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Abstract—An orthogonal subspace projection (OSP) method to targets previously unresolved in multispectral images. In
using linear mixture modeling was recently explored in hyper- addition, hyperspectral imagery provides more information
spectral image classification and has shown promise in signature i, \yhich it can differentiate very similar reflectance spectra,

detection, discrimination, and classification. In this paper, the . . e .
OSP is revisited and extended by three unconstrained least @ task that multispectral imagery generally has difficulty with.

squares subspace projection approaches, called signature space In multispectral/hyperspectral imagery, a scene pixel is
OSP, target signature space OSP, and oblique subspace pro-generally mixed by a number of spectral signatures (or end-
jection, where the abundances of spectral signatures are not members) due to improved spectral resolution with large

known a priori but need to be estimated, a situation to which :
the OSP cannot be directly applied. The proposed three subspaceSpatlal coverage from 10 to 20 m. Two models have been

projection methods can be used not only to estimate signature proposed in the past to describe such activities of mixed pixels.
abundance, but also to classify a target signature at subpixel One is the marcospectral mixture [2] that models a mixed pixel
scale so as to achieve subpixel detection. As a result, they canas a linear combination of signatures resident in the pixel with
be viewed asa posteriori OSP as opposed to OSP, which can re|ative concentrations. A second model suggested by Hapke in

be thought of asa priori OSP. In order to evaluate these three [3], called the intimate spectral mixture, is a nonlinear mixin
approaches, their associated least squares estimation errors arel=! P ’ 9

cast as a signal detection problem in the framework of the Ney- Of signatures present within the pixel. Nevertheless, Hapke's
man-Pearson detection theory so that the effectiveness of theirmodel can be linearized by a method proposed by Johason

genleregtedAﬁlassifilers Caﬂd be measurgdbby CharaCteriS_tiCSI (ROC)al. [4]. In this paper, only the linear spectral mixture model will

analysis. All results are demonstrated by computer simulations ; ; - :

and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) _be COﬂSIdeI’ed.. By taklng advantage of "”?af modellng,. many
image processing techniques can be applied. Of most interest

data.
o ) , is the principal components analysis (PCA), also known as
Index Terms—Classification, detection, hyperspectral image, 4 nen_Loeve transformation, which is widely used for
oblique subspace projection classifier (OBC), orthogonal sub- !

space projection (OSP), receiver operating characteristics (ROC), data projection, so as to achieve data dimensionality reduction
signature space orthogonal projection classifier (SSC), target as well as feature extraction. As a result of PCA, the data
signature space orthogonal projection classifier (TSC). coordinates will be rotated along with the direction of the
maximum variance of the data matrix so that the significant
information of the data can be prioritized in accordance with
) i ] ] the magnitude of the eigenvalues of the data covariance
HE ADVENT of high spatial resolution airborne andmarix Two disadvantages arise from the PCA approach.
satellite sensors improves the capability of ground-basgge s that the pixels in the PCA-transformed data are still
data collection in the fields of geology, geography, and agt- nixing of spectral signatures with unknown abundances.
culture. One major advantage of hyperspectral imagery OVgf, e determination and identification of individual spectral

multispectral imagery is that the former images a scene us@%natures are not mitigated. Malinowski [5] and Heute [6]

as many as 224 contiguous bands, such as Airborne wﬁi’oposed a solution. They first reconstructed the original data

ble/Infrared Imaging Spectromgter (AVIRIS) 1], as oppose&ising the largest PCA-generated eigenvalue and measured the
o (;hLe AﬁgEgA_LIJ_S.mg only A4_7 dlsclt[etr? bands, foh as Sg)g;l;or between the raw data and the reconstructed data to
an Images. AS a resull, nyperