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Linear Mixture Analysis-Based Compression
for Hyperspectal Image Analysis
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Abstract—Due to significantly improved spectral resolution
produced by hyperspectral sensors, the band-to-band correlation
is generally very high and can be removed without loss of crucial
information. Data compression is an effective means to eliminate
such redundancy resulting from high interband correlation. In
hyperspectral imagery, various information comes from different
signal sources, which include man-made targets, natural back-
grounds, unknown clutters, interferers, unidentified anomalies,
etc. In many applications, whether or not a compression technique
is effective is measured by the degree of information loss rather
than information recovery. For example, compression of noise or
interferers is highly desirable to image analysis and interpretation.
In this paper, we present an unsupervised fully constrained least
squares (UFCLS) linear spectral mixture analysis (LSMA)-based
compression technique for hyperspectral target detection and
classification. Unlike most compression techniques, which deal di-
rectly with grayscale images, the proposed compression approach
generates and encodes the fractional abundance images of targets
of interest present in an image scene to achieve data compression.
Since the vital information used for image analysis is generally
preserved and retained in these fractional abundance images, the
loss of information may have little impact on image analysis. On
some occasions, it even improves performance analysis. Airborne
Visible/InfraRed Imaging Spectrometer (AVIRIS) and Hyper-
spectral Digital Imagery Collection Experiment (HYDICE) data
are used for experiments to evaluate our proposed LSMA-based
compression technique used for applications in hyperspectral
detection and image classification. The classification results using
the original data and the UFCLS-decompressed data are shown
to be very close with no visible difference. But a compression ratio
for the HYDICE data with water bands removed can achieve as
high as 138 : 1 with peak SNR (PSNR) 33 dB, while a compression
ratio of the AVIRIS scene also with water bands removed is 90 : 1
with PSNR 40 dB.

Index Terms—Fully constrained least squares linear unmixing
(FCLSLU), hyperspectral data compression, linear spectral
mixture analysis (LSMA), nonnegatively constrained least squares
(NCLS), unsupervised fully constrained least squares linear
unmixing (UFCLSLU).
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I. INTRODUCTION

WITH VERY HIGH spectral resolution, hyperspectral im-
agery expands the capability of multispectral imagery

in many ways, such as subpixel detection, object discrimina-
tion, mixed-pixel classification, and material quantification, etc.
However, it also presents new challenges to image analysts, par-
ticularly, how to effectively deal with the enormous data vol-
umes while still achieving desired goals. One common prac-
tice is to compress data prior to image analysis. For remotely
sensed imagery, both lossless compression and lossy compres-
sion have been studied and investigated extensively in the past
[1]–[8]. In hyperspectral data exploitation, a fundamental task is
target/object detection and classification. In military and intel-
ligence applications, man-made targets are most significant ob-
jects of interest, but they are also relatively small. As a matter of
fact, their occurrence may only appear in a few pixels. If lossy
compression is performed without taking these objects into ac-
count, these small targets may be suppressed inadvertently. On
the other hand, if lossless compression is performed, these tar-
gets may survive by compression, but many unknown image
background signatures and noise may also be preserved and
could further obscure the desired targets. From a target detec-
tion and image classification point of view, the performance in
detection and classification is generally determined by how we
can effectively use features of targets in the image data rather
than the entire data. A good example is Fisher’s linear discrim-
inant analysis (LDA) [9] that has been widely used in pattern
classification. As a result, lossless compression does not pro-
vide additional advantages over lossy compression in the sense
of feature extraction.

To evaluate the effect of compression, selecting an appro-
priate criterion for optimality to meet a specific goal is cru-
cial. For example, principal components analysis (PCA), also
known as the Karhunen–Loeve transform (KLT), is a commonly
used compression technique that represents data in a few prin-
cipal components by finding projections along the largest data
variances [10]–[13]. Unfortunately, it was recently shown in
[14]–[16] that the SNR is a better criterion than variance to mea-
sure image quality for multispectral imagery. Similarly, mean-
squared error (MSE) has been also used as a common criterion
for optimality in communications and signal processing, such as
quantization. Nevertheless, it is also known that the MSE may
not be an appropriate measure for image quality. In hyperspec-
tral imagery, its very high spatial and spectral resolution enables
us to reveal many subtle substances, some of which may be very
important in image analysis, but their spatial extent can be lim-
ited to relatively small areas. If the data variance or the MSE is
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used as a compression criterion, these substances may be very
likely suppressed and sacrificed.

In this paper, we consider applications as compression cri-
teria. In particular, we are mainly interested in spectral compres-
sion rather than spatial compression, and we investigate an ap-
plication of linear spectral mixture analysis (LSMA) [17], [18]
in hyperspectral image compression from a perspective of target
detection and classification. The targets referred to here repre-
sent the material substances of interest present in image data.
Unlike Fisher’s LDA, which can be used to compress data from
a pattern classification viewpoint, our proposed LSMA-based
compression technique is developed based on target detection
and classification. To be more specific, in pattern classifica-
tion, every image pixel must be assigned to one of the pat-
tern classes. It includes classification of background that may
not be of interest in applications. In target classification, pat-
tern classes are target classes that are only made up of targets
of particular interest such as man-made targets, and the clas-
sification is generally performed on these targets without ref-
erence to image background. In order to account for such ap-
plications, the commonly used compression criteria, e.g., SNR,
data variance, and MSE, may not be applicable. Instead, an ap-
plication-based criterion is more appropriate. One such an ap-
plication-based approach was suggested in [19], which used an
LSMA-based orthogonal projection (OP) filter to compress Air-
borne Visible/InfraRed Imaging Spectrometer (AVIRIS) data to
achieve target classification. The proposed OP filter was based
on feature extraction and is the same classifier as proposed in
[20], called the orthogonal subspace projection (OSP) classi-
fier. Using the LSMA to compress hyperspectral images can
be beneficial because it preserves spectral properties of ma-
terial substances present in pixels where the abundance frac-
tions of the substances are important features in detection and
classification. In this case, dealing directly with these abun-
dance fractions may be more effective than working on the entire
hyperspectral image cube. Since the number of material sub-
stances is generally much smaller than that of spectral bands,
a considerable compression can be always achieved by pre-
serving images that represent substance abundance fractions,
referred to as fractional abundance images in this paper. Ad-
ditionally, such fractional abundance images may be sufficient
to provide all necessary information for performance analysis.
Unfortunately, the OP filter approach in [19] is an unconstrained
LSMA-based linear unmixing method, which did not accurately
estimate the substance abundance fractions. Consequently, re-
sults obtained by using these abundance fractions as features for
compression may be misleading. Similar problems also occur
in the approaches proposed in [21] where the filter vector al-
gorithm (FVA) was not abundance-constrained. In order to re-
solve this problem, two constraints ought to be imposed on
the LSMA, which are: 1) the abundance sum-to-one constraint
(ASC), where the abundance fractions of all the targets must
be summed to one and 2) the abundance nonnegativity con-
straint (ANC), where the abundance fractions of all the targets
must be nonnegative. The resulting LSMA technique is called
fully constrained LSMA, which has been studied in the past
[22]–[27]. The LSMA-based compression approach proposed
in this paper is derived from techniques in [27]. Part of our re-

