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Abstract—An orthogonal subspace projection (OSP) method
using linear mixture modeling was recently explored in hyper-
spectral image classification and has shown promise in signature
detection, discrimination, and classification. In this paper, the
OSP is revisited and extended by three unconstrained least
squares subspace projection approaches, called signature space
OSP, target signature space OSP, and oblique subspace pro-
jection, where the abundances of spectral signatures are not
known a priori but need to be estimated, a situation to which
the OSP cannot be directly applied. The proposed three subspace
projection methods can be used not only to estimate signature
abundance, but also to classify a target signature at subpixel
scale so as to achieve subpixel detection. As a result, they can
be viewed asa posteriori OSP as opposed to OSP, which can
be thought of asa priori OSP. In order to evaluate these three
approaches, their associated least squares estimation errors are
cast as a signal detection problem in the framework of the Ney-
man–Pearson detection theory so that the effectiveness of their
generated classifiers can be measured by characteristics (ROC)
analysis. All results are demonstrated by computer simulations
and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
data.

Index Terms—Classification, detection, hyperspectral image,
oblique subspace projection classifier (OBC), orthogonal sub-
space projection (OSP), receiver operating characteristics (ROC),
signature space orthogonal projection classifier (SSC), target
signature space orthogonal projection classifier (TSC).

I. INTRODUCTION

T HE ADVENT of high spatial resolution airborne and
satellite sensors improves the capability of ground-based

data collection in the fields of geology, geography, and agri-
culture. One major advantage of hyperspectral imagery over
multispectral imagery is that the former images a scene using
as many as 224 contiguous bands, such as Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) [1], as opposed
to the latter using only 4–7 discrete bands, such as SPOT
and LANDSAT images. As a result, hyperspectral image data
permit the expansion of detection and classification activities
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to targets previously unresolved in multispectral images. In
addition, hyperspectral imagery provides more information
with which it can differentiate very similar reflectance spectra,
a task that multispectral imagery generally has difficulty with.

In multispectral/hyperspectral imagery, a scene pixel is
generally mixed by a number of spectral signatures (or end-
members) due to improved spectral resolution with large
spatial coverage from 10 to 20 m. Two models have been
proposed in the past to describe such activities of mixed pixels.
One is the marcospectral mixture [2] that models a mixed pixel
as a linear combination of signatures resident in the pixel with
relative concentrations. A second model suggested by Hapke in
[3], called the intimate spectral mixture, is a nonlinear mixing
of signatures present within the pixel. Nevertheless, Hapke’s
model can be linearized by a method proposed by Johnsonet
al. [4]. In this paper, only the linear spectral mixture model will
be considered. By taking advantage of linear modeling, many
image processing techniques can be applied. Of most interest
is the principal components analysis (PCA), also known as
Karhunen–Loeve transformation, which is widely used for
data projection, so as to achieve data dimensionality reduction
as well as feature extraction. As a result of PCA, the data
coordinates will be rotated along with the direction of the
maximum variance of the data matrix so that the significant
information of the data can be prioritized in accordance with
the magnitude of the eigenvalues of the data covariance
matrix. Two disadvantages arise from the PCA approach.
One is that the pixels in the PCA-transformed data are still
a mixing of spectral signatures with unknown abundances.
So, the determination and identification of individual spectral
signatures are not mitigated. Malinowski [5] and Heute [6]
proposed a solution. They first reconstructed the original data
using the largest PCA-generated eigenvalue and measured the
error between the raw data and the reconstructed data to
see if the error falls within the prescribed tolerance. If not,
they gradually added to data reconstruction the eigenvalues in
decreasing magnitude until the error resulted within the desired
level. A second disadvantage resulting from PCA is that PCA
is only optimal in the sense of minimum mean square error,
but not necessarily optimal in terms of class discrimination
and separability [7]–[9].

Recently, an orthogonal subspace projection (OSP) method
was proposed in [10] for hyperspectral image classification.
It formulated an image classification problem as a general-
ized eigenvalue problem, thereby, Fisher’s linear discriminant
analysis can be used to classify mixed pixels. The classifier

