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Estimation of Subpixel Target Size for
Remotely Sensed Imagery

Chein-1 Chang, Senior Member, IEEE, Hsuan Ren, Chein-Chi Chang, Francis D’ Amico, and James O. Jensen

Abstract—One of the challenges in remote sensing image pro-
cessing is subpixel detection where the target size is smaller than the
ground sampling distance, therefore, embedded in a single pixel.
Under such a circumstance, these targets can be only detected spec-
trally at the subpixel level, not spatially as ordinarily conducted
by classical image processing techniques. This paper investigates
a more challenging issue than subpixel detection, which is the esti-
mation of target size at the subpixel level. More specifically, when a
subpixel target is detected, we would like to know “what is the size
of this particular target within the pixel?”” The proposed approach
is to estimate the abundance fraction of a subpixel target present
in a pixel, then find what portion it contributes to the pixel that can
be used to determine the size of the subpixel target by multiplying
the ground sampling distance. In order to make our idea work, the
subpixel target abundance fraction must be accurately estimated
to truly reflect the portion of a subpixel target occupied within a
pixel. So, a fully constrained linear unmixing method is required to
reliably estimate the abundance fractions of a subpixel target for its
size estimation. In this paper, a recently developed fully constrained
least squares linear unmixing is used for this purpose. Experiments
are conducted to demonstrate the utility of the proposed method
in comparison with an unconstrained linear unmixing method,
unconstrained least squares method, two partially constrained
least square linear unmixing methods, sum-to-one constrained
least squares, and nonnegativity constrained least squares.

Index Terms—Fully constrained least squares (FCLS), fully con-
strained least squares linear unmixing (FCLSLU), nonnegativity
constrained least squares (NCLS), sum-to-one constrained least
squares (SCLS), unconstrained least squares (ULS), unsupervised
fully constrained least squares linear unmixing (UFCLSLU).

1. INTRODUCTION

NE OF THE advantages of using hyperspectral imaging
O is subpixel detection, which detects targets at the subpixel
scale. In many applications, targets of interest may occur with
low probabilities or may have relatively small size, such as spe-
cial species in agriculture and ecology, rare minerals in geology,
vehicles in a large battlefield, etc. Under these circumstances,
spatial-based image processing techniques may not be effec-
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tive to extract these targets, particularly when the size of tar-
gets is smaller than the pixel resolution (i.e., ground sampling
distance). Such targets are generally embedded in a single pixel
vector and are referred to as subpixel targets. In this case, spa-
tial-analysis-based techniques are unlikely to find these subpixel
targets, and we must rely on techniques that can extract their
spectral characteristics. One commonly used method is linear
unmixing (LU) [1]-[3], which models an image pixel vector as
a linear mixture of a finite number of image endmembers as-
sumed to be present in the image data, then unmixes the pixel
vector by finding their corresponding abundance fractions.

In this paper, we investigate an interesting issue associated
with subpixel detection. If a subpixel target is detected within
a single pixel vector, what is its size? In order to address
this problem, we develop an approach that enables us to
reliably estimate the abundance fraction of a subpixel target,
then multiply the obtained abundance fraction by the ground
sampling distance to calculate its size. Such an approach is
effective only if the true abundance fraction of a subpixel
target contained in a pixel vector is estimated accurately. A
fully constrained least squares linear unmixing (FCLSLU),
which was recently developed for material quantification in [4],
seems to provide a reasonable solution where two constraints,
abundance sum-to-one constraint (ASC) and abundance
nonnegativity constraint (ANC), are imposed on abundance
fractions of image endmembers used in a linear mixture model.
It implements the ANC and the ASC in the least squares sense
to derive fully constrained least squares (FCLS) solutions that
can be further used to estimate the size of a subpixel target. In
order to make the FCLSLU work in an unknown environment,
an automatic target detection and classification algorithm
(ATDCA) developed in [S]-[7] is further incorporated into the
FCLSLU to make it an unsupervised FCLSLU (UFCLSLU),
with the ability to detect subpixel targets without prior knowl-
edge. Finally, computer simulations and real hyperspectral
image experiments are conducted to substantiate the proposed
UFCLSLU in estimating the size of a subpixel target where an
unconstrained least squares (ULS) linear unmixing and two
partially constrained least squares linear unmixing methods [6],
sum-to-one constrained least squares (SCLS) linear unmixing
and nonnegativity constrained least squares (NCLS) linear
unmixing, are also included for comparative analysis.

This paper is organized as follows. Section II briefly reviews
unconstrained and constrained least-squares-based linear un-
mixing methods. Section III describes the ATDCA in detail.
Section IV derives an unsupervised FCLSLU that implements
the FCLSLU in conjunction with the ATDCA. Section V presents
experiments that validate the utility of the UFCLSLU in subpixel
target size estimation. Section V draws some conclusions.
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II. LEAST-SQAURES-BASED LINEAR UNMIXING