sults was also reported in [28]. It has two important features:
it is a fully constrained LSMA-based compression method and
also completely unsupervised. It generates a set of fractional
abundance images in an unsupervised manner, and then com-
presses the image data by only encoding these fractional abun-
dance images. The benefit resulting from such spectral compres-
sion is tremendous, because the image background can be sig-
nificantly compressed, and the resulting variances of fractional
abundance images are also substantially reduced. As a conse-
quence, the spatial correlation that still remains is only among
target pixels present in these abundance images. Since the pop-
ulation of target pixels of interest is relatively small, very little
spatial redundancy needs to be removed. In this case, an entropy
coding method such as Huffman coding can effectively remove
coding redundancy pixel-by-pixel. A similar approach, referred
to as unmixing/wavelet in [13], was also recently investigated,
where it used a spectral library and a standard linear unmixing
followed by wavelets to compress data and applied anomaly de-
tection as exploitation criterion to the compressed-reconstructed
data. Our proposed LSMA-based compression is different from
this approach in that it is a fully abundance-constrained linear
unmixing method that can be carried out in a completely unsu-
pervised fashion.

The remainder of this paper is organized as follows. Section II
briefly describes the LSMA. Section III introduces a fully con-
strained least squares linear unmixing (FCLSLU) method. Sec-
tion IV develops an unsupervised FCLSLU (UFCLSLU)-based
compression technique for hyperspectral image compression.
Section V presents qualitative and quantitative experimental re-
sults using HYDICE (Hyperspectral Digital Imagery Collection
Experiment) data. Section VI concludes with some remarks.

II. LSMA

Remotely sensed images can be represented by image cubes
with the third dimension specified by spectral bands. Therefore,
unlike standard spatial-based image processing, remote sensing
image processing must deal with spatial as well as spectral
information. When data compression is performed for remote
sensing imagery, both spatial and spectral redundancy must
be considered. Many techniques reported in multispectral/hy-
perspectral data compression, such as transform coding, PCA,
discrete cosine transform, vector quantization, and wavelet
transform, etc., have been focused on design of coding tech-
niques rather than on their utility in applications. In many
cases, compression can be more effective if applications are
specified. This paper takes this approach by considering target
detection and classification as criteria for hyperspectral data
compression. Our particular interest is to take advantage of the
utility of the LSMA [17], [18] in hyperspectral image analysis
to compress data. In this case, the information not relevant
to targets of interest used in the linear mixture model will be
compressed with little impact on the final results. Suppose that

is the number of spectral bands. Let be an column
pixel vector in a multispectral or hyperspectral image, where
boldface is used for vectors. Assume that there are targets of
interest, in an image scene. Let be an
target signature matrix denoted by , where
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is an column vector represented by the signature of
the th target resident in the pixel . Further, assume that

is a target abundance column
vector associated with , where denotes the abundance
fraction of the th target signature in . A general approach is to
model a pixel vector as a linear mixture of
as follows:

(1)

where is included to account for either a measurement or
model error. Here, without confusion, will be used to repre-
sent either the pixel vector or its spectral signature (i.e., dig-
ital numbers). The model represented by (1) is a linear regres-
sion form, which assumes that the spectral signature is lin-
early mixed by distinct spectral signatures
with unknown mixing coefficients . A general
approach to solving (or estimating) the unknown mixing coeffi-
cients in (1) is linear spectral mixture analysis,
where a fractional abundance image is generated by the LSMA
for each of the mixing coefficients. In other words, a fractional
abundance image is a grayscale image with grayscales repre-
senting abundance fractions of a mixing substance that is spec-
ified by a particular target present in each image pixel vector.
The mixed pixel is then classified according to the set of
fractional abundance images generated by the LSMA that cor-
respond to . By virtue of these fractional abun-
dance images, we can compress the image data by encoding
each image pixel vector using its corresponding abundance
vector rather than the image pixel vector itself. As a re-
sult, the original -band hyperspectral image cube can be rep-
resented by these two-dimensional (2-D) fractional abundance
images. Since is usually much smaller than in hyperspectral
imagery, a significant compression can be achieved. In addition,
if the estimated abundance vector can faithfully represent an
image pixel vector , the loss of information will be immate-
rial and have little impact on image analysis. In order to accom-
plish this goal, two constraints are imposed on in (1): 1) ASC
( ) and 2) ANC ( for all ).
Because there are generally no closed-form solutions to linear
mixing problems imposing both constraints, we must rely on nu-
merical algorithms to generate optimal solutions. Fortunately, a
fully constrained least squares linear unmixing method recently
developed in [27] can be used for this purpose.

III. UFCLSLU

Since data compression generally takes place with no prior
knowledge, the FCLSLU must be performed in an unsupervised
manner. In this section, we describe an unsupervised FCLSLU
method developed in [27] that will generate all necessary target
knowledge directly from image data for the linear mixture
model used in (1).