0196–2892/98$10.00 1998 IEEE



CHANG et al.: LEAST SQUARES SUBSPACE PROJECTION APPROACH TO HYPERSPECTRAL IMAGES 899

resulting from OSP is an operator composed of two linear
filters, one derived from the simultaneous diagonalization
filter developed in [11] and the second, called the matched
filter, derived from communication systems. However, the
model on which the OSP classifier was based assumed the
complete knowledge of signature abundancea priori, which
is generally difficult to obtain in practice. In order for the
OSP classifier to be applied to real scene experiments, this
knowledge was obtained by the ground truth and directly
extracted from scene pixels, as done in [10], where the
signatures were estimated from the AVIRIS data themselves.
Despite the success of OSP in classification of AVIRIS data
[10], there is a lack of theory to support this experiment.
In this paper, we will revisit the OSP approach and offer a
theoretical background for the OSP from an estimation theory
point of view to explain why the OSP can be applied to
real hyperspectral data, as demonstrated in [10]. The theory
is derived based on unconstrained least squares estimation
and can be viewed asa posteriori approach. More precisely,
all required information for data analysis is obtained from
observed data not prior information assumed in the model
used in [10]. As a result, the approaches presented in this
paper can be referred to asa posteriori OSP, while the OSP
in [10] can be regarded asa priori OSP. A recent work in [12]
also derived an unconstrained maximum likelihood estimation
(UMLE) that generated the same classification feature vector
as the OSP but with an extra constant. However, it is this
constant associated with abundance estimation. Moreover,
there is a difference in their approaches. The UMLE in
[12] maximized the conditional probability distribution of an
unknown constant specified by signature abundance, while
the OSP maximized the SNR based on Fisher’s discriminant
criterion, which only depends upon the noise second-order
statistics. Accordingly, the UMLE and the OSP are indeed
different methods.

Three approaches will be presented to extend the OSP
classifier in [10] to the case in which the signature abundances
are not necessarily knowna priori, but can be estimated
from the images of interest on the basis of the least squares
error criterion. They are unconstrained least squares estima-
tion methods and are derived from the subspace projection
principle. The first approach was proposed in [13], which
projected observed pixels (in this case, the observed data
pixels are pixels in real data) into a signature space generated
by an entire set of spectral signatures to reduce unwanted
interference. The projector, named LSOSP in [13], will be
referred to in this paper as the signature space orthogonal
projection classifier (SSC) to reflect the projection space. Since
the target signature is the one needed to be classified, a second
approach is to directly project the observed pixels into the
space spanned by only the target signature rather than the
entire signatures. The resulting classifier will be referred to
as the target signature space orthogonal projection classifier
(TSC). As we might expect, TSC should perform better than
SSC in the sense that the target signature space contains no
other signatures but the target signature itself. Unfortunately,
as shown in this paper, this is generally not the case. The
drawback of TSC is that, since the desired signatures are not

necessarily orthogonal to the target signature, the undesired
signatures may be scrambled into the target signature space
rather than mapping their own respective spanned spaces,
as does SSC. As a result of such mixing, a signature bias
becomes indispensable. In order to cope with this problem,
a third approach based on oblique subspace projection [14]
is suggested to eliminate such a bias. It projects the target
signature and undesired signatures into two separate spaces,
its range space and null space, respectively. Since these two
spaces are disjoint, no mixing will occur and, thus, no signature
bias will be generated. The resulting classifier will be referred
to as an oblique subspace projection classifier (OBC). The
OBC comes at a price, however. It is no longer orthogonal
like SSC and TSC. Nevertheless, it is still a projection. What
it is interesting about the OBC is that SSC can actually be
decomposed into two oblique projections, one of which is
exactly the OBC. In this paper, we will show a surprising result
that SSC and OBC are essentially equivalent in the sense of
classification, regardless of the fact that one is orthogonal and
the other is not. In addition, we will further show that the OBC
is exactly identical to the UMLE derived in [12]. It should
also be noted that the techniques presented in this paper can
be used for subpixel target detection and classification, even
though they are primarily developed for signature abundance
estimation here.

In order to evaluate the performance of these three classi-
fiers, we model their associated least squares errors as a signal
detection problem in which the true target signature abundance
is the desired signal and the estimation error is treated as
noise. By means of this detection model, the effectiveness of
each classifier can be measured using the receiver operating
characteristics (ROC) analysis via the Neyman–Pearson detec-
tion theory and both SSC and OBC generate identical ROC
curves. Thus, they are essentially the same classifier in terms
of detection power for target abundance. Most importantly, the
OSP classifier derived in [10] produced the same classification
feature vector as that produced by SSC and OBC with an
extra constant, a result also noted in [12]. Since this extra
constant can only affect the magnitude of the classification
feature vector that only determines the amount of signature
abundance contained in classified pixels, it does not alter the
classification results. Consequently, UMLE, OSP, SSC, and
OBC can be viewed as the same classifier. This validates the
AVIRIS experiments conducted by the OSP classifier in [10];
in which case, the OSP is essentially equivalent to UMLE,
SSC, and OBC in classification. As mentioned previously, TSC
produces a signature bias that deteriorates its performance.
However, it will outperform SSC and OBC, as shown in
computer simulations, if the signature bias is known and
removed. However, it is very rare in real applications to obtain
such signature bias for TSC. So, the TSC proposed here only
serves as a theoretic approach and a transition model from
SSC to OBC.

