the penalty function terms specified by (6) and
penalty function terms imposed on the constraints in (6) are ctq) we can define a penalty functidi(y) by
fined by '

(d) noise

P P

. 1
Ulhis(y)) = 0; if hi(y) =0 @) P(y)= > BiU(hi; () = 3 > Bij (Ellyw] - 65])°
K >0; if hy(y) #0 ig=1 ig=1 @®
N _ - N L ifi=g wheref;; > 0 are called penalty parameters or penalty multi-
wherehi;(y) = Elyiy;] - 6i; andé;; = {0; if ¢ £ 7. pliers (typically all3;; = 3). Thus, maximizing the constrained
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(a) cinders

(b) vegetation

(d) noise

(e) noise

Fig. 4. Detection and classification results produced by the LSRMAS5 using skewness: (a) cinders; (b) vegetation; (c) center of the playa; and (d)—(e) noise.

problem described by (6) is equivalent to maximizing the fohting+(W) and P(y) with respect tav,,, respectively

lowing cost function:
J(W) =p(W) — P(y)
B < >
=W)—3 2, Elwwl-65)" O
)=

which subtracts the penalty function given by (8) from the ob-
jective function in (6). In order to find the separating matrix
W = [wst]pxi Wherew,, is the(s, ¢)th matrix element irW,
we calculate gradient of the cost functidgiW) by differenti-

IP(W o & B
o 2 Bl =2 E ]
(10)
OP(y) B 0 < o
D 20wy 2 Pl =)
p
:ijz(E[yiys] — 85 ) Elyir]- (11)
=1
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(a) anomaly (b) vegetation

(c) cinders (d) shade
Fig. 5. Detection and classification results produced by the LSRMA with5 using kurtosis: (a) anomaly; (b) vegetation; (c) cinders; and (d) shade.

Equations (10) and (11) can be expressed in terms of mattﬁxjy(Wk) is less than a prescribed threshold, the algorithm
forms as follows: stops; otherwise, it continues. In all the experiments conducted
in Section 1V, the threshold was set to 10

Vwi (W) =2mAE[g(y)r’] (12)
VwP(y) =23(Elyy*] - D E[yr’] (13) IV. EXPERIMENTS
where g(y) = (y{"’_l,yg’_l,...,yg’—l T andA = In this section, two sets of real hyperspectral image data, air-

diag {E [y"]} is the diagonal matrix with theith diag- borne visible/infrared imaging spectrometer (AVIRIS), and HY-
onal element given by [*]. From (12) and (13), a learning DICE were used for experiments to evaluate the performance of

algorithm to generate the separating mak¥xcan be designed the LSRMA. In addition, two criteria, skewness[= 3 in (6)]
by and kurtosisfn = 4 in (6)] were also used for performance

. . . analysis.
Wi = Wi+ pAE[g(y)r' | —n(Elyy | -DE[yr'] (14)
A. AVIRIS Data

wherey, andn are learning parameters for (12) and (13), respec- )

tively. It is found empirically tha: controls the convergence The data to be used were obtained from an AVIRIS scene
speed and should be less than 1 whjleontrols the constraint Of 200 x 200 pixels shown in Fig. 1(a) and extracted from the
and should be greater than In this paper, they andy: are set lunar crater volcanic field (LCVF) in Northern Nye County, NV,
ton = 1andy = 0.5 for all the experiments conducted in SecShown in Fig. 1(b) which has been studied extensively [23] and
tion IV. In order for the proposed learning algorithm to converg@rovides a good case for comparative analysis. It was acquired
a stopping rule is used to terminate the algorithm. It measuf® 224 spectral channels ranging from 0.4 m to 2.5 m with
the normalized difference between two consecufig@; ) and 10-nm spectral resolution and 20-m spatial resolution. After

J(W_1) resulting from (6), denoted by (W) which is de- Water bands and low signal-to-noise ratio (SNR) bands are re-
fined by moved, only 158 bands remain (i.é,= 158).

According to the ground truth in [23], there were five targets
of interest: cinders, rhyolite, playa (dry lake), vegetation, and
shade. Therefore, at least five components; 5, are needed

, J(W3) — J(Wi_1)

W= W) ()
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(a) cinders (b) vegetation (c) center of the lake

rhyolite (e) lake | ) shade

(2) noise B t (h) noise

Fig. 6. Detection and classification results produced by the LSRMAO9 using skewness: (a) cinders; (b) vegetation; (c) center of playa; (d) rhyolite; (e) playa,;
(f) shade; and (g)—(h) noise.

to classify and separate these five targets. If we assume thatm®shade and the anomaly were not detected in [16]. However,
prior knowledge is available about the image scene, the numbere we use the number produced by a Neyman—Pearson de-
of targets in an image scepeamust be estimated from the datatector-based eigen-thresholding method described in [28] and
As shown in [5], there was a single two-pixel anomaly located 9], which was estimated to be eight. Therefore, in this case,
the top edge of the lake shown inside a circle marked in Fig. 1(@)= 9 with one extra component included to accommodate the
This anomaly cannot be seen or detected visually from the scenése. It should be noted thapP= 9 is only an estimate. It
and was not identified by the ground truth. It was extracted lpes not imply that there were exactly eight targets present in
an unsupervised constraint subpixel detection method [5] atiet image scene. In order to demonstrate the impact of different
also detected by an anomaly detector, RX algorithm in [27] awdlues ofp on the performance, we conducted experiments with
[28]. In order for the LSRMA to detect this anomaly in additiorp = 4 estimated by NATGDp = 5 estimated by a method de-

to the five targets of interest, themust be greater than five, veloped by Harsanygt alin [28]-[30], andp = 9. The learning

so that the five targets (cinders, rhyolite, playa dry lake, vegparameterg. and» used in (14) for the following experiments
tation, and shade) and the anomaly can be detected and clagsie empirically set tg. = 0.5 andn = 1.

fied in separate components. In [16], Tu proposed a noise adExample 1{p = 4): Fig. 2 shows the results generated by
justed transformed Gershgorin disk (NATGD) to estimaterthethe LSRMA using skewness as a criterion. From the ground
for the same identical image scene in Fig. 1(a), which was fotnuth in [23], only the cinders, vegetation, and center of playa
Unfortunately, this number was underestimated. Witk 4, were classified in Fig. 2(a) and (c) and the fourth component



382 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 2, FEBRUARY 2002

(a) anomaly (b) vegetation (c) cinders

(a) cetr of the lake b ee of e lae ” (c) bottom of the lake

(g) noise (h) interferer

Fig. 7. Detection and classification results produced by the LSRMA with9 using kurtosis: (a) anomaly; (b) vegetation; (c) cinders; (d) center of playa; (e)
the edge of playa; (f) bottom of playa; and (g)—(h) noise.