A. FCLSLU

In what follows, we will briefly describe the FCLSLU method
with details referred to [22], [26], and [27]. First of all, we find
the unconstrained optimal least squares estimate of , , for

model (1) where both constraints ASC and ANC are not im-
posed. It can be obtained by

(2)

which will be used as an initial estimate of .
Next, the ANC is imposed on model (1), which results in a

nonnegatively constrained least squares (NCLS) problem de-
scribed by

Minimize LSE subject to (3)

where the LSE is the least squares error used as the optimal
criterion and represents the nonnegativity constraint:

for all . Since is a set of inequalities,
the Lagrange multiplier method is not applicable to finding op-
timal solutions. In order to resolve this dilemma, we introduce
an unknown -dimensional positive constraint constant vector

with for to take care
of the nonnegativity constraint. By means of , we form a La-
grangian as follows:

(4)

with and

(5)

which results in the following two iterative equations given by

(6)

and

(7)

which can be used to solve the optimal solution and the
Lagrange multiplier vector .

In order to solve the NCLS problem, an iterative algorithm
proposed in [22] is used to generate the solution to (3). It should
be noted that the idea of the NCLS algorithm can be traced back
to Lawton and Hanson [29]. Two index sets, called a passive
set consisting of all indexes corresponding to positive com-
ponents in the estimate given by (2) and an active set
containing all indexes corresponding to negative (or zero) com-
ponents in the estimate are used to iterate (6) and (7). It
was shown in [22] and [29] that when an optimal NCLS solu-
tion was found, the Lagrange multiplier vector must satisfy
the following equations:

(8)

An implementation of the NCLS algorithm is provided in the
following with more details in [22].

NCLS Algorithm

Step 1): Initialization:

Set the passive set P (0)
= f1; 2; . . . ; pg and active

set R(0)
= . Set k = 0.

Step 2): Compute �̂��LS using (2). Let �̂��
(k)
NCLS=�̂��LS.
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Step 3): At the kth iteration, if all compo-

nents in �̂��
(k)
NCLS are positive, the algorithm is

terminated. Otherwise, it is continued.

Step 4): Let k = k + 1.

Step 5): Move all indexes in P
(k�1) that corre-

spond to negative components of �̂��
(k�1)
NCLS to R

(k�1)

and the resulting index sets are denoted by

P
(k) and R

(k), respectively. Create a new index

set S
(k) and set it equal to R

(k).

Step 6): Let �̂��R denote the vector consisting

of all components �̂��LS in R
(k).

Step 7): Form a steering matrix �
(k)
� by

deleting all rows and columns in the matrix

(MT
M)�1 that are specified by P

(k).

Step 8): Calculate ���
(k) = (�

(k)
� )�1�̂��R . If all

components in ���
(k) are negative, go to Step

13). Otherwise, continue.

Step 9): Calculate �
(k)
max = argfmaxj �

(k)
j g and move

the index inR(k) that corresponds to �(k)max to P
(k).

Step 10): Form another matrix 	
(k)
� by deleting

every column of (MT
M)�1 specified by P

(k).

Step 11): Set �̂��S = �̂��LS � 	
(k)
� ���

(k).

Step 12): If any components of �̂��S in S
(k) are

negative, then move these components from P
(k)

to R
(k). Go to Step 6).

Step 13): Form another matrix 	
(k)
� by deleting

every column of (MT
M)�1 specified by P

(k).

Step 14): Set �̂��(k)NCLS = �̂��LS �	
(k)
� ���

(k). Go to Step 3).

In order to satisfy the second constraint ASC, we include the
ASC in the signature matrix by introducing a new signature
matrix , defined by

(9)

with , and a vector denoted by

(10)

The introduction of the parameter in (9) and (10) is to control
the impact of the ASC. Using these two equations, an FCLSLU
algorithm can be derived directly from the NCLS algorithm by
replacing and used in the NCLS algorithm with and .

B. UFCLSLU

The FCLSLU requires a complete knowledge of the target
signature matrix . In order for it to be applied to a situa-
tion where no a priori information is available, an unsupervised
process is needed to generate from the data the desired target
information for the FCLSLU. Two criteria were previously de-
veloped for this purpose. One was the nearest neighbor rule
from which an unsupervised vector quantization method was
derived to find interferers [30]. The other is the target genera-
tion process proposed in [31], which was based on the principle
of orthogonality. Instead, this paper will use the least squares

Fig. 1. Block diagram of UFCLSLU-based compression algorithm.

Fig. 2. AVIRIS LCVF scene of size 200 � 200 (band 100).

TABLE I
SNR, PSNR, AND CR PRODUCED BY THE PCA, LSLU, FCLSLU, AND

UFCLSLU METHODS FOR THE AVIRIS EXPERIMENTS

error (LSE)-based criterion proposed in [27] as an alternative.
Its idea can be described as follows.

Initially, we can select any arbitrary pixel vector as an initial
desired target denoted by . However, a good choice, but not
necessarily the best choice, may be a pixel vector with the max-
imum length, which has the highest intensity, i.e., the brightest
pixel in the image scene. In any case, our experiments found
that the brightest pixel was always extracted later on, if it was
not used as an initial target pixel in the first place. We then as-
sume that all other pixel vectors in the image scene are pure
pixels made up of with 100% abundance. Of course, this is
generally not true. So, we find a pixel vector that has the largest
LSE between itself and , and we select it as a first target pixel
vector denoted by . Because the LSE between and is the
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TABLE II
VARIANCES OF FRACTIONAL ABUNDANCE IMAGES USING UNCONSTRAINED AND CONSTRAINED LEAST SQUARES ESTIMATION

largest, it can be expected that is most distinct from . We
then form a target signature matrix and create the
matrix and using (9) and (10). The FCLSLU algorithm is
then used to estimate the abundance fractions for and , de-
noted by and for each pixel , respectively. Here,

is included in the estimated abundance fractions and
to emphasize that and are functions of

and vary with . The superscript indicates the number of iter-
ations currently being executed. Now, we find an optimal con-
strained linear mixture of and , , to
approximate the . We then calculate the LSE between and
its estimated linear mixture for all image
pixel vectors . Once again, a pixel vector that yields the largest
LSE between itself and its estimated linear mixture will be se-
lected to be a second target pixel vector . As expected, such a
selected target pixel has the largest projection orthogonal to the
space linearly spanned by and . In other words, the pixel
that yields the largest LSE resulting from a constrained linear
mixture approximation is a most likely target pixel vector yet to
be found in the image scene. The same procedure of using the
FCLSLU algorithm with is repeated until the
resulting LSE is below a prescribed error threshold. It should
be noted that if there is partial knowledge available a priori,
it can be incorporated into the above process. For example, if
more than one target signature is known, we can select those
target signatures as an initial target set and then follow the pro-
cedure described above until the LSE is sufficiently small. The
procedure outlined as above is called unsupervised FCLSLU al-
gorithm, which can be summarized as follows.