The remainder of this paper is organized as follows.
Section II briefly reviews the OSP approach. Section III
describes three least squares error-based classifiers: SSC, TSC,
and OBC. Section IV evaluates the estimation errors using
ROC analysis. Section V conducts computer simulations and
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experimental results using AVIRIS data. Section VI includes
a brief conclusion.

II. OSP APPROACH

A. Linear Spectral Mixture Model

Linear spectral unmixing is a widely used approach in
multispectral/hyperspectral imagery to determine and quan-
tify individual spectral signatures in a mixed pixel. Let
be an column vector, and denote theth pixel in a
multispectral/hyperspectral image, where the bold face is used
for vectors. In this case, each pixel is viewed as a pixel
vector with dimension. Assume that is an signature
matrix denoted by , where is an
column vector represented by theth signature resident in the
pixel and is the number of signatures of interest. Let

be a abundance column
vector associated with , where denotes the fraction of
the th signature in the pixel . A linear spectral mixture
model is described by

(1)

where is an column vector representing an additive
white Gaussian noise with zero mean and varianceand
is the identity matrix.

B. OSP [10]

In the following, we briefly review the OSP approach given
in [10]. First of all, we rewrite model (1) as

(2)

where the subscript is suppressed and is made up of a
desired signature and the undesired spectral signature
matrix . Model (2) can be extended
straightforwardly to more than one desired signature. Here,
we assume without loss of generality that the last signature
is the desired signature. We also assume that
and are the spaces linearly spanned by and
respectively. The reason for separatingfrom is to allow
us to design an OSP to annihilate from an observed pixel
prior to classification. One of such desired OSP’s was derived
in [10], given by , where
is the pseudoinverse of and the notation in indicates
that the projector maps the observed pixelinto the range
space , the orthogonal complement of .

Now, applying to model (2) results in a new spectral
signature model

(3)

where the undesired signatures inhave been eliminated and
the original noise has been suppressed to .

Equation (3) represents a standard signal detection prob-
lem. If the optimal criterion for the signal detection problem
specified by (3) is to maximize the SNR, given by

SNR over (4)

the maximum SNR of (4) can be obtained by a matched filter,
denoted by , with the designed matched signal given by.
In this case, the maximum SNR is obtained by letting .

It is easily shown in [15] that maximizing (4) is equivalent to
finding the maximum eigenvalue of the following generalized
eigenvalue problem:

(5)

Since (4) and (5) present a two-class classification problem,
the rank of the matrix on the left of (5) is one. This implies
that the only nonzero eigenvalue is the maximum eigenvalue,
which also solves (5) by letting . Accordingly, this
eigenvalue can be obtained as

SNR

(6)

Based on the approach outlined by (3)–(6), a mixed pixel
classification can be carried out by a two-stage process, an
undesired signature rejecter followed by a matched filter

. More precisely, if we want to classify a target signature
in a mixed pixel at the subpixel scale, say, based on
model (1), we first apply to model (2) to eliminate ,
then use the matched filter to extract the from (3).
The operator coupling with is called an orthogonal
subspace classifier, the one derived in [10] and denoted by

OSP (7)

In the OSP approach, an assumption made about model (1)
was that the complete knowledge of signaturesalong with
their fractions must be known
a priori. Unfortunately, in the real image data experiments
conducted in [10], it is not possible to know the abundance
of spectral signatures in advance. Under this circumstance, we
must estimate the signatures from the data themselves. So,
model (1) may not be adequate in real-world applications and
needs to be amended. One way to circumvent this problem was
proposed in [13], where model (1) was reformulated based on
a posteriori information obtained from images and given by

(8)

where and are estimates of and
respectively, based on the observed pixel itself. Because of
this, the model depicted by (8) is calleda posteriori model
as opposed to model (1), which can be viewed as a Bayes
or a priori model. It should be noted that for the purpose
of simplicity, we will drop the dependency of from all the
notations of estimates throughout the rest of the paper.