Letr be an L x 1 column image pixel vector in a multispec-
tral or hyperspectral image where L is the number of spectral
bands. Assume that M is an L x p signature matrix denoted by
M = |mim; - --m,| where m; is an L x 1 column vector rep-
resented by the jth image endmember signature resident in the
pixel vector r, and p is the number of signatures of interest. Let
a = (ag,as,...a,)" beapx 1 abundance column vector asso-
ciated with r where a; denotes the fraction of the jth signature
in the pixel vector r. A linear mixture model assumes that the
spectral signature of a pixel vector r is linearly superimposed
by spectral signatures of image endmembers m;, ms,...,m,
present in the pixel vector r and can be described by

r=Ma+n (1)

where n is an L x 1 column additive noise vector representing
a measurement or model error. Equation (1) is a general linear
mixture model with no constraints imposed on the abundance
vector @ = (a1, az, ... a,)T and can be solved by interpreting
the noise n as the error e resulting from the goodness of fit in the
least squares sense and then minimizing its least squares error.
To solve a constrained problem, an unconstrained least squares
solution to (1) is first found, then further used as a base to de-
velop iterative algorithms to solve for constrained least squares
mixing problems. Once a fully constrained least square estimate
a is solved for the abundance vector e, the target size can be es-
timated by multiplying the estimated abundance fractions & by
the ground sampling distance.

A. ULS Linear Unmixing

In order to estimate @ = (g, ..., ;)7 from (1), several
techniques have been developed and studied in [6], [8], and [9].

Using the least squares error as an optimal criterion for (1),
the unconstrained optimal least squares estimate of a,@yrs
can be found by minimizing the following least square error
function:

E(a) =n"n = (r — Ma)” (r — Ma). )
Differentiating E[e] in (2) with respect to e and setting to zero
yields

OE(a)
da

=0= —2M'r+2(M"M)ayLs =0 (3)
dULS
and

ayrs = (MTM)_IMTI‘ 4)

where ayrg is a function of the image pixel vector r. For sim-
plicity, the dependency of ayrg on r is not included in the no-
tation.

B. SCLS Linear Unmixing

The ayrs specified by (4) was obtained by imposing no con-
straints on the abundance vector a. In order to find the fully
constrained optimal least squares estimate of «, we first con-
sider the SCLS linear mixing problem [3], [4], [6], [9], which
can be described as follows:

n}in{(r — Ma)?(r — Ma)}
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subject to

1Ta=1 3)

NE

a; =1 or
1

<.
Il

where 17 = (1,1,...,1) is a unity vector with all elements
—_——
P
equal to one.

Let ¢ be the Lagrange multiplier and J(a) be the Lagrangian
given by
1
J(a) = 5(r —Maoa)(r - Ma)T —¢(1Ta—1). (6
Differentiating .J(a) in (6) with respect to « and setting to zero
yields

oJ
—(a) =0= —MTMdSCLS = MTI' + f].
aa aSCLS
= ascrs = (MITM)'MTr + (MTM) el
= ascrs = aurs + (MTM) 11 @)

where the optimal solution to (5) is denoted by &scLs, and Gyrs
is the unconstrained least squares estimate of a given by (4).

Equation (7) shows that agcrg is the unconstrained least
squares estimate ayrs given by (5) plus a correction term
(MTM)~1£1 resulting from the constraint Z?:l a; = 1.In
order to solve the Lagrange multiplier £ in (7), we substitute
(7) into the constraint E’;zl aj = 1 and obtain

1=1Tagcrs = 1Taurs + 17 (M M) 11 = ¢
=T M ™M) (1 - 1T aurs) ®)
which results in the following closed-from solution to (5):

éscLs = ayrs + (MTM)™'1
TVTM) TR - 17 x aurs). (9)

C. FCLSLU
Since the SCLS solution derived in (9) is only based on the
constraint Z§=1 a; = 1, it does not guarantee that the esti-

mated abundance fractions are nonnegative, i.e., a; > 0 for
all 1 < 7 < p. In this section, the ANC is imposed as an addi-
tional constraint on (1), which results in a fully constrained least
squares (FCLS) problem

Minimize LSE = (Ma — r)”(Ma — r)

subject to

p
a>0and Y o;=1 (10)

=1

where @ > 0 represents the nonnegativity constraint: o;; > 0 for
all1 < 5 < p. Since a > 0 is a set of p inequalities, there is no
analytic form similar to the SCLS solution that can be derived to
find the optimal solution. To circumvent this dilemma, we first
consider the NCLS problem, which only imposes the ANC on
(1), i.e.,

Minimize LSE = (Ma —r)T (Ma —r) subject to o > 0 (11)
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then find the FCLS solution to (10) by solving the NCLS
problem specified by (11) in conjunction with the SCLS
solution obtained by (9).

First of all, we introduce an unknown p-dimensional positive
constraint constant vector ¢ = [cicz ... cp)T with ¢; > 0 for
1 < 5 < p to take care of the nonnegativity constraint and
a Lagrange multiplier vector A = (A1, A2, ..., \,)T. Through

’

the vector ¢, we form a Lagrangian J as follows:
1
J(a) = 5(Ma —r)'(Ma—-r)+AXa-c) (12

with the constraint given by @ = c. Differentiating J(a) with
respect to a

oJ(a)
ol

=0=M"Maxcrs —MTr+A=0 (13)

QnNcLs

results in the following two iterative equations:

ancrs = (MIM)'MTr — (MTM) 1A
= ayrs — (MTM)~1A (14)
and

A =M (r - Maxcrs)- (15)
By iterating (14) and (15), we can solve the optimal NCLS so-
lution ancris.-

In order to solve the FCLS problem [i.e., (10)], we include the
ASC in the signature matrix IM by introducing a new signature
matrix N defined by

oM
N- {1T} (16)
with 17 = (11...1), and a vector s denoted by
P
s = [‘ﬂ . (17)

The parameter ¢ in (16) and (17) is included to control the im-
pact of the ASC on the FCLS solution. In our experiments, the
value of § was set to 106, With these two equations, the FCLS
solution can be derived directly from the NCLS solution by re-
placing M and r used in the NCLS solution with N and s. An
algorithm of finding the FCLS solution, referred to as fully con-
strained least squares linear unmixing (FCLSLU), can be sum-
marized as follows.
FCLSLU Algorithm:

1) Specify values of the parameter § (10~ in our experi-
ments) and the error tolerance e.