UFCLSLU Algorithm

Step 1): Initial condition:

Select " to be a prescribed error threshold,

and let t0 = argfmaxr[r
T
r]g where r is run over

all image pixel vectors. Let k = 0.

Step 2): Find t1 that yields the

largest LSE(0)(r) = (r � t0)
T (r � t0), i.e.,

t1 = argfmaxr LSE
(0)(r)g.

Step 3): Let k  k + 1, and apply the FCLSLU

algorithm with the signature matrix M =

[t0; t1; . . . tk], N = �M

1
, and s = �r

1
to esti-

mate the abundance fractions of t0, t1, . . ., tk,

�̂
(k)
0 (r), �̂

(k)
1 (r), . . ., �̂

(k)
k�1(r).

Step 4): Find the least squares error defined

by

LSE(k)(r) = r�

k

i=0

�̂
(k)
i

(r)ti

T

r�

k

i=0

�̂
(k)
i

(r)ti

(11)

TABLE III
SNR, PSNR, AND CR PRODUCED BY THE PCA, LSLU, FCLSLU, AND

UFCLSLU METHODS WITH DIFFERENT ROUND-OFF ERRORS FOR THE

HYDICE EXPERIMENTS

and check the error if LSE(k)(r) < " for all r.

If it is, the algorithm stops. Otherwise, con-

tinue.

Step 5): Find tk+1 = argfmaxr LSE
(k)(r)g. Go to

Step 3).

It should be noted that is a monotonically de-
creasing sequence at ; thus it converges. The computational
complexity of the UFCLSLU algorithm can be estimated based
on the number of computations performed. The major computa-
tion in each iteration comes from the calculation of the inverse
of the steering matrix . It increases with as the algorithm
is applied to each pixel vector, where is the number of target
signatures used to calculate the LSE, and is a matrix.
Therefore, the total number of computations is on the order of

, where is the total number of pixel vectors in the image
scene.

IV. UFCLSLU-BASED HYPERSPECTRAL IMAGE COMPRESSION

Over the past years, criteria to measure effectiveness of loss-
less or lossy compression have been focused on the fidelity of
image quality such as SNR, entropy, MSE, etc., rather than ap-
plications. In this section, we describe how we can take advan-
tage of applications to achieve high compression ratios while
preserving desired information. As indicated in the introduc-
tion, hyperspectral sensors can uncover many unknown signal
sources that cannot be identified by visually or a priori. These
unknown or unidentified signatures may include natural back-
ground signatures and unwanted clutters/interferers that may
hinder image interpretation. Under such circumstances, lossless
compression seems to offer no advantage for image analysis be-
cause it also preserves such unknown and unwanted informa-
tion such as noise and interference. On the other hand, lossy
compression only preserves information in some optimal sense
of entropy or MSE. However, in military and intelligence ap-
plications, targets of interest are generally man-made and rel-
atively small, such as vehicles. They usually occur with low
probabilities and account for a small population, but are cru-
cial to image analysis. Such information may be very likely
to be sacrificed by lossy compression unless these targets are
taken into account during data compression. This is particu-
larly important for the HYDICE sensor, which can extract very
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(a) Using the original uncompressed image

(b) Using the images reconstructed from the PCA-generated four PC images

(c) Using the images reconstructed from the LSLU-generated fractional abundance images

(d) Using the images reconstructed from the FCLSLU-generated fractional abundance images

(e) Using the image reconstructed from PCA-generated five PC images

(f) Using the image reconstructed from PCA-generated six PC images

Fig. 3. (a) Supervised classification results produced by the original uncompressed image for the AVIRIS experiment. (b) Supervised classification results
produced by the images reconstructed from the four principal component images for the AVIRIS experiment. (c) Supervised classification results produced by
the images reconstructed from the LSLU-generated fractional abundance images for the AVIRIS experiment. (d) Supervised classification results produced by
the images reconstructed from the FCLSLU-generated fractional abundance images for the AVIRIS experiment. (e) Supervised classification results produced
by the images reconstructed from the five principal component images for the AVIRIS experiment. (f) Supervised classification results produced by the images
reconstructed from the six principal component images for the AVIRIS experiment.

small targets with size ranging from 1–4 m with flight attitudes
from 5000–15 000 ft. Such small targets generally occupy only
a few pixels. Compared to the entire image scene, these tar-
gets can be easily overlooked and compromised by lossy com-
pression. Furthermore, strong interferers, such as those resulting

from scratches, may dominate small targets, and their existence
will be considered to be important information from an image
quality point of view. So, these interferers will be very likely
retained in the compressed image. As an example, when PCA
is performed, small targets may appear in minor components,



DU AND CHANG: COMPRESSION FOR HYPERSPECTAL IMAGE ANALYSIS 881

(a) Using the original uncompressed image

(b) Using the image reconstructed from the UFCLSLU-generated fractional abundance images

Fig. 4. (a) Unsupervised classification results produced by the original uncompressed image for the AVIRIS experiment. (b) Unsupervised classification results
produced by the images reconstructed from the images reconstructed from the UFCLSLU-generated fractional abundance images for the AVIRIS experiment.

while strong interferers may show up in the first few principal
components, which may confuse image analysis. In order to
cope with this problem, application-based lossy compression is
a more realistic approach. In this section, we consider an ap-
proach to target detection and classification-based compression.
As will be shown in the following experiments, it not only can
achieve very high compression ratios, but can also improve per-
formance of image analysis in some cases.

A. UFCLSLU-Based Compression

The idea of the UFCLSLU is to represent a hyperspectral
image cube by a set of fractional abundance images. More pre-
cisely, for each pixel vector of dimensions, its associated
abundance vector of dimensions is used as a fingerprint of
the with respect to target signatures used in
model (1). Since no prior knowledge is available, these target
signatures must be obtained directly from the image data by an
unsupervised means. In order for to faithfully represent ,
must satisfy constraints ASC and ANC. In this case, the UF-
CLSLU algorithm described in Section III can be used to gen-
erate an appropriate set of target signatures for model (1). The
implementation of an UFCLSLU-based compression algorithm
can be described as follows.