III. L EAST SQUARES SUBSPACEPROJECTIONCLASSIFIERS

In order to convert the Bayes model (1) toa posteriori
model (8), we need to develop techniques that can estimate
the abundance for model (8). Three least squares sub-
space projection-based classifiers are proposed as follows.
They are all unconstrained least squares error estimation
techniques [16].
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Fig. 1. Signature space orthogonal projection classifier (SSC).

A. SSC [13]

Using the least squares error as an optimal criterion yields
the optimal least squares estimate of LS given by

LS (9)

Substituting (9) for the estimate of in (8) results in

LS LS (10)

where is dropped from the notation ofLS and

LS LS LS (11)

It should be noted that, if the estimateLS in (9) is replaced
by the unconstrained ML estimateUMLE, (10) was the
model used in [12].

Let denote the signature space
orthogonal projector that projects into the signature space

. Then .
Applying to model (10) and using (11) gives rise to

LS LS (12)

LS (13)

where the term LS vanishes in (13) since annihilates

LS.
By coupling with the OSP classifierOSP given by

(7), a new classifier SSC can be derived, called SSC and
obtained as follows.

SSC OSP (14)

Fig. 1 shows the projectionSSC .
Now, if SSC is applied to botha priori model (1) anda

posteriori model (8), we obtain

SSC SSC

SSC (15)

and

SSC SSC LS LS
(16)

Equating (15) and (16) yields

SSC (17)

Dividing (17) by , we obtain the estimate of ,
denoted by SSC

SSC
SSC SSC (18)

where the last equality holds because of
. It is worth noting that (18) is identical to (31) in

[13].
Based on (18), a normalized SSC classifierSSC can be

defined by

SSC SSC
(19)

Using (18) and (19), the estimation error is given by

SSC SSC (20)

SSC (21)

(22)

with the corresponding SNRSSC given by the maximum
eigenvalue

SSC (23)

The last equality holds because of .
The following two comments are noteworthy.

1) Comparing (23) to (6), the maximum SNR (or eigen-
value) generated byOSP is exactly the same as that
produced by SSC, due to .
This shows that the SNR will not be decreased or
increased by SSC. In other words, the maximum eigen-
value obtained by (6) remains unchanged after
applying . This observation can be explained by
using Malinowski’s error theory [17], in which the
eigenvalues are divided into two classes, a primary set
containing larger eigenvalues and a secondary set of
smaller eigenvalues. The former corresponds to signa-
tures with unremovable imbedded error, and the latter
represents experimental errors that can be eliminated
by designed techniques. According to this theory, the
maximum eigenvalue belongs to the primary set, thus,
it cannot be reduced by any means. Equation (23),
equal to (6), illustrates this phenomenon. A detailed
error analysis resulting from least squares subspace
approaches was studied in [18].

2) The quantity in (23) determines SSC
and provides very important information because the
magnitude of SNR is determined by the degree of target
signature correlated with the undesired signatures in

. If is very similar to one or more signatures in
(i.e., the projection of onto ) will be

small. This implies that SNR will be low. As a result,
it will make the target signature discrimination very
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Fig. 2. Target signature space orthogonal projection classifier (TSC).

difficult. Therefore, the magnitude of can be
used as a measure of the discrimination power of SSC.
The larger the , the better the discrimination.

B. TSC [19]

In SSC, projects onto the entire signature space .
However, since we are only interested in classifying the target
signature , a natural approach is to project the observed pixel

onto the target signature space rather than . This
results in a second classifier, called TSC, denoted byTSC
and given by

TSC (24)

where is defined in the same fashion that was defined,
i.e., . Fig. 2 shows the operation of

TSC .
Following the same argument for deriving (14) and (15), the

counterparts of (17)–(20) for TSC can be obtained as follows:

TSC TSC TSC (25)

TSC TSC
(26)

TSC TSC TSC (27)

TSC TSC TSC TSC (28)

Comparing (27) to (18), there is an extra termTSC
in (27) that does not appear in (18). The quantityTSC
will be referred to as a signature bias due to the fact that the
projector used in TSC cannot effectively eliminate , as
did SSCin (20), and the signatures in may be mixed into

through . It is this bias to deteriorate the performance
of TSC. However, if such a signature bias can be accurately
estimated and removed prior to target classification, TSC will
outperform SSC in terms of target classification power. This
will be further studied in Section IV-B.

Fig. 3. Oblique subspace projection classifier (OBC).

The maximum SNR corresponding to (26) is given by the
maximum eigenvalue

TSC (29)

Unlike (23), which is solely determined by , the
SNR of TSC is determined by the ratio of
to . If two operators and commute,

and (29) is reduced to (23). In this
situation, TSC is the same as SSC.