2) Use (4) to generate an unconstrained least squares solu-
tion ayrs.

3) Iterate (14) and (15) with M and r replaced by N and s
defined in (16) and (17), respectively, until the algorithm
converges within ¢.
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III. ATDCA

When the FCLSLU is implemented, it requires complete
knowledge about the signature matrix M. In reality, obtaining
such prior knowledge is difficult, if not impossible. So, in this
section, we describe an unsupervised method, called the auto-
matic target detection and classification algorithm, that can be
used to generate target signatures to form the M. The ATDCA
comprises two processes: automatic target generation process
(ATGP) followed by target classification process (TCP), both
of which make use of an orthogonal subspace projector defined
in [51-[7] by

pg =1-UUTU) U, (18)
It should be noted that the desired signature matrix M is con-
structed by including all target signatures found by the ATGP
and then is used for target classification in the TCP.

Assume that tg is an initial target signature. The ATGP be-
gins with the initial target signature ty by applying an orthog-
onal subspace projector P~ specified by (18) with U = t to all
image pixel vectors. It then finds a target signature, denoted by
t; with the maximum projection in the orthogonal complement
space, denoted by (to)* that is orthogonal to the space, (to)
linearly spanned by tq. The reason for this selection is that the
selected t1 generally has the most distinct features from tg in the
sense of orthogonal projection because t; has the largest magni-
tude of the projection in (t()* produced by PtJO-. A second target
signature to can be found by applying an orthogonal subspace
projector P[fo g, With U = [tot1] to the original image, and a
target signature that has the maximum projection in (to, t1)= is
selected as to. The above procedure is repeated over and over
again to find a third target signature ts, a fourth target signa-
ture ty4, etc. In order to terminate the ATGP, a stopping rule is
required. If we let U; = [t1to .. . t;] be the ith target signature
matrix generated at the +th stage, we define an orthogonal pro-
jection correlation index (OPCI) by

n = t4 P to (19)

which can be used to measure the similarity between two con-
secutive generated target signatures. Since U;_1 is a submatrix
of U;, then n; = tgPé:to < M1 = tg‘P[Jf771t0 for all #’s.
This implies that the sequence {t{ Pg to} is monotonically de-
creasing at 7. In other words, the OPCI sequence {7; } is mono-
tonically decreasing at 7. Using this property as a stopping cri-
terion, the ATGP can be described as follows.
ATGP:

1) Initial condition: Select an initial target signature of
interest denoted by to. Let ¢ be the prescribed error
threshold.

Set+ = 0 and Uy = ¢.

2) Apply PtJ(; via (18) to all image pixel vectors r in the
image.

3) Find the first target signature, denoted by t;, which has
the maximum orthogonal projection

t, = arg {mﬁxx [(Pttr)T (Pttr)] } .

Seti = 1and U; = t;.

(20)
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4) If ;. = t§Pg to < e, go to Step 8). Otherwise, set
1 = 7 + 1 and continue.
5) Find the sth target t; generated at the :th stage by

t; = arg {mﬁxx [(P[tJU,l]r)T (P[i_UU,l]r)] } 21

where U,_; = [t1to...t;_1] is the target signature set
generated at the (7 — 1)st stage.

6) Let U; = [t1ty...t;] be the ith target signature set, cal-
culate OPCI n; = tOTPéitg, and compare 7); to a pre-
scribed threshold .

7) Stopping rule: If n; > e, go to Step 5). Otherwise con-
tinue.

8) At this stage, the ATGP is terminated. At this point, the
target set U; generated at this point contains ¢ target sig-
natures, which do not include the initial target signature
to.

After the ATGP is terminated, the ATGP-generated targets
are then fed to the TCP for target classification. In order to ini-
tialize the ATGP without knowing t, we select a target signa-
ture with the maximum length as the initial target to, namely,
to = arg{max,[r”r]}, which has the highest intensity, i.e., the
brightest pixel in the image scene. It is worth noting that this
selection may not be necessarily the best selection. However,
according to our experiments, it was found that the brightest
pixel was always extracted later on, if it was not used as an ini-
tial target pixel in the initialization. A detailed implementation
of the ATDCA is given as follows.

ATDCA:

1) Select tg = arg{max,[rTr]}.

2) Use tq as the initial target signature in Step 1) of the

ATGP.

3) Follow Steps 2)-8) outlined in the ATGP to generate U;.

4) Use the TCP to classify t( and all the targets in U; indi-
vidually.

The OSP classifier Posp = tfPé- proposed in [10] is
the classifier used in the TCP to classify all individual tar-
gets t; with U = [toty ...t ;_1t;41...t;]. Since there
are ¢ + 1 target signatures (i.e., to and ¢ target signatures
t1,t2,...,t; in Uy), ¢ + 1 images will be generated by
the TCP, each of which detects and classifies one partic-
ular target.

IV. UFLCSLU

The ATDCA developed in the previous section is an unsu-
pervised process to generate the desired signature matrix M
from the data directly to implement the FCLSLU as an unsuper-
vised FLCSLU. In order to initialize the UFCLSLU, the pixel
vector with the maximum length is selected as a desired initial
target denoted by to. We then assume that all other pixel vec-
tors in the image scene are pure pixels made up of ty with 100%
abundance. Of course, this is generally not true. So, we find a
pixel vector that has the largest LSE from the t( and select it
as a first target pixel vector denoted by t;. Because the LSE
between to and tq is the largest, it can be expected that tq is
most distinct from to. We then form a target signature matrix
M = [tot;] and also create the matrix N and s using (16) and
(17). The FCLSLU algorithm is then used to estimate the abun-
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dance fractions for t( and t;, denoted by & S )( ) and &51)(1‘)
for each pixel vector r, respectlvelgr Here, r 1s 1ncluded in the
estimated abundance fractions & ’'(r) and al (r) to empha-
size that a(l)( ) and &gl) (r) are functlons of r and vary with r.
The superscript indicates the number of iterations already been
executed. Now, we find an optimal constrained linear mixture
of tp and t1, & NS )( )to + dgl)(r)tl, to approximate the r. We
then calculate the LSE between r and its estimated linear mix-
ture &gl)(r)to + a§1>(r)t1 for all image pixel vectors r. Once
again, a pixel vector that yields the largest LSE from its es-
timated linear mixture will be selected to be a second target
pixel vector to. As expected, such a selected target pixel has
the largest projection orthogonal to the space linearly spanned
by to and t;. In other words, the pixel vector that yields the
largest LSE resulting from a constrained linear mixture approx-
imation is a most likely target pixel yet to be found in the image
scene. The same procedure of using the FCLSLU algorithm with
M = [tot;to] is repeated until the resulting LSE is below a
prescribed error threshold. If there is partial knowledge avail-
able a priori, it can be incorporated into the above process. For
example, if more than one target signature is known, we can se-
lect these target signatures as an initial target set to replace t
and then follow the procedure described above until the LSE
is sufficiently small. The procedure outlined as above is called
unsupervised FCLSLU algorithm, which can be summarized as
follows.
Unsupervised FCLSLU Algorithm:
1) Initial condition: Select € to be a prescribed error
threshold, and let to = arg{max,[r”r]} where r is run
over all image pixel vectors. Let & = 0.
2) Find t; that yields the largest LSE”) (r) =
to), i.e., t; = arg{max, LSE(O)(r)}.
3) Let ¥ «— k + 1 and apply the FCLSLU algorithm with

oM
[tot1. ..t N = [ 7],

(r—to)T(r—

the signature matrix M =

or . .
and s = [ ] to estimate the abundance fractions of

to,tr, ...t ay” (r), M (0),.. . 4l ().
4) Find the least squares error defined by

] )

(22)

and check the error if LSE® (r) < ¢ for all r. If it i, the
algorithm stops. Otherwise continue.
5) Find ty4+1 = arg{max, LSE(k)(r)} Go to Step 3).

V. EXPERIMENTAL RESULTS

In this section, computer simulations and real hyperspectral
image experiments will be conducted to substantiate and vali-
date our proposed idea.

A. Data to Be Used for Computer Simulations and Image
Experiments

The data to be used for experiments are the Hyperspectral
Digital Image Collection Experiment (HYDICE) image shown
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Fig. 1. (a) HYDICE panel scene that contains 15 panels. (b) Ground truth map

of spatial locations of the 15 panels. (c) Five panel signatures.

P1 P1

P1/4 Pl/4

grass/4 | grass/4

grass grass

Fig. 2. Simulation of subpixel target pixel P;,.

in Fig. 1(a), which has a size of 64 x 64 pixel vectors with 15
panels in the scene. It was acquired by 210 spectral bands with
a spectral coverage from 0.4-2.5 pm. Low-signal/high-noise
bands (bands 1-3 and bands 202-210) and water vapor absorp-
tion bands (bands 101-112 and bands 137-153) were removed.
So, a total of 169 bands were used. The spatial resolution is
1.56 m, and the spectral resolution is 10 nm. Within the scene in
Fig. 1(a), there is a large grass field background, a forest on the
left edge, and a barely visible road running on the right edge of
the scene. There are 15 panels located in the center of the grass
field and are arranged in a 5 X 3 matrix as shown in Fig. 1(b),
which provides the ground truth map of Fig. 1(a).

Each element in this matrix is a square panel and is denoted
by p,; with rows indexed by ¢ and columns indexed by j. For
each row ¢ = 1,...,5, there are three panels p;;,p,s,D;3>
painted by the same material but with three different sizes. For
each column j = 1,2, 3, the five panels p;;,p,;, P3;, Paj: Ps;
have the same size but were painted by five different materials.
It should be noted that the panels in rows 2 and 3 are made by
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Fig. 3. [Illustration of shrinking process by Burt—Adelson’s pyramid method.
P1 grass
Pl/4 grass/4
grass/4 | grass/4
grass grass

Fig. 4. Simulation of subpixel target pixel Py;.

5 10 15 20 5 10 15 20
(a) (b)

Fig.5. (a)Simulated image scene. (b) Ground truth map of six implanted panel
targets pixels.

5 10 15 20

Fig. 6. Eight targets detected by ATDCA in Fig. 4(a).

the same material, but painted by different paints, so are the
panels in rows 4 and 5. Nevertheless, they were still considered
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(d) FCLS

Fig. 7.

as different materials. The sizes of the panels in the first, second,
and third columns are 3 mXx3m,2mXx2m,and 1 mx 1 m,
respectively. So, the 15 panels are painted by five different ma-
terials and have three different sizes. Since the size of the panels
in the third column is 1 m X 1 m, they cannot be seen visually
from Fig. 1(a) due to the fact that its size is less than the 1.56-m
pixel resolution. Fig. 1(b) shows the precise spatial locations of
these 15 panels where red pixels (R pixels) are the panel center
pixels, and the pixels in yellow (Y pixels) are panel pixels mixed

(Continued). Detection results of Fig. 4(a) by (a) ULS, (b) SCLS, (c) NCLS, and (d) FCLS.

with the background. The 1.56-m spatial resolution of the image
scene suggests that most of the 15 panels are one pixel in size
except that p,;, P31, Pags P51» Which are two-pixel panels.

Fig. 1(c) plots the five panel spectral signatures obtained by
averaging R pixels in Fig. 1(b), where the ith panel signature,
denoted by Pz, was generated by averaging the red panel center
pixels in row 4. These panel signatures represent the target
knowledge of the panels in each row and will be used for the
following computer simulations.
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(b) SCLS

Fig. 7. Detection results of Fig. 4(a) by (a) ULS, (b) SCLS, (c) NCLS, and (d) FCLS.

B. Computer Simulations

In order to substantiate our approach, we simulated a syn-
thetic image scene based on Fig. 1(a) and (b) and the five panel
signatures in Fig. 1(c). First of all, 400 grass samples extracted
from Fig. 1(a) were used to simulate an image background. Two
panel signatures, P1 and P2, were used to simulate two sets of
target panels, P11, P12, P13 and Paq, Pao, Po3, respectively. The
three panels in each set have size ranging from 100%, 50%, and
25% of pixel size (i.e., the ground sampling distance 1.56 m),
namely, 2.4336 m?, 1.2168 m?, and 0.6084 m?, respectively.

Fig. 2(a) and (b) shows how the target panels P12 and P13 with
size being 50% and 25% of pixel size were simulated. For ex-
ample, in order to simulate the panel P15, we first simulated
two pixel vectors specified by the grass signature and two pixel
vectors specified by the panel signature P1 to form a four-pixel
square panel where each of four pixel vectors in the panel had
size of 2.25 m? as shown in Fig. 2(a), and the resulting four-pixel
square panel shown in Fig. 2(a) had size of 9 m?2. This four-pixel
square panel was then shrunk to 1/4 of its size by averaging all
four pixel vectors to reduce the four-pixel square panel with size
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of 9 m? to a four-pixel square panel with size of 2.25 m? as
shown in Fig. 2(b) where each pixel vector is only 1/4 of the
size of its corresponding pixel vector in Fig. 2(a) as a result of
1/4(P1 4+ P1 + grass + grass). This shrinking process is sim-
ilar to the pyramid method developed by Burt and Adelson [11]
and illustrated in Fig. 3, where a pixel in an upper layer is ob-
tained by averaging four pixels in its immediate lower layer in a
three-layer pyramid. That is, the one pixel at the top layer is the
average of the four pixels at the middle layer, whereas a pixel at
the middle layer is an average of four pixels at the bottom layer.
The shrunk square four-pixel panel in Fig. 2(b) was the desired
P12, which contained a subpixel target specified by P1 and with
only half size of the pixel. Similarly, P13 in Fig. 4(a) was simu-
lated by replacing one “P1” in Fig. 2(a) with a “grass” signature
to generate a subpixel target with 25% size of the pixel. Other
two subpixel targets Poo, P23 were also generated accordingly in
the same way that the two subpixel targets P12, P13 were gener-
ated as just described.

These two sets of the six targets, Pj;,P12,P13 and
P31,P22, P23, were then implanted in the image back-
ground as shown in Fig. 5(a) with the ground truth map
of the six implanted target panels shown in Fig. 5(b)
where their precise spatial coordinates are specified in
the parentheses in Py1(10,5),P12(10,10),Py3(10, 15),
P21(15,5), Po2(15, 10), Pys (15, 15).

Assume that no prior knowledge is provided for the simulated
image scene. So, the exact locations of these six target panels
were not supposed to be not known a priori and must be found
by an unsupervised method. In this case, the ATDCA was used
to find these six targets plus other potential targets in the sim-
ulated image scene in Fig. 5(a). As a result, eight targets were
generated and shown in Fig. 6. They were labeled in accordance
with the order that they were found by the ATDCA. In order to
see how effective the ATDCA worked, the ground truth map
in Fig. 5(b) was used to verify the eight ADTCA-generated tar-
gets. It turned out that the pixels labeled 2 and 6 corresponded to
panels P17 and P»y, and the other six targets, numbered 1, 3,4, 5,
7, and 8 were not panels. One comment is worthwhile, since the
ATDCA used the OSP projector P[Jiﬁ] to project all the image
pixel vectors into the space that was orthogonal to the space
linearly spanned by the targets, 2 and 6. As a result, the signa-
tures that were similar to signatures of 2 and 6 were annihilated
by P[é_ﬁ]. The P[;G]—eliminated pixel vectors included the sub-
p1xe1 panels 1)12(107 10) P13(10, 15)7 P22(157 10) P23(15, 15)
that were specified by signatures of 2 and 6. As a consequence,
they were not detected by the ATDCA after the targets 2 and 6
were extracted. As we noted, the six targets 1, 3,4, 5,7, and 8
were not panels; they were not annihilated by P[éy R Therefore,
these six targets were detected by the ATDCA subsequently.

Now, we used these eight ATDCA-generated targets as a pos-
teriori target information to find other potential targets in the
image scene in Fig. 5(a). Four methods were used for this pur-
pose: ULS, SCLS, NCLS, and FCLS. Their respective results
are shown in Fig. 7. As we can see, when the detected target 2
was used as the desired target information, the other seven tar-
gets (i.e., targets 1, 3,4, 5, 6, 7, and 8) were considered as un-
desired targets and were annihilated by the OSP projector. As
a result, the second images in Fig. 7(a)—(d) only show the tar-
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TABLE 1
ABUNDANCE FRACTIONS ESTIMATED BY ULS, SCLS. NCLS, AND FCLS

ULS SCLS NCLS | FCLS
P11 (1 pixel) 1.0000 1.0000 1.0000 | 1.0000
P12 (50% of pixel) 0.5130 0.4952 0.5142 | 0.4958
P13 (25% of pixel) 0.3387 0.3256 0.3031 |0.2908
P21 (1 pixel) 1.0000 1.0000 1.0000 | 1.0000
P2, (50% of 1 pixel) | 0.5642 0.5814 0.5189 |0.4710
P23 (25% of 1 pixel) | 0.3699 0.3917 0.2877 | 0.2206

TABLE 1I

ERROR (PERCENT) RESULTING FROM ULS, SCLS. NCLS, AND FCLS

ULS | SCLS |NCLS | FCLS
P, (1pixel) | 0.00 | 0.00 0.00 | 0.00
P,(Ipixel) |2.60 |0.96 285 | 083
Pi(lpixel) | 3546 |3022 | 2123 | 16.34
Py (1pixel) | 0.00 | 0.00 0.00 | 0.00
Pn(lpixel) | 12.85 | 16.29 378 | 5.80
P (1pixel) | 47.95 |56.70 | 1506 | 11.77

gets specified by the signature of target 2, where all the four
methods picked up additional two target panels P15, P13 whose
signatures were similar to the signature of target 2. Similarly,
when target 6 was used as the desired target information and
the other seven targets (i.e., targets 1, 2, 3, 4, 5, 7, and 8) were
considered as undesired targets and annihilated by the OSP pro-
jector, all the four methods also pulled out additional two target
panels Pss, Pog in the sixth images in Fig. 7(a)—(d). These ex-
periments demonstrated that the ULS, SCLS, NCLS, and FCLS
methods could be used for subpixel target detection.

Since our main focus is the size estimation of subpixel targets
and only the targets P11, P12, P13 and Pyy, Pos, P23 had ground
truth to validate our results. Therefore, in this paper, only these
six Py; targets would serve as our interest for the follow-up size
estimation. Of course, we could also conduct experiments for
the other six found nonpanel targets. Their results could not be
used to substantiate our algorithm, due to the lack of ground
truth. Because of that, experiments of these six nonpanel targets
(1,3,4,5,7, and 8) were not included in this paper.

In order to see whether the four methods ULS, SCLS,
NCLS, and FCLS can further used to estimate size of these
panel targets, we calculated the abundance fractions generated
by these four methods. Table I tabulates their corresponding
results. From Table I, the FCLS yielded the best results, while
the NCLS was the second best, but very close to the FCLS.
Table II also tabulates the error percentage obtained from
Table I by (23), which computes the ratio of the estimation
error of target size to the true target size

|true size — estimated size|

E = 100% x (23)

true size

As shown in Table II, the estimated error increases as the
target size decreases. When a target fully occupies a pixel, no
estimated errors were produced by all the four methods. How-
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Fig. 8. Forty-one targets detected in the scene of Fig. 1(a) by ATDCA.

ever, when the target size is only 1/4 of a pixel size, the FCLS
performed slightly better than the NCLS, but significantly better
than the ULS and the SCLS.

These experiments provide evidence that a fully abundance-
constrained method is required to achieve better target size es-
timation when targets are smaller than pixel resolution.

It is worth noting that the ATDCA is an unsupervised method.
When it was used, it assumed that no knowledge was provided
a priori. Consequently, the knowledge of the ATDCA-generated
targets remained unknown. In order to identify these target signa-
tures, a database or spectral library is generally required. In our
simulations, the ATDCA was implemented with no given prior
knowledge. The eight targets extracted by the ATDCA were still
unknown. The ground truth of the simulated image in Fig. 5(b)
was only used to identify which detected target belonged to the
implanted panels sothat these targets could be furtherused to eval-
uate the effectiveness of subpixel target size estimation. With no
ground truth, it is difficult to substantiate our proposed idea. The
above computer simulations were conducted to justify its utility.

C. HYDICE Experiments

In this section, the HYDICE image scene in Fig. 1(a) was
used for real experiments to further validate the idea proposed
in this paper. As noted, the panels p; 3, Pys, P33, Pass P53 1D the
third column have spatial resolution of 1 m that is smaller than
the pixel size, 1.5 m. These five panels can serve as subpixel
targets to test the four methods ULS, SCLS, NCLS, and FCLS.
By assuming that no ground truth was provided, the ATDCA was
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applied to find 41 targets shown in Fig. 8, where the threshold
was set to 2.54 x 105, the same threshold used in [4]. These
obtained 41 targets were then used as a posteriori target infor-
mation to classify the HYDICE image scene in Fig. 1(a). Now,
if we compared these 41 detected targets against the ground
truth in Fig. 1(b), we found that the 10th, 34th, 5th, and 4th
targets corresponded to p;;,Pyq,Ps;, and psq, respectively.
Additionally, both the 23rd and 36th targets detected different
pixel vectors in panel p,;. Since only these targets had ground
truth to verify our results, Fig. 9 only shows the classification
results produced by these targets where the classification results
in columns (d) and (e) were produced by the two panel pixel
vectors in panel p,; labeled by the ATDCA-detected 23rd and
36th targets. Apparently, using these six targets, all the four
methods have demonstrated different degrees of detecting and
classifying the 19 R panel pixel vectors. Table III tabulates the
abundance fractions of all the 19 R panel pixel vectors detected
by the four methods ULS, SCLS, NCLS, and FCLS. Since both
panel pixel vectors in the panel p,; were detected by the ATDCA
as the 23rd and 36th targets, there are two rows of abundance
fractions for each of the three panels in row 4, p,;, P4s, P43 IR
Table III where the abundance fractions in the first and second
rows were detected by using the signatures of the target 23
and target 36 respectively. Interestingly, despite the fact that
the ATDCA detected both panel pixel vectors in the panel p,;,
both target 23 and target 36 were considered as distinct targets.
However, only the information of the target 23 could pull out
all the three panels in row 4. This phenomenon was evidenced
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Fig. 9. Abundance fractions of the 15 panels in Fig. 1 estimated by ULS, SCLS. NCLS, and FCLS.

(b) p2 (#34)  (c) pis (#5)

by Table III, where the abundance fractions p,, in the second
row were detected by the ULS and SCLS using target 36, were
negative, and were zeros detected by the NCLS and the FCLS.
There are some additional interesting results that can be also
observed from Table I1I. According to the results in Table I11, the
panel p,; was detected as a pure pixel; the panels p,; and p5;
were detected as two-pixel panels, which contained at least one
pure pixel; and the panel p,,; was made up of two pure pixels. The
sizes of these four panels estimated by the four methods were
very close. The only exception was the panel p,;, which was
found to be composed of two mixed pixels. As a result, its panel
size estimated by the ULS and the SCLS was twice as much as
that estimated by the NCLS and the FCLS. It is also interesting
to note that the size of all the five targets (10th, Sth, 23rd, 36th,
and 4th) found by ATDCA was estimated to be of full pixel size
compared to the 34th target, which had an approximate 4/5 size
of a full pixel size. This is because the 34th target pixel detected
by the ATDCA was a Y pixel vector, not an R pixel vector like
the other five 10th, 5th, 23rd, 36th, and 4th targets. In this case,
the 34th target was considered as a mixed-pixel vector, but was
detected by the ATDCA as a pure-pixel vector. Consequently, the
four methods that used the 34th target produced the two R pixel

(d) pis (#23)

(e) pis (#36)

() pis (#4)

vectors for the panel p,, , which resulted in inaccurate abundance
fraction estimates of the R pixels. As an example, Table IV
tabulates the FCLS estimated abundance fraction map of all the
R and Y pixels that mask the panel py,. As shown in Table IV,
the 34th target appeared as a Y pixel vector with its abundance
estimated by the FCLS as 1.0000, which indicated that the Y
pixel vector was a pure-pixel vector. The two real R pixel vectors
next toits left and lined up vertically made up the panel p,, . They
were estimated by the FCLS as mixed pixels with their corre-
sponding abundance fractions 0.5216 and 0.3455, respectively.
This example demonstrated that the ATDCA implemented as
an unsupervised method did not always extract pure pixels.
With the ground sampling distance of 1.56 m, the 15 panels
with sizeof 3mx3m,2mx2m, and 1 m x 1 m shown in
Fig. 1 are supposed to occupy three different 3.70, 1.64, and 0.41
pixel sizes, respectively, where an abundance fraction of 1.0 cor-
responds to one pixel size. Obviously, the abundance fraction
estimates of the R pixel vectors in Table III did not provide
accurate size estimation for each of the 15 panels. This is be-
cause some of the abundance fractions had spread over Y pixel
vectors that surround the R pixel vectors. The leakage of such
abundance fractions into Y pixel vectors must be included to
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TABLE III
ABUNDANCE FRACTIONS OF ALL THE 19 R PANEL PIXEL VECTORS IN THE
15 PANELS ESTIMATED BY ULS, SCLS. NCLS, AND FCLS IN FIG. 9