UFCLSLU-based Compression Algorithm

Step 1): Use the UFCLSLU algorithm in Sec-

tion III to generate a set of targets of in-

terest, denoted by ft̂1; t̂2; . . . ; t̂pg to form an

estimated target signature matrix, denoted by

M̂ = [t̂1; t̂2; . . . ; t̂p] where t̂j = (t̂j1; t̂j2; . . . ; t̂jL)
T for

1 � j � p.

Step 2): For the ith image pixel vector ri =

(ri1; ri2; . . . ; riL)
T, use the FCLSLU algorithm to

estimate the corresponding target abundance

fractions, denoted by f�̂1(ri); �̂2(ri); . . . ; �̂p(ri)g and

estimate ri by

r̂i = M̂�̂��(ri) (12)

where r̂i = (r̂i1; r̂i2; . . . ; r̂iL)
T and r̂il = p

j=1
tjl�̂j(ri).

Note that (12) is a reconstruction of ri from

the p FCLSLU-generated fractional abundance

images, and the noise term in (1) has been ab-

sorbed in (12) as an estimation error.

Step 3): Construct p fractional abundance im-

ages f�̂1(ri); �̂2(ri); . . . ; �̂p(ri)g for all pixel vec-

tors ri in the image.

Step 4): Apply lossless predictive coding to

further reduce spatial redundancy within each

of the p fractional abundance images.

Step 5): Use Huffman coding to encode the pre-

dictive errors resulting from Step 4).

Fig. 1 depicts a diagram of the UFCLSLU-based compression
algorithm. Five comments related to the UFCLSLU are note-
worthy.

• Due to the fact that there is no prior knowledge available
for an image to be compressed, the UFCLSLU is generally
required.

• Since satisfies the ASC,
only fractional abundance images of smallest
entropies are needed for encoding for each pixel vector
in Step 3). In other words, the only fractional abundance
image that is not required to encode is the one with
maximum entropy.

• The compression ratio is determined by the number of
target signatures resident in the image scene, i.e., , not
the data dimensionality . The smaller is, the higher the
compression ratio is.

• The UFCLSLU-based compression algorithm can
also be implemented as unconstrained or nonnega-
tively constrained versions with the fully constrained
abundance vector replaced by given
by (2) or generated by the NCLS algo-
rithm. But in these cases, all the abundance fractions

must be encoded in
Step 3). It should be further noted that when the UF-
CLSLU-based compression algorithm is implemented as
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an unconstrained LSMA, it is reduced to the approach in
[19]. Comparing (12) to model (1), there is no noise term

in (12). This is because (12) is a lossy reconstruction,
where the has been absorbed by the estimation error
resulting from lossy decompression.

• As noted, our proposed compression technique is
a method that compresses spectral redundancy
pixel-by-pixel. It uses the UFCLSLU algorithm to
compress image data to generate a set of fractional
abundance images that show abundance fractions of
targets of interest present in the image data. As a result
of such LSMA compression, the image background is
significantly compressed, where the interpixel spatial
correlation is also substantially reduced. Therefore,
the remaining redundancy of interest is the coding
redundancy produced by target pixels present in the
UFCLSLU-generated fractional abundance images. In
this case, a simple entropy coding scheme such as Huf-
famn coding may perform well without appealing for a
sophisticated coding technique. Applying lossless coding
to the UFCLSLU-generated fractional abundance images
can show how much spectral compression error alone
can be from our proposed technique. Of course, more
compression can be achieved by lossy spatial coding.
However, since the abundance fraction of each pixel after
the UFCLSLU spectral compression is crucial, preserving
such information is very important for future data decom-
pression. Therefore, lossy spatial compression may not
be appropriate, since it may result in loss of target infor-
mation that will be significant for data decompression.

B. Practical Implementation Issues of UFLCSLU-Based
Compression

Some practical issues in implementing the UFCLSLU need
to be addressed in this section. Since the abundance fractions
generated by the UFCLSLU are real values within the range of
[0, 1], a simplest encoding scheme is to multiply their values
by 10 with and round off their resulting values to in-
tegral values that will be encoded. For example, if 10 is mul-
tiplied, then the precision is 10 and the round-off error for
precision of 10 is . The higher the precision,
the lower the compression ratio. According to our experiments,
a very high compression ratio can be achieved by precision of
10 with the round-off error . In this case, the number
of values required for Huffman coding is less than or equal to
ten. So the corresponding compression ratio is high, but the re-
sulting SNR is relatively low. On the other hand, when the pre-
cision is increased to 10 with the round-off error ,
the resulting SNR is improved, but the improvement may not
be significant. However, the compression ratio obtained is con-
siderably reduced. Since the values of these abundance fractions
are constrained to the range of [0, 1], a good compromise is pre-
cision of 10 with the round-off error . The round-off
error described above is the major compression error incurred
in the UFCLSLU-based compression algorithm in addition to
the model error introduced by (1). If the signatures used in the
linear mixture model specified by (1) well represent the image
scene, the model error will be small. The error resulting from

(a) (b)

(c)

(d)

Fig. 5. (a) HYDICE scene of band 10 (64� 64). (b) A HYDICE scene of band
30 (64 � 64). (c) Spatial locations of 15 panels provided by ground truth. (d)
Spectra of P1, P2, P3, P4, and P5.

the UFCLSLU will be very small, if the error threshold used
in the UFCLSLU algorithm is set to a small value.

V. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to evaluate
the proposed UFCLSLU-based compression technique using
two sets of real hyperspectral image data, AVIRIS and HYDICE
images. Three common error criteria, referred to as SNR, PSNR,
and compression ratio (CR), are also used for performance eval-
uation and defined as follows:

SNR (13)
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TABLE IV
SNR, PSNR, AND CR PRODUCED BY THE UFCLSLU METHODS WITH DIFFERENT ROUND-OFF ERRORS FOR HYDICE EXPERIMENTS

(a) Using the original uncompressed image

(b) Using the image reconstructed from PCA-generated PC images

(c) Using the images reconstructed from the LSLU-generated fractional abundance images

(d) Using the images reconstructed from the FCLSLU-generated fractional abundance images

Fig. 6. (a) Supervised classification results produced by the original uncompressed image for the HYDICE experiment. (b) Supervised classification results
produced by the images reconstructed from the principal component images for the HYDICE experiment. (c) Supervised classification results produced by the
images reconstructed from the LSLU-generated fractional abundance images for the HYDICE experiment. (d) Supervised classification results produced by the
images reconstructed from the FCLSLU-generated fractional abundance images for the HYDICE experiment.