C. OBC [19]

When TSC was compared to SSC, there was a signature bias
resulting from TSC. The attribute of the bias is mainly due to
the fact that is not orthogonal to , i.e., .
In order to resolve this dilemma, we need to find a projector
that can separate from . Fortunately, there exists such
a projection in [14], called an oblique subspace projection,
which designates as its range space and as its null
space. In other words, the oblique subspace projection maps
an observed pixel into the target signature space, as didin
TSC, while annihilating all undesired signatures by mapping

into the null space, as did in SSC. The former operation
projects the target signature onto the target signature space, and
the latter projection forces the bias to zero. Of course, there is
a tradeoff for doing so. That is, the oblique subspace projection
is no longer orthogonal, although it is still an idempotent
projection. More interestingly, it was shown in [14] that the
signature space orthogonal projector used in SSC can be
decomposed as a sum of two oblique projectors, of which the
proposed oblique subspace projection turns out to one of them.

Let be a projector with range space and null space
. The can be decomposed as described in Fig. 3 and

expressed by

(30)

with

(31)

(32)

particularly, and .
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In analogy with (14), an OBC denoted byOBC can be
constructed via (31) by

OBC (33)

Applying (33) to model (1) and model (8) results in

OBC (34)

and

OBC

OBC

OBC
(35)

where .
Equating (34) and (35) yields

OBC (36)

and

OBC (37)

So, from (37), a normalized OBC denoted byOBC can be
defined by

OBC (38)

which produces the maximum SNR given by the maximum
eigenvalue

OBC (39)

Equation (39) turns out to be equal to (23), i.e.,OBC
SSC .
From (37), the estimation errorOBC can be obtained as

OBC OBC (40)

Two interesting observations can be made from (40). If we
compare (40) to the obtained in [12], they are identical. The
estimate can also be derived by partitioning the signature
matrix into and , as was done in [12]. This implies
that, when the UMLE and OBC are applied to linear spectral
mixing problems specified by (1), they both arrive at identical
classifiers. If we further compare (40) to (7), there is an extra
constant appearing in (40). This constant actually
results from abundance estimation error, as will be shown
in the next section. Since model (1) assumes the complete
knowledge of the abundance, there is no need for estimating
abundance in model (1). Thus, no constant was included in
(7). In other words, the constant accounts for the
distinction between thea priori model (1) anda posteriori
model (8).

IV. ESTIMATION ERROR EVALUATED BY ROC ANALYSIS

In the previous section, three estimation errors were derived
for SSC, TSC, and OBC. These errors are the penalties
resulting from inaccurate estimation of unknown signature
abundances. In order to evaluate the error performance of
these classifiers, we cast their associated estimation errors as
a standard signal detection problem [20], whereis viewed
as a true target signature abundance corrupted by the noise
represented by their estimation errors. By virtue of this
formulation, these three classifiers can also be interpreted as
subpixel target detectors that can be used to detect the presence
of a target signature in a mixed pixel. The effectiveness of
these detectors depends upon the accuracy of the abundance
estimate and can be evaluated by the ROC analysis via
the Neyman–Pearson detection theory. An ROC curve is a
graph plotted by the detection power versus the false alarm
probability. Instead of using ROC curves as a performance
criterion in [13], we define a measure called detection rate
(DR), which calculates the area under an ROC curve for
the effectiveness of the detector. Obviously, DR always lies
between 1/2 and one. The worst case occurs when DR ,
i.e., the detection power is equal to the false alarm probability,
which implies that the classifier is worthless. On the other
hand, the best case occurs only when DR , namely,
the detection power is always one, regardless of the false
alarm probability. This ROC analysis has been widely used in
diagnostic imaging [21], [22] for evaluation of computer-aided
diagnostic methods, in which the detection power is measured
by the true-positive probability and the false alarm probability
is represented by the false-positive probability.

Assume that is the projection resulting from a classifier
applied to the observed pixel. A signal detection model

based on can be described by a test of two hypotheses as
follows:

versus (41)

where the null hypothesis and the alternative hypothesis
represent the case of noise alone (i.e., estimation

error) and the case of the true target signaturepresent in
the , respectively.

The Neyman–Pearson detector associated with (41) is given
by

NP (42)

where is the observed pixel.
From (42), we can also define the false alarm probability

and detection power (detection probability) [20] as follows:

(43)

(44)

Using (44), the detection power specifies the capability of
the detector NP in detecting the true target signature .
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Therefore, the higher the detection power, the smaller the
estimation error, the better classification the classifier.

A. SSC

Substituting SSC specified by (17) for in (41) results
in a subpixel target detection model given by

SSC SSC
versus

SSC

(45)

where the noise SSC is generated by the estimation error
produced by SSC. The hypothesis in (45) represents the
case in which the mixed pixel does not contain the target
signature , while indicates the presence ofin the mixed
pixel.

Based on (20)–(22) and (45), we obtain the error covariance
matrix SSC for the estimation error SSC resulting from
(20), as follows:

SSC SSC SSC SSC SSC

SSC SSC

(46)

Assume that is a white Gaussian noise with zero mean
and covariance matrix . Substituting (46) into (45) yields

(47)

and the thresholdSSC given by

SSC (48)

where is the cumulative distribution of the standard
Gaussian random variable given by

(49)

The desired detection powerSSC can be derived using (49)

SSC (50)

SSC (51)

In (50), SSC is expressed in terms of , which
indicates the degree of the correlation betweenand the
projection . On the other hand, (51) illustrates that the
detection power is measured by the magnitude of SNR or,
equivalently, the maximum eigenvalue. So, both (50) and (51)
can be used to evaluate the performance of SSCSSC.

It is important to note that, for a fixed false alarm probability
, (50) shows that the discrimination power ofSSC is

proportional to the value of , whereas (51) suggests

that the discrimination power ofSSC is proportional to the
magnitude of the maximum SNR orSSC . This makes
perfect sense since the former indicates the degree of similarity
between the target signature and the undesired signatures
in , and the latter demonstrates that SNR determines the
performance. More interestingly, if we interpret as an
inner product of and the projection measures
how much projection of is projected onto the orthogonal
complement space . The more the projection, the less
similarity between and , thus, the better the discrimination.
Additionally, the detection power equation (50) is also a
function of . The higher the , the better the detection
of . Despite no presence of in (51), it is implicitly
included in SSC , given by (23). So, both (50) and (51)
are also determined by the abundance strength of. All
of these relationships can be well explained by the ROC
analysis.

B. TSC

The classifier TSC, specified by (26), produces the follow-
ing subpixel detection problem associated with the estimation
error TSC modeled by the noiseTSC:

TSC TSC
versus

TSC

(52)

where

TSC (53)

is a signature bias resulting from, i.e., the unknown abun-
dance of the undesired signature in. The covariance matrix
of TSC TSC is then given by

TSC TSC TSC TSC TSC

TSC TSC

(54)

The probability density functions (pdf’s) and
under and hypotheses and the thresholdTSC can
derived as follows:

(55)

and

TSC

(56)
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TABLE I
TARGET SIGNATURES AND UNDESIRED SIGNATURES CHOSEN FORDATA SETS 1 AND 2

TABLE II
50 SIMULATED PIXELS WITH ASSIGNED RELATIVE ABUNDANCES OF SIGNATURES FOR DATA SETS 1 AND 2

Fig. 4. Data set 1.

where is given by (49). From (55) and (56), the desired
detection power TSC is

TSC

TSC

(57)

where is given by (53). In analogy withSSC, the detection
power of TSC can be evaluated by (57).

It is worth noting that, unlike SSC, the detection power of

TSC is also a function of the signature bias. As mentioned
previously, this bias is a result of the effect of the projector
mixing into , so that the bias cannot be removed. This
is, however, not the case of SSC, wherecan be properly

Fig. 5. Data set 2.

projected by into the signature space and eliminated
in a subsequent projection carried out by . Nonetheless, if

is orthogonal to , then . This implies that no
projection can be projected by into and, thus, the
bias will be zero.

1) Signature Bias Analysis for TSCLet be a subset of
and be the space linearly spanned by. Assume that

is the dimensionality of , i.e., . We can
define the signature bias projection (SBP) in the following to
measure the magnitude of the projection ofinto :

SBP (58)

From (58), SBP describes the degree of the signature bias
projection by which is garbled and mixed by . In the case
of TSC, with and SBP is . Then, SBP
is gradually reduced by increasingand finally reduced to
zero when it reaches and , in which case, TSC
becomes SSC. This phenomenon was justified by computer
simulations in [19].
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TABLE III
DR FOR DATA SET 1

(a)

(b)

(c)

Fig. 6. Performance curves produced by SSC and TSC without bias, respec-
tively, based on data set 1 with (a) SNR= 50 : 1, (b) SNR= 30 : 1, and (c)
SNR= 10 : 1, where the solid curve is TSC and the dotted curve is SSC.