showed very little information in the image. It missed the deshange between Figs. 3 and 5. Both detected the anomaly in
tection of the rhyolite, shade, and part of playa. Fig. 3(a)—(their first components shown in Figs. 3(a) and 5(a). However,
shows the results produced by the LSRMA using kurtosis whete cinders and shade which were extracted in Fig. 5(c)—(d),
only vegetation and the bottom part of playa were classified iaspectively, were missed in Fig. 3. Unfortunately, it still also
Fig. 3(b) and (c). Once again, the fourth component did not detissed the detection of the rhyolite and the playa.
tect any meaningful targets. It also missed the detection of theExample 3(p = 9): A similar experiment was also con-
cinders, rhyolite, shade, and a large portion of playa. Interesdticted for the case of = 9. Figs. 6 and 7 show the results
ingly, Fig. 3(a) detected the anomaly observed in [5]. This eproduced by the LSRMA using skewness and kurtosis, respec-
periment demonstrated that skewness and kurtosis perforntigely, where the skewness and kurtosis demonstrated different
very differently, but the kurtosis seemed more effective to dstrengths in target extraction. The cinders, the vegetation, the
tect small targets. However, more experiments are requiredplaya, the rhyolite, and the shade were detected by skewness
substantiate our conclusion. in the first six components shown by Fig. 6(a)—(f). Interest-
Example 2(p = 5): In this example, we conducted an exingly, the playa was detected in two separate components in
periment similar to Example 1 with = 5. Figs. 4 and 5 were Fig. 6(c) and (e) and the anomaly was detected along with the
results obtained for skewness and kurtosis, respectively. Coshade in Fig. 6(f). By contrast, kurtosis extracted the anomaly,
paring Fig. 4 to Fig. 2, there was not much changed in results fagetation, and cinders in the first three components shown by
skewness except that the fifth component showed nothing Isig). 7(a)—(c), while the playa was extracted in the next three
noise. However, when the kurtosis was used, there was a draséiparate components in Fig. 7(d)—(f). Unfortunately, the rhy-
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olite and the shade which were extracted in Fig. 6(c) and
by skewness were not detected by the kurtosis. Since the pl:
covers a very large area of the image scene, i.e., dry lake on g
crater, we may expect that its spectral variability could be rel
tively large. Therefore, the playa was classified in three separ.
components with the center detected in Figs. 6(c) and 7(d), 1
edge detected in Fig. 7(e), and the bottom detected in Figs. €
and 7(f). This phenomenon was also observed in [5] and [3: ,
Such subtle spectral variations were overlooked in [23] becaus 7509
the playa signature was obtained by averaging most part of th
dry lake area using visual inspection. Using this averaged spet gug0l
tral signature as the prior knowledge, the entire playa was ex
tracted, and the single two-pixel anomaly was averaged out an sggol
could not be detected. A similar problem was also found in [16]
where the lake was detected as an entity, and the shade a _ 4000}
anomaly were not detected. This resulted from the fact that th:§
estimated» was too small and the learning rule was derived by & s}
the orthogonality ofW, not &(r). These experiments demon-
strate that skewness may be a good criterion for classificatiol zooo}
of large areas while the kurtosis may be effective in extracting
small targets or insignificant targets. 1000}
One comment is noteworthy. In general, the number of inde
pendent components should be equal to the number of spectr o
dimensionality, which isL = 158. However, after the ex-
ceeds a certain number, there is very little change in the projec-
tion vectors of the components that are beyond this number.FIiB. 8. (a) A 15-panel HYDICE scene: (b) ground truth map of Fig. 8(a); and
this case, we did not include these components. Therefore (dyfive panel signatures obtained by averaging B pixels in the 15 panels.
order to determine how many components should be generated,