PSNR (14)

CR
original image file size

compressed image file size
(15)

CR defined by (15) is based on image file size rather than
bit rate and is adopted for the following reason. For example,
an AVIRIS image of size 200 200 contains a total of 200

200 data vectors, and each of these data vectors is made up
of 224 data points. In the AVIRIS scene to be studied in our
experiments, the range of pixel values is from 1800–0. So, 11
bits are needed to represent each data point in binary expansion,
and the total bits required are 200 200 224 11
98 560 000 bits. After the water bands and low SNR bands are
removed, 158 bands remained. This reduces the total number
of bits to 200 200 158 11 69 520 000 bits. If it is

compressed by either the FCLSLU or UFCLSLU, only
fractional abundance images are required for decompression,
in which case the total number of data points required for
coding is reduced to 200 200 . Similarly, for
the HYDICE scene of size 64 64 that was studied in our
experiments, the range of abundance values is between 10 000
and 6, where the negative abundance values may be resulting
from either bad pixels or gains offset by correction. So, 15
bits are required for each data point, and the total required
bits are 64 64 210 15 12 902 400. After the water
bands and low SNR bands are removed, 169 bands are still
retained. In this case, the total bits required for the image file
are reduced to 64 64 169 15 10 383 360.

A. AVIRIS Data Experiments

The AVIRIS image used in the following experiments is
shown in Fig. 2(a). It is the same data considered in [20] that
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TABLE V
(a) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 6(a). (b) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 6(b). (c) TALLY

OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 6(c). (d) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 6(d)

(a)

(b)

(c)

(d)

have been studied extensively in the literature. Atmospheric
water bands and low SNR bands have been removed from
the image data. As a result, only 158 bands are used for
compression. The image scene in Fig. 2(a) is a subscene of
200 200 pixels extracted directly from the upper left corner
of the Lunar Crater Volcanic Field (LCVF) in Northern Nye
County, NV, shown in Fig. 2(b). According to the ground
truth knowledge, there are five different materials of interest
present in this image scene: “red oxidized basaltic cinders,”
“rhyolite,” “playa (dry lakebed),” “shade,” and “vegetation.”
As noted in [19], a least squares unconstrained orthogonal
projection-based compression was proposed to compress the
same AVIRIS scene in Fig. 2(a). Four compression methods
were used for comparative analysis, which are the PCA-based
compression, the supervised OSP method in [19] referred
to as least squares linear unmixing (LSLU), supervised
FCLSLU-based compression, and our proposed UFCLSLU
method. The reason PCA-based compression was included

Fig. 7. ROC curves for the overall panel detection performance in Fig. 6.

is that it is a typical transformed coding that transforms the
original image data into separate principal components (PCs).
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(a) Using the original uncompressed image

(b) Using the images reconstructed from five UFCLSLU-generated fractional abundance images

Fig. 8. (a) Unsupervised classification results produced by the original uncompressed image for the HYDICE experiment. (b) Unsupervised classification results
produced by the images reconstructed from five UFCLSLU-generated fractional abundance images for the HYDICE experiment.

TABLE VI
(a) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 8(a). (b) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 8(b)

(a)

(b)

In the AVIRIS experiment, the first four PC images were
retained because they included 99.88% energy, and there is
no visible information present in PC images afterward. When
the LSLU and the supervised FCLSLU were applied, the five
signatures “cinders, rhyolite, playa, shade, vegetation” were
used as the prior target knowledge. Since the UFCLSLU-based
compression is unsupervised and no prior target knowledge
was needed, the UFCLSLU generated target signatures by its
own. As a result, six signatures were extracted from the data
by the UFCLSLU, which included five signatures used in the
supervised LSLU and FCLSLU plus an additional signature,
an anomaly detected in [22] marked by a white circle in Fig. 4.
The approach implemented in the spatial coding of the PC
images and the fractional abundance images was a third-order
linear predictive coding method that used the three previous
pixels in the same row, followed by the Huffman coding. The
order of three is an empirical choice, which provides the best
trade-off between CR and computing time in our experiments.
In general, applying linear predictive coding only brings about
a 10% improvement in the CRs, compared to that produced

Fig. 9. ROC curves for the overall panel detection performance in Fig. 8.

without it. The pixel values in the PC images and the fractional
abundance images were rounded off with an error tolerance of

. Table I tabulates SNRs, PSNRs, and CRs of these
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28) (29) (30)

(31) (32) (33) (34) (35)

Fig. 10. Unsupervised classification results produced by the original uncompressed image for the HYDICE experiment.

four methods, where all of them produced comparable SNRs,
PSNRs, but both the FCLSLU and UFCLSLU achieved CRs
as high as 114 : 1 and 90 : 1, respectively, compared to 70 : 1
resulting from the LSLU and 57 : 1 from the PCA. Since the
FCLSLU and the UFCLSLU are fully constrained, the dynamic

range of its produced fractional abundance images is [0, 1].
To the contrary, the LSLU has no constraints on abundance
fractions. The range of its generated abundance values can be
arbitrary. Table II tabulates the variances in abundance values
resulting from the three methods, which show fully constrained
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28) (29) (30)

(31) (32) (33) (34) (35)

Fig. 11. Unsupervised classification results produced by the images reconstructed from the images reconstructed from 35 UFCLSLU-generated fractional
abundance images for the HYDICE experiment.

methods yielded smaller variances than did an unconstrained
method. Additionally, due to full abundance constraints, the
FCLSLU and UFCLSLU only have to code abundance
fractional images compared to abundance fractional images

needed for the LSLU. These advantages are the reasons that
the FCLSLU and UFCLSLU could provide higher CRs. In our
AVIRIS experiments, the FCLSLU provided a higher CR than
did UFCLSLU, because the FCLSLU was only required to
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Fig. 12. ROC curves for the overall panel detection performance in Figs. 10
and 11.

code four fractional abundance images as opposed to five such
images needed for the UFCLSLU.