ULS SCLS NCLS FCLS
pu (#10) 1.0000 1.0000 1.0000 1.0000
P12 0.4701 0.4634 0.4450 0.4091
pi3 0.1190 0.1135 0.0804 0.0496
pa1 (#34) 0.8144 0.8062 0.5824 0.5216
0.8273 0.8283 0.4516 0.3455
Total 1.6417 1.6345 1.0340 0.8671
p22 0.7330 0.7701 0.6169 0.6899
P23 0.3218 0.3527 0.3841 0.4177
p3i 0.9052 0.9052 0.8640 0.8647
(#5) 1.0000 1.0000 1.0000 1.0000
Total 1.9052 1.9052 1.8640 1.8647
P32 0.5985 0.5985 0.5292 0.5367
P33 0.3997 0.3997 0.3549 0.3614
par (#23) 1.0000 1.0000 1.0000 1.0000
(#36) 1.0000 1.0000 1.0000 1.0000
Total 2.0000 2.0000 2.0000 2.0000
P42 0.4318 0.4606 0.5464 0.5306
0.4713 0.4571 0.1616 0.1938
Total 0.9031 0.9177 0.7080 0.7244
P43 0.3966 0.3953 0.2234 0.2543
-0.0914 -0.0908 0 0
Total 0.3052 0.3045 0.2234 0.2543
Psi 0.7216 0.7178 0.7216 0.7217
(#4) 1.0000 1.0000 1.0000 1.0000
Total 1.7216 1.7178 1.7216 1.7217
Ps2 0.6646 0.6637 0.7801 0.7769
ps3 0.1057 0.0959 0.1537 0.1412
TABLE IV

FCLS-ESTIMATED ABUNDANCE FRACTION MAP OF R AND Y
PIXEL VECTORS THAT MASK THE PANEL p,,

0 0.2199 0.0846
0.0171 1.0000 0.1158

0 0.7520 0.0574
0.0123 0.0841 0

account for target size estimation. The reason for this inclusion
can be best explained by the following example. If we would like
to reconstruct a crashed airplane from its debris spread over a
wide range of areas, we need to find all the pieces over all loca-
tions in order to reassemble the airplane, even though the size
of the airplane is relatively small compared to a large coverage
of its debris. In light of this interpretation Table IV tabulates
the FCLS-estimated abundance fractions of 2 R and 12 Y pixel
vectors, where the two R pixel vectors at the center make up
the panel p,,, and the other 12 Y pixel vectors are their neigh-
boring pixel vectors mixed with the background. According to
Table IV, the estimated abundance fractions of the two R pixel
vectors were 0.5216 and 0.3455, which indicated that the panel
P»; Was not a pure-pixel vector. So, if only abundance frac-
tions of R pixel vectors were used to estimate the size of the
panel p,,, its size would be 0.8671 pixel size, which may not
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TABLE V
ABUNDANCE FRACTIONS OF ALL THE R AND Y PANEL PIXEL VECTORS IN THE
15 PANELS ESTIMATED BY ULS, SCLS, NCLS, AND FCLS IN FIG. 9

ULS SCLS NCLS FCLS
pi 3.2094 3.1368 3.1432 3.0329
pi2 1.0191 0.9728 1.2892 1.2639
p13 -0.2302 -0.2254 0.0885 0.0496
p21 5.2066 4.9628 3.7033 3.5727
p22 1.2023 1.3001 1.1969 1.4674
P2 0.4698 0.5247 0.5672 0.6148
p3i 4.0116 4.0119 4.0922 4.0978
p32 2.5240 2.5239 1.9474 2.0073
P33 0.7715 0.7715 0.4934 0.5144
pat 3.7346 3.7762 3.5161 4.1374
P42 2.6265 2.7857 1.7554 1.9011
p43 0.6861 0.7495 0.5367 0.6132
psi 4.5061 4.5382 3.8530 3.6857
ps2 1.5076 1.5119 1.8493 1.8321
ps3 0.2772 0.1859 0.4666 0.4604

be accurate. However, if the estimated abundance fractions of
12'Y pixel vectors in Table IV were included in size estimation,
the total estimated abundance fractions would be 3.5727, which
corresponded to 3.5727 pixel size, and is very close to its true
3.70 pixel size. This simple example suggests that in order to
reliably estimate the size of panel targets, we need to include
all estimated nonzero abundance fractions that contributed to
the panels. This was indeed the case shown in Table V, which
tabulates abundance fractions of the R and Y pixel vectors in
the 15 panels estimated by ULS, SCLS, NCLS, and FCLS in
Fig. 9. Compared to Table III which only computed the esti-
mated abundance fractions of R pixel vectors for target size es-
timation, Table V produced more accurate results by including
the estimated abundance fractions of Y pixel vectors.

VI. CONCLUSION

This paper has presented a new application of constrained
linear unmixing to subpixel target size estimation. The proposed
idea is to estimate the abundance fraction for a subpixel target
present in the image and then uses it to estimate its size. For such
an approach to be effective, an accurate estimate of abundance
fraction for a subpixel target is required. In this case, a fully
constrained abundance linear unmixing is implemented for this
purpose. Despite the fact that constrained linear unmixing has
been studied extensively for material quantification, the issue
investigated in this paper has never been explored in the past. In
order to prove our concept, four linear unmixing methods were
used for validation, which are an unconstrained linear unmixing
method, unconstrained least square, two partially constrained
least squares linear unmixing methods, sum-to-one constrained
least squares, and nonnegativity constrained least squares, and
a fully constrained linear unmixing method, fully constrained
least squares. As demonstrated in our simulations and real image
experiments, the need of the fully abundance-constrained is ev-
ident when the target size is smaller than the ground sampling
distance. The target estimation error is increased as the target
size is decreased.
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