the Euclidean distance difference between the projection vectgrs 3 matrix where there is a forest on the left edge of the scene
of two consecutive components is compared. If it is less thapd a road on the right edge of the scene. A ground truth map of
a prescribed value—in our case, it was set to°t8then the this 15-panel scene is shown in Fig. 8(b) and provides the pre-
LSRMA stops generating new components. That is why theggse spatial locations of these 15 panels. Black pixels are panel
were various numbers of components generated for differesinter pixels, considered to be pure pixels, and the pixels in the
values Ofp. However it should be noted that different Valueﬁ/hite masks are pane| boundary pixe|s mixed with background
of p will generate different numbers of components. pixels, considered to be mixed pixels. Each element in this ma-
To conclude the AVIRIS experiments, variable valueof trix is a square panel and is denoted gy with row indexed
were also evaluated by skewness and kurtosis. The resultsgg; = 1.2, ... 5 and column indexed by = 1, 2, 3. For each
p = 4,5,6,7, and8 were not as good as those obtained byow ;, the three panels;1, p;2, andp;s were made from the
p = 9. For the results op = L = 158 andp = 8, 12, we same material but have three different sizes. For each cojumn
refer the reader to [17]. In order to find which number is apprehe five panelg, ;, p2;, ps;, psj, andps; have the same size but
priate forp, we ran additional experiments fo0 < p < 40. were made from five different materials. The sizes of the panels
There was little change in the first few components and the p@i-the first, second, and third columns are 3B m, 2 mx 2
formance of both criteria was not significantly improved exceph, and 1 mx 1 m, respectively. The 1.5-m spatial resolution of
that more components were used to detect different portionsggé image scene suggests that, exceppforps:, ps1, andps:,
image scene. In this cage~= 9 may be a good estimate. which are two-pixel panels, all of the remaining panels are only
one pixel in size. Five spectral signatures were obtained from
B. HYDICE Data the center pixels of the 15 panels in Fig. 8(b) to represent five
The HYDICE data used in the following experiments were ddifferent panel signatures. They were denotedfy P, Fs,
rectly extracted from the HYDICE image scene of gidex 64 Py, andP; wherePF; is theith panel signature obtained by av-
shown in Fig. 8(a). The image data were acquired by the a@raging the black panel center pixels in roand their spectra
borne HYDICE sensor in August 1995 from a flight altitudeare shown in Fig. 8(c).
of 10000 ft with the ground sampling distance approximately Example 4 (Computer Simulations)n this experiment,
1.5 m. It has 210 spectral channels ranging from/mito 2.5 we simulated a scene with size&f x 50, which is similar to
»m with spectral resolution 10 nm. The low signal/high noisEig. 8(a). It consists of 25 single-pixel panels simulatedhy
bands: bands 1-3 and bands 202—-210; and water vapor absép-Ps, P, and Ps in Fig. 8(c). These 25 pixels are arranged
tion bands: bands 101-112 and bands 137-153, were remowedive rows with five pixels in each row, and were generated to
Therefore, a total of 169 bands were used for the experimergsnulate the 15-panel HYDICE scene in Fig. 8(a). The 25 pixels
There are 15 panels located on a grass field and arranged inexe simulated by the panel signatufg shown in Fig. 8(c),
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Fig. 9. (a) Abundance fractions map assigned to the 25 simulated pixels. (b) Background scene simulated by tree and grass signatures uniformly.

(a) panels in row 5 (b) panels in row 4

(c) panels in rows 2 & 3

(d) panels in row 1

Fig. 10. Detection and classification results produced by the LSRMA SR = 5 dB using skewness: (a) panels in row 5; (b) panels in row 4; (c) panels in
rows 2 and 3; and (d) panels in row 1.

with the assigned abundance fraction map shown in Fig. 9(#e LSRMA converged to only four components and the panel
The pixels in the same column have the same abundance fracpioels in rows 2 and 3 were detected but forced to be classified
contributed by five different panel signatutBg P, P;, Py,and into one class. This is because the spectB.adndP; are very

Ps5. The pixels in the same row contain the same panel signatsimnilar, as demonstrated in [32, Table 1V]. For comparison, only
with abundance fractions assigned by 1.0, 0.8, 0.6, 0.4, and 0e&ults foiISNR, = 5dB and10 dB are shownin Figs. 10 and 11,
respectively, i.e. = (1.0,0.8,0.6,0.4,0.2)". In this case, respectively, where the amounts of detected abundance fractions
the mixing matrixM is formed byM = [P, P> P; P, Ps].In are also plotted for reference. Unlike the case of skewness,
addition, a background scene shown in Fig. 9(b) was also added LSRMA using kurtosis produced a very large number of
to these 25 simulated pixels. It was simulated by two backgrouodmponents fosNR = 30dB,25dB,20dB,15dB,10dB, ands
signatures, tree and grass uniformly with their abundance fratB, butall 25 panel pixels were detected and accurately classified
tions being positive and summed to one. In addition, a zero-mdato their own classes in the first five components. Since the
Gaussian noise with different variances is added to achieve d#sults for all the cases were similar except for different amounts
ferent levels of SNR. In the following simulations, six scenariosf abundance fractions detected by different SNRs, only results
were simulated to achieve different SNR, WiR = 30dB,25 forthe case d3NR = 5dBisshowninFig. 12. Itis worth noting