We also conducted the experiments by using different
round-off errors. Table III lists the results for the UFCLSLU.
We can see that if the round-off error was , the CR
could be as high as about 240 : 1, but the SNR and PSNR were
greatly decreased. If the round-off error was , the CR
was dramatically reduced to about 50 : 1 with slight increase
on SNR and PSNR. The same phenomenon is observed for the
PCA-, LSLU-, and FCLSLU-based compression. Therefore,

was a good choice in terms of compromise between
CR and SNR (PSNR).

Fig. 3(a)–(d) shows the classification results produced by the
original uncompressed images, the images reconstructed from
the four PC images, and the LSLU- and FCLSLU-based com-
pressed fractional abundance images, respectively, where five
target signatures were directly extracted from the data by prior
knowledge and used for compression. The classification was
achieved using the OSP classifier in [20]. As shown, there is
no visible difference between images in Fig. 3(a) and (c). The
classified images in Fig. 3(b) from the PCA-based compression
could not differentiate rhyolite and vegetation from each other.
The images in Fig. 3(d) resulting from the FCLSLU seemed
better than those in Fig. 3(a)–(c) in the sense that the effects
caused by the interference and noise in image background were
largely eliminated. Fig. 4(a) and (b) shows the classification re-
sults produced by the original uncompressed images and the im-
ages reconstructed from the UFCLSLU-based compressed frac-
tional abundance images, respectively, where the same six target
signatures (playa, shade, cinders, vegetation, rhyolite, anomaly)
were used for the UFCLSLU. Interestingly, the classification re-
sults produced by the UFCLSLU-compressed images seemed
better than those produced by original uncompressed images in
terms of background compression, specifically, the classifica-
tion of cinders, vegetation, and rhyolite. This was due to the
fact that the anomaly had strong interference in target classifi-
cation. Since it was included in the signature matrix used in the
OSP classifier for annihilation, the resulting classification was
significantly improved. This experiment demonstrated that un-
supervised compression might produce better classification if

the used prior knowledge was incomplete. This is particularly
true for hyperspectral imagery, where obtaining complete prior
knowledge is generally difficult to obtain. From a classification
point of view, both the LSLU-based and the UFCLSLU-based
compression methods preserved the information of interest in
the original image scene. However, the UFCLSLU-based com-
pression performed better classification because imposing the
ASC and ANC constraints provided more accurate abundance
estimates.

Since there were five and six target signatures used to gen-
erate fractional abundance images for the LSLU and the UF-
CLSLU, we would wonder that the performance in Fig. 3(b)
could be improved if five or six PC images rather than four
PC images used for compression and decompression. The first
five PC images and six PC images account for 99.89% and
99.90% energy, respectively. Surprisingly, this was not the case,
as shown in Fig. 3(e) and (f). We still could not differentiate the
vegetation from rhyolite as the same case shown in Fig. 3(b).
However, the compression ratios of both cases were decreased to
46.79 : 1 and 39.93 : 1, respectively. This further demonstrated
that the PCA-based compression suffered from preserving cru-
cial information of small objects such as vegetation.

B. HYDICE Data Experiments

The HYDICE image data used in the following experiments
is shown in Fig. 5(a) and (b), where band 10 (0.5 m) and band
30 (0.7 m) are included to demonstrate how the information
provided by a band varies with its spectral coverage interval. It
is of size 64 64 pixel vectors and has 15 panels in the scene.
The low signal/high noise bands (bands 1–3 202–210) and water
vapor absorption bands (bands 101–112 and 137–153) were re-
moved. So, a total of 169 bands were used for the experiments.
The spatial resolution is 1.5 m, and spectral resolution is 10 nm.
As shown in Fig. 5(a), 15 panels are located in a large field and
arranged in a 5 3 matrix compared to the scene in Fig. 5(b),
which shows no sign of presence of these 15 panels. A ground
truth map of these 15 panels in the image is given in Fig. 5(c) and
provides the precise spatial locations of these 15 panels. Black
pixels are panel center pixels, and the pixels in the white mask
are panel pixels mixed with background pixels. Each element
in this matrix is a square panel and denoted by with row in-
dexed by and column indexed by .
For each row , the three panels were painted by
the same material but have three different sizes. For each column
, the five panels have the same size but

were painted by five different materials. The sizes of the panels
in the first, second, and third columns are m m, m m,
and m m, respectively. The 1.5-m spatial resolution of the
image scene suggests that except for , which
are two-pixel panels, all the remaining panels are only one pixel
in size. This suggests that the 15 panels consist of 19 panel
center pixels.

For the supervised LSLU-based compression, it is assumed
that the knowledge of the 15 panels was available, where five
panel signatures were generated by averaging the panel center
pixels in each row, denoted by P1, P2, P3, P4, and P5, respec-
tively. Their spectra are shown in Fig. 5(d) and were used to for
the target signature matrix . In the PCA-based compression,
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TABLE VII
(a) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 10. (b) TALLY OF THE NUMBER OF PANEL PIXELS DETECTED IN FIG. 11(b)

(a)

(b)

TABLE VIII
(a) CEM DETECTION RESULTS USING THE RECONSTRUCTED IMAGE FROM UFCLSLU-BASED COMPRESSION.

(b) CEM DETECTION RESULTS USING THE ORIGINAL IMAGE DATA

the first nine PC images are used, which made up 99.93%
energy, and the remaining PC images did not contain important
target information. Table IV tabulates the SNRs, PSNRs,
and CRs produced by the PCA-based, LSLU-based, and
FCLSLU-based compression methods, where all the methods
produced comparable SNRs and PSNRs but the FCLSLU
achieved a much higher compression ratio 121 : 1 compared
to 49 : 1 by the LSLU and 22 : 1 by the PCA. Fig. 6(a)–(d)
shows the OSP classification results using the original 169
uncompressed band images, the images reconstructed from the
PC images, the LSLU-generated fractional abundance images,
and the FCLSLU fractional abundance images, respectively.
As we can see from these images, the result in Fig. 6(d) was
very different from those in Fig. 6(a)–(c), which were almost
identical, and there was no visible difference among them.
In order to conduct a quantitative study on panel detection,
both grayscale OSP classification images were converted into
binary images by normalizing the abundance fraction of each