C. OBC

Analogous to (45) and (52), the OBCTSC given by (38)
generates the following subpixel target detection problem:

OBC OBC
versus

OBC

(59)

(a)

(b)

(c)

Fig. 7. Performance curves produced by SSC and TSC without bias, respec-
tively, based on data set 1 with (a) SNR= 50 : 1, (b) SNR= 30 : 1, and (c)
SNR= 10 : 1, where the solid curve is TSC and the dotted curve is SSC.

with the noise covariance matrixOBC given by

OBC OBC OBC OBC OBC

OBC OBC

(60)
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TABLE IV
DR FOR DATA SET 2

Fig. 8. ROC curves produced by SSC, TSC without bias, and TSC with bias,
respectively, based on data set 1 with (a)�3=� = 0:5, (b) �3=� = 0:3, and
(c) �3=� = 0:1, where the asterisked, dotted, and solid curves are generated
by SSC, TSC without bias, and TSC with bias, respectively.

Substituting (60) into (59), we obtain the same pdf’s
and given by (47) for the detection problem equation
(59). As a result, the thresholdOBC is equal to SSCgiven
by (48) and the desired detection powerOBC

OBC (61)

SSC (62)

is identical to the detection powerSSC . This implies that

OBC is essentially equivalent toSSC, in the sense that they
both generate identical ROC curves.

V. COMPUTER SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, computer simulations and a scene of AVIRIS
data will be used to evaluate the relative performance of three
proposed classifiers: SSC, TSC, and OBC.

Fig. 9. ROC curves produced by SSC, TSC without bias, and TSC with bias,
respectively, based on data set 2 with (a)�3=� = 0:5, (b) �3=� = 0:3, and
(c) �3=� = 0:1 , where the asterisked, dotted, and solid curves are generated
by SSC, TSC without bias, and TSC with bias, respectively.

A. Computer Simulations

In the following simulations, two laboratory data sets in
[10] were used and each data set contains three field spectral
reflectances with spectral range from 0.4 to 2.5m. In this
case, the signature matrix is , consisting
of three spectral signatures with abundance given by

. We also let be the target signature
specified by abundance and be the matrix
made up of undesired signatures with abundances given by

. Data set 1 shown in Fig. 4 contains dry grass, red
soil, and creosote leaves, with creosote leaves designated as

(see Table I). Data set 2 is shown in Fig. 5 withmade
up of sage brush, black brush, and creosote leaves (see
Table I). The difference between data set 1 and data set 2
is that the spectrum of the target signature in data set 2 is
very similar to that of sage brush, while all three spectra in
data set 1 are distinguishable. Fifty mixed pixels are simulated
with abundances in accordance with Table II. In this paper, we
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(a) (b)

(c) (d)

(e)

Fig. 10. LCVF scene of AVIRIS data classified by OSP with (a) cinders as the target signature, (b) rhyolite as the target signature, (c) playa as the
target signature, (d) vegetation as the target signature, and (e) shade.

only consider the case in which the undesired signature vectors
share their abundances evenly for illustrative purpose. For the
case of uneven abundances in, refer to [19], which shows no

appreciable difference in the experiments, particularly for the
desired signature with high abundance. In addition to signature
vectors, different Gaussian noise levels are also simulated and
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(a) (b)

(c) (d)

(e)

Fig. 11. LCVF scene of AVIRIS data classified by SSC with (a) cinders as the target signature, (b) rhyolite as the target signature, (c) playa as the
target signature, (d) vegetation as the target signature, and (e) shade.

added to generate SNR 50:1, 30:1, and 10:1, with the SNR
defined in [10] as 50% reflectance divided by the standard
deviation of the noise. Since OBC is essentially equivalent to

SSC, only results generated by SSC are plotted in all figures.
Figs. 6 and 7 show performance comparisons between SSC
and TSC for two data sets (Fig. 6 for data set 1 and Fig. 7 for
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(a) (b)

(c) (d)

(e)

Fig. 12. LCVF scene of AVIRIS data classified by TSC with (a) cinders as the target signature, (b) rhyolite as the target signature, (c) playa as the
target signature, (d) vegetation as the target signature, and (e) shade.

data set 2), where figures labeled by (a), (b), and (c) are results
obtained based on SNR 50:1, 30:1, and 10:1, respectively.
The dotted and solid curves are produced by SSC and TSC,

respectively, and the TSC used here has already eliminated
the signature bias. As shown in these figures, TSC with bias
removed performed better than SSC. However, it is not true if
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TSC is used with bias. It was shown in [19] that the abundance
curves produced by TSC with the bias were nearly flat across
all 50 pixels (i.e., 1.175 for data set 1 and 0.85 for data
set 2). This implies that all pixels contain almost the same
abundance. Obviously, it is not the case that the pixels were
simulated. This phenomenon can also be explained in terms
of ROC analysis and will be further justified in Fig. 12 for
AVIRIS, where the classification results using TSC with bias
are erroneous because in real data it is impossible to estimate
and eliminate the bias.