dB, 20 dB, 15 dB, 10 dB, and5 dB were conducted to evaluatethat there were also interferers and background signatures with
the performance of the LSRMA for skewness and kurtosis. telatively small abundance fractions detected in the components
the skewness case, the ICA converged to five components bayond the first five components. Furthermore, as the SNR
SNR = 30dB,25dB, 20dB, 15 dB, and10 dB, and all 25 panel was increased, the number of converged components was also
pixels were detected and accurately classified into their ovmcreased, but the amount of detected abundance fractions are
classes in these five components. For the caS&®& — 5dB, more accurate and close to the true abundance fractions. This
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(a) panels in row 5 (b) panels in row 4

(c)panels in row 3

(e) panels in row 2

Fig. 11. Detection and classification results produced by the LSRMASIRR = 10 dB using skewness: (a) panels in row 5; (b) panels in row 4; (c) panels in
row 3; (d) panels in row 1; and (e) panels in row 2.

implies that more interferers background signatures were aliulation using the skewness witfiNR = 5 dB. In order to
detected, each of which was classified into a separate and imidiake a comparison, we also conducted a similar experiment for
vidual component. These computer simulations demonstrajee: L. = 169. The results for skewness and kurtosis are shown
thatkurtosisis very effective but also sensitive to target detection.Figs. 15 and 16, respectively, where the interferer and all 15
In addition, the performance of both criteria is also proportionplnels were detected and classified into six separate compo-
to the strength of SNR. nents. Like previous experiments, both skewness and kurtosis
Example 5 (Real HYDICE Scenekn this example, we con- have the same difficulty with discriminating panels in row 2
ducted experiments based on the real scene in Fig. 8(a) whieoen those in row 3. It should be noted that only 6 and 13 compo-
the number of mixing targets was estimated topbe- 20 + nents were produced by the skewness and the kurtosis, respec-
1 = 21 by the Neyman—Pearson eigen-thresholding methaidely. This implies thap is greater than the number of targets
proposed in [28] and [29]. Figs. 13 and 14 show the results gdsix in this example), and the number of the components will be
erated by the LSRMA using skewness and kurtosis, respectivadyentually reduced no matter how large the valug if.
As we can see from these figures, the LSRMA was able to de-According to our experiments running from 5 to 40, it
tectall 15 panels in the second through sixth components in batihned out that whep > 18, the LSRMA using skewness
cases where the panels in the third column were barely visibéad kurtosis became stable in the sense that all 15 panels
This is because these panels are of size & Inm, while the and the interferer were detected in the first six independent
spatial resolution is 1.5 m 1.5 m. In this case, the detectioncomponents. The remaining components beyond six contain
of the panels of 1 nx 1 m is actually subpixel detection. Inter-mostly noise and background signatures such as grass, forest,
estingly, a strong interferer located in the left upper corner tree, road, etc. In this case, our estimate- 21 produced by
the forest of Fig. 8(a) was detected by both skewness and kilre proposed eigen-thresholding method in [28] and [29] was
tosis in their first component. By visual inspection of the scemeasonably close to 18.
in Fig. 8(a), there is no way to identify this interferer. The de-
tection of the unidentified interferer in Fig. 8 and the anoma-
lous target in Fig. 1(a) demonstrates that the LSRMA can be
used as an anomaly detector to detect unknown targets. Howhn view of the fact that the images generated by LSRMA are
ever, it was unable to discriminate panels in row 2 from thogenerally grayscale, the detection is usually carried out by vi-
in row 3. This also was witnessed in Fig. 10(a) by the computsual inspection. The interpretation of detection and classifica-