image pixel to the range of [0, 1] and thresholding it using a
threshold value between 0 and 1. Let and denote
the total number of correctly detected pixels and total number
of false-alarmed pixels, respectively. Table V(a)–(d) tallies
the classification results of the 15 panels in Fig. 6(a)–(d)
using various threshold values starting from 0.1–0.9 with
an increment of 0.1. As we can see from Table V(a)–(c),
the and obtained from Fig. 6(a)–(c) using the same
threshold value were very close. In order to detect all the 19
panel center pixels, the threshold value must be small at the
expense of very high false-alarm rates. For the false-alarm rate
to be reduced, the threshold value must be set high, which
will result in poor panel pixel detection. This is consistent
with the classification images in Fig. 6(a)–(c), which contained
a large number of background pixels. From Fig. 6(d) and
Table V(d), all the panel pixels except those in row 2 could be
detected with very small false-alarm rates compared to their
counterparts produced in Fig. 6(a)–(c) and Table V(a)–(c). The
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ROC curves based on Table V are plotted in Fig. 7, which
describe the overall performance on the five different panel
types. Obviously, the FCLSLU-based compression provides
the best detection performance, while the detection using the
PCA-based compression is the worst.

For unsupervised classification, no prior knowledge about
the image scene was assumed. In this case, the UFCLSLU
algorithm was conducted to locate targets of interest in an
unsupervised manner to construct the target signature matrix
in (1). Its SNR, PSNR, and CR were given in Table IV, where
the UFCLSLU compression achieved the highest compression
ratio, while its SNR and PSNR remained at a comparable level.
Fig. 8(a) and (b) shows the OSP classification results using
the fractional abundance images produced by the original 169
uncompressed band images and the images reconstructed from
the UFCLSLU-based compression, respectively, where five
target signatures generated by the UFCLSLU algorithm were
used for the target signature matrix . Their results seemed
to be close. However, unlike the supervised compression
the 15 panels were classified into two separate images, the
panels in the first three rows in one image and the panels
in the last two rows in another image. Table VI(a) and (b)
also tallies and for the unsupervised classification
images in Fig. 8(a) and (b), respectively, using the threshold
value from 0.1–0.9. Surprisingly, the OSP classification
using the UFCLSLU-generated fractional abundance images
performed slightly better than the OSP classification using
original 169 uncompressed band images. For instance, when

, 18 out of 19 panel center pixels were correctly
detected and classified by both methods. But the one using
the UFCLSLU-generated fractional abundance images yielded

compared to produced by the one using
the original uncompressed image. The ROC curves plotted in
Fig. 9 were very close. The area of – is enlarged for
illustration. As shown, the curve from the UFCLSLU is slightly
higher than that from the original image. The classification
performance was further improved if the 35 targets generated
by the UFCLSLU algorithm were used to form the target
signature matrix for the OSP classification. Figs. 10 and 11
show the OSP classification results produced by the original
169 uncompressed band images and the UFCLSLU-generated
fractional abundance images, respectively. The 15 panels in five
rows were correctly detected and classified into five separate
images as shown in Fig. 10 [10(4), 10(5), 10.(10), 10.(23),
10.(32)] and Fig. 11 [11.(4), 11.(5), 11.(10), 11.(23), 11.(32)]
where the panels in row 5, row 3, row 1, row 4, and row 2
were detected, respectively. A quantitative comparison between
Fig. 10(4) versus Fig. 11(4), Fig. 10(5) versus Fig. 11(5),
Fig. 10(10) versus Fig. 11(10), Fig. 10(23) versus Fig. 11(23),
Fig. 10(32) versus Fig. 11(32) was also conducted, and
Table VII(a) and (b) tallies and for these unsupervised
images. Their respective ROC curves are plotted in Fig. 12. The
results of using the UFCLSLU-generated fractional abundance
images were significantly better than that using the original
uncompressed 169 band images. In Table VII(a) and (b), with
the threshold being less than 0.3, the former detected 16
out 19 panels with no false alarms compared to the same
detection result with 3540 false-alarmed pixels produced by

the latter. In particular, comparing Fig. 11(23) to Fig. 10(23),
there was significant improvement in detection of panels in
row 4. The SNR, PNSR, and CR produced by the UFCLSLU
method using 35 targets are also included in Table IV, where
the CR was considerably reduced to 38 : 1, while the SNR and
PSNR were moderately increased. This implies that the more
target signatures generated, the better the classification, but the
smaller the CR.

In order to further show the utility of our proposed UF-
CLSLU-based compression technique, the constrained energy
minimization (CEM) [32] was also applied to both the original
image of the 15-panel HYDICE scene and a UFCLSLU-based
decompressed image to detect the five panel classes. The results
are tabulated in Table VIII. As we can see, both results were
comparable to each other. This experiment demonstrated that
the UNFCLSLU-based compression was actually independent
of algorithms to be used for target detection and classification.

For the experiments conducted in this paper, the computing
time required for the UFCLSLU algorithm using a 440-MHz
Sun workstation to run MATLAB codes on the AVIRIS data
was 200 s, and 15 and 500 s for the HYDICE data using five
signatures and 35 signatures, respectively.

VI. CONCLUSION

This paper presented an UFCLSLU-based spectral data
compression technique for hyperspectral image analysis, where
target detection and classification were used as a compression
criteria. It first identified targets of interest in a hyperspectral
image scene by an unsupervised process, then compressed the
entire image cube to generate a set of fractional abundance
images for these targets. In order to reliably estimate the target
abundance fractions, the UFCLSLU method developed for
material quantification in [22] and [27] was used to produce
accurate target fractional abundance images. Several contribu-
tions are made in this paper. First, it developed an application
exploited-based spectral compression technique for target
detection and classification. Due to the fact that the number of
targets of interest is generally much smaller than the number
of spectral bands in hyperspectral imagery, a high compression
ratio can be achieved. Second, since only fractional abundance
images are encoded, unknown interfering sources including
noise can be suppressed by compression. As a result, the
performance analysis based on the target fractional abundance
images can be improved over that produced by the original
uncompressed images. Third, spatial correlation among pixels
and variances in the UFCLSLU- generated fractional abun-
dance images can, therefore, be substantially reduced, because
most of the image background has been largely compressed,
and only spatial redundancy among target pixels of interest
remains to be removed, but will not be much. Accordingly,
the gain resulting from spatial compression will be small. The
coding redundancy can be removed by a simple entropy coding
scheme, such as Huffman coding.
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