In order to evaluate the estimation error performance of SSC
and TSC, their ROC curves are plotted in Figs. 8 and 9 for the
two data sets with the same three signatures used for Figs. 6
and 7. Figures labeled by (a), (b), and (c) are results generated
by and respectively. The asterisked
curve is the ROC curve generated by SSC. The dotted and
solid curves are the ROC curves produced by TSC without
bias and with bias, respectively. It should be noted that each
ROC curve is generated by one mixed pixel with a given
desired signature abundance-to-noise ratio (ANR), . For
instance, if and , the noise level will be

and the other two undesired signatures will evenly
split the remaining abundance 0.7. Their detection rates (DR’s)
are tabulated in Tables III and IV, which measure effects of
different ANR’s and spectral similarity. As expected, detection
rates for TSC with bias removed are higher than that for
SSC. However, what is unexpected is that TSC with bias even
produces a little bit higher DR values than those without bias.
This is due to the fact that when the bias is not known in real
data, it must be considered to be a part of the target signature in
the detection power equation (57). As a result, the target signal
is strengthened by the bias in generating the ROC curves for
TSC. From Figs. 6–9, it is also shown that SNR and spectral
similarity play a role in performance.

B. AVIRIS Data

The AVIRIS data used in this experiment were the same data
in [10], which is a scene of the Lunar Crater Volcanic Field,
Northern Nye County, NV. As described in [10], the AVIRIS
experiments were based on radiance spectra extracted directly
from the image itself, not really based on prior knowledge of
model (1). Nevertheless, OSP was proved to be effective for
radiance spectra, not necessarily to be calibrated to reflectance
spectra, as assumed in model (1). Here we apply SSC and
TSC to the same AVIRIS data and compare their results to
that produced by OSP in [10]. Figs. 10 (OSP), 11 (SSC),
and 12 (TSC) show the experiments, where four signatures of
interest in these images are “red oxidized,” “basaltic cinders,”
“rhyolite,” “playa (dry lakebed),” and “vegetation.” Figures
labeled (a)–(d) show cinders, rhyolite, playa, and vegetation
as targets, respectively, and figures labeled by (e) are results
of the shades, where we refer the original single-band image
to Figs. 6 and 7(a) in [10]. As indicated in Section V-A of
computer simulations, Fig. 12 produced the worst performance
and cannot detect the targets correctly, due to unknown bias
that cannot be eliminated in data processing. On the other
hand, the images generated by OSP and SSC show no visible

difference. This implies that both SSC and OSP yield the same
performance when no prior knowledge about data is available.
As a conclusion, SSC can be viewed as ana posteriori OSP
and a practical version of OSP.

VI. CONCLUSION

An OSP classifier was recently developed for hyperspectral
image classification. However, the model on which it is based
requiresa priori knowledge about the abundance of signatures,
which is generally not case in real data. In this paper, three
least squares subspace projection-based classifiers, SSC, TSC,
and OBC, were introduced to estimate signature abundance
prior to classification. SSC estimates the target signature by
projecting a mixed pixel into the signature space from which
the target signature can be extracted by a matched filter. Rather
than mapping a mixed pixel into the entire signature space,
TSC projects the pixel directly into the target signature space.
Unfortunately, it does not produce satisfactory performance,
due to the fact that the undesired signatures are also projected
and mixed into the target signature space. As a consequence,
an unknown signature bias is created. In order to eliminate this
bias, OBC is further proposed to project the target signature
into its range space while projecting the undesired signatures
into its null space. The paid price is that OBC is no longer
an orthogonal projector, but still an idempotent projection.
Despite such a difference in projection principle between SSC
and OBC, it was shown in this paper that SSC and OBC are
essentially equivalent, in the sense that they generate identical
ROC curves. Their comparative performances are evaluated
by ROC analysis through computer simulations and AVIRIS
experiments. Since all three classifiers, SSC, TSC, and OBC,
are designed on the basis of observed pixels, they work as
a posteriori OSP, as opposed toa priori OSP in [10]. More
importantly, in addition to mixed pixel classification, thea
posteriori OSP can also be used for estimating the abundance
of a desired target signature as well as for subpixel detection.
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