V. AUTOMATIC THRESHOLDING METHOD
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(a) panels in row 5 b) panels in row 4

(¢) panels in row 3 (d) panels in row 1

(e) panels in row 2 (f) interferers & noise

(h) interferers & noise

(g) interferers & noise

Fig. 12. Detection and classification results produced by the LSRMA SR = 5 dB using kurtosis: (a) panels in row 5; (b) panels in row 4; (c) panels in
row 3; (d) panels in row 1; (e) panels in row 2; and (f)—(h) noise or interferers.

tion results can be subjective and vary with human judgmewrtthreshold valuey, can be used to segment targets out from the
In order to avoid such human intervention and to make an dbackground by a prescribed confidence coefficiesich that
jective assessment, we develop a computer-automated thresh- Plaw) = 7. (17)
olding method in this section. The suggested threshold criterimq . i L

. . re precisely, assume that the confidence coefficient is set to
was proposed in [33], and can be used to automatically extrac .

. wi h P(ag) = ~. If busrma(r) > o, r will be detected as a

the anomalous target pixels and segment them from the back- . : :
ground. target pixel and a background pixel, otherwise. It should be noted

Let Spsria () be the abundance fraction of an image pixelthatthe confidence coefficient can be adjusted and is determined

resulting from LSRMA, which will represent gray level value Op_ytargetsize. Forsmalltargets such as panelsin Fig. 8(a), apanel

. size of 3 mx 3 m with pixel resolution 1.5 m would have at most
r. It should be noted that sgna(r) is generally a real number . : X .
e . four pixels. Therefore, the ratio of a panel with four pixels to the
and does not necessarily lie in the range [0,1]. For a given g

ray. " . . . :
level valuen, we define a rejection region, denoted Bjn) — eXure image size with 6464 = 4096 pixels is no more than

{r|smaia(r) < a}, by asetmade up of all the image pixels i|}o'001' In this case, a reasonable estimate of the confidence coef-

the LSRMA-generated image whose gray level values less t#g'c'enw would be approximately = 1 — 0.001 = 0.999. Ta-

n . -
thea. We then use the histogram ofthe L SRMA-generated ima esland Il tally the number of panel B pixels detectedin Figs. 13
to define the rejection probabiliti («) as

%d 14 withy = 0.997, 0.998, and0.999, respectively. When
v = 0.999, both skewness and kurtosis can achieve 0% false

P(a) = Pr(R(w)). (16) alarmrate, they also missed detection of six B pixels. Onthe other
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(c) panels in row 4

(a) interferer

(b) panels in row 1

) “

(e) panels in row 3 (f) panels in row 2 (h) k

(d) panels in row 5

D gEmE—

@

®

(@

Fig. 13. Detection and classification results produced by the LSRMA with 21 using skewness: (a) interferer; (b) panels in row 1; (c) panels in row 4; (d)
panels in row 5; (e) panels in row 3; (f) panels in row 2; and (g)—(r) noise or interferers.

hand, wher was decreased to 0.997, both skewness and kurtosislity ofthe LSRMA in subpixeldetection. Moreimportantly, the
detected all the 19 B pixels of the 15 panels at the expense of dgperiments also suggest that the three assumptions made for the
tecting nine and seven false alarm pixels, respectively. Fig. 17[zRMA inthe introduction seemto be reasonable and acceptable
and (b) shows the binary images resulting from thresholding theour applications.

images in Figs. 13(b)—(f) and 14(b)—(f) using= 0.997 as the In order to evaluate the performance of LSRMA, two linear
confidence coefficientin (17). As we can see from these imagesmixing methods, OSP, in [23] and CEM in [24] were used
the five B pixels of panels in the third column (i.e:3, p23, p33, for comparative analysis. Such selections were made based on
pa3, andpsz in Fig. 8(b), one for each row) were effectively detwo reasons. One is that both OSP and CEM have shown suc-
tected in Fig. 17(a) and (b) by both skewness and kurtosis withss in target detection and classification and have been used in
~ = 0.997. It should be noted that these five B panel pixals, hyperspectral image analysis. Another is from a target knowl-
P23, P33, P43, @ndpsz cannot be seen from visual inspection oédge viewpoint. The OSP requires complete target knowledge,
Fig. 8(a) because their size is merely of xm m and smaller whereas the CEM only needs the knowledge of the desired target
thanthe 1.5 mpixelresolution. Thisexamplefurtherdemonstratisinterest. Compared to the OSP and the CEM, the LSRMA
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(a) interferer (b) panels in row 1 (c) panelsinrow 5 (d) panels in row 4
(e) panels in row 3 (f) panels in row 2 (g

(M)

Fig. 14. Detection and classification results produced by the LSRMAmvith21 using kurosis: (a) interferer; (b) panels in row 1; (c) panels in row 5; (d) panels

in row 4; (e) panels in row 3; (f) panels in row 2; and (g)—(i) noise or interferers.

..

(a) interferer (b) panels in row 1 (c) panels in row 4
(d) panels inrow 5 (e) panels in row 5 (f) panels in row 4

Fig. 15. Detection and classification results produced by the LSRMA with 169 using skewness: (a) interferer; (b) panels in row 1; (c) panels in row 4; (d)
panels in row 5; (e) panels in row 3; and (f) panels in row 2.

does not require any prior target knowledge exgepthichis ~ = 0.997, 0.998, and0.999 where the OSP used the five
the number of targets assumed to be present in the image scpaeel signatures in Fig. 8(c) as its complete target knowledge
However, if p can be estimated reliably, in fact, the LSRMAwhile the CEM only used®; as its desired target signature to
does not need any information at all. detect panels in row. Interestingly, if we compare Table IV
Tables 1l and IV tally the results produced by thdo Tables | and Il, the LSRMA performed as well as the CEM
OSP and the CEM using the same confidence coefficierstad their results were nearly the same, even if the LSRMA did
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(c) panels in row 5

(a) interferer (b) panels in row 1

(d) panels in row 4 (e) panels in row 3 (f) panels in row 2

(® ()

0 (k) ®

Fig. 16. Detection and classification results produced by the LSRMA with 169 using kurosis: (a) interferer; (b) panels in row 1; (c) panels in row 5; (d)
panels in row 4; (e) panels in row 3; (f) panels in row 2; and (g)—(l) noise or interferers.

TABLE | TABLE I
TALLY OF NUMBER OF PANEL B PIXELS TALLY OF NUMBER OF PANEL B PIXELS DETECTED IN FIG. 14(B)—(F) WITH
DETECTED INFIG. 13@)—(F) WITH v = 0.997, 0.998, AND 0.999 v = 0.997, 0.998, AND 0.999
y=10.997 y=10.998 Yy =0.999 y=0.997 y=10.998 y=0.999

T Ng  Npp Ne Nep N Nep  Np T Ne__ Nsp Ng Npp Nr Nep N
P1 3 3 0 2 0 2 0 P1 3 3 0 2 0 2 0
P2 4 4 3 3 2 3 0 P2 4 4 2 4 1 3 0
P3 4 4 4 4 0 2 0 P3 4 4 3 4 0 2 0
P4 4 4 1 4 0 3 0 P4 4 4 1 4 0 3 0
P5 4 4 1 3 0 3 0 P5 4 4 1 3 0 3 0
Total 19 19 9 16 2 13 0 Total 19 19 7 17 1 13 0

not assume any target knowledge. On the other hand, Table IlI V1. CoNCLUSION

shows that the OSP performed very poorly. This is because théhis paper presented an ICA-based LSRMA approach to
target knowledge used in the OSP did not well represent thgperspectral target detection and classification. It is different
image scene. It was made up of only the five panel signatufesm the commonly used ICA approach in that the learning

{P., P», P;, P,, Ps} and did not include background signaturealgorithm is derived from the orthogonality constraint imposed

such as the large grass field, the forest on the left edge and émethe abundance vector rather than the separating matrix
road on the right edge of the scene. W. In addition, the separating matriW is not necessarily
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TABLE I
TALLY OF NUMBER OF PANEL B PIXELS PRODUCED BY THEOSP WTH
v = 0.997, 0.998, AND 0.999

y=0.997 y=0.998 y=0.999

T N Ngp Nr Nsp Nr Nep Ng

P1 3 0 13 0 8 0 5

P2 4 0 15 0 8 0 4

P3 4 0 12 0 8 0 5

Detection of Panel 1 (0,=4.9019) Detection of Panel 2 (0,,=5.7652) P4 4 0 14 0 9 0 4
P5 4 1 12 1 8 0 4

Total 19 1 66 1 41 0 22

TABLE IV

TALLY OF NUMBER OF PANEL B PIXELS PRODUCED BY THECEM WITH
~ = 0.997, 0.998, AND 0.999

¥=0.997 7=0998 ¥=0.999

Detection of Panel 3 (0,,=4.0263) Detection of Panel 4 (o, =3.6379) T Np Nap Ne Neo N; Nep Nr
P1 3 3 0 2 0 2 0

P2 4 4 2 4 1 3 0

P3 4 4 1 4 0 3 0

P4 4 4 2 4 0 3 0

PS 4 4 0 3 0 3 0

Total 19 19 5 17 1 14 0

signatures are generally similar to some degree and not orthog-
onal. The new designed learning algorithm is able to converge
to nonorthogonal independent components. The proposed
LSRMA offers several advantages over existing LSMA-based
techniques which require complete knowledge Kdrused in
the linear model. It has been shown in [34] that LSMA-based
techniques were sensitive to target knowleddgeand noise.
The proposed LSRMA does not have this sensitivity problem
since there is no target knowledge required for Meused
in LSRMA. Second, the LSMA-based techniques generally
use the least squares error as an optimal criterion which is the
second-order statistics. However, the criteria such as relative
entropy, skewness and kurtosis used in LSRMA go beyond
the second-order statistics and have been shown effective
in target detection in [20] and [35]. Third, assuming that
abundance fractions as random signal sources seems more
appropriate to nonstationary environments. Furthermore, in
order to obtain an objective assessment without appealing for
human interpretation, an automatic thresholding method is
also introduced in this paper. In particular, a quantitative study
is also conducted in this paper for comparative analysis with
two commonly used methods, OSP which requires complete
target knowledge and CEM which only needs partial target
knowledge. As shown in experiments, the LSRMA performed
as well as CEM and significantly better than OSP. Interestingly,
as also demonstrated by experiments, skewness and kurtosis
Detection of Panel 3 (0, =4.1389) Detection of all the 15 panels used in the LSRMA have different strengths in classification.

, o () Because the skewness measures asymmetry of a distribution, it
Fig. 17. (a) Image in Fig. 13(b)—(f) thresholded by the valuespthat were .
determined by, = 0.997 via (17). (b) Image in Fig. 14(b)—(7) thresholded bydenerally can detect changes in large areas. On the other hand,
the values ofy, that were determined by = 0.997 via (17). the kurtosis measures the flatness of a distribution, thus it can
detect small targets.

Detection of Panel 5 (¢, =4.3647) Detection of all the 15 panels

@

Detection of Panel 1 (0, =4.7596) Detection of Panel 2 (0, =5.2888)

Detection of Panel 3 (0, =3.4243) Detection of Panel 4 (0,=3.6922)

a square matrix of full rank nor is the mixing matrixI
orthogonal. These advantages are very useful in hyperspectral
image classification. Since hyperspectral sensors are capabl&he authors would like to thank Dr. J. C. Harsanyi for pro-
of uncovering targets with subtle differences, their spectraiding the AVIRIS data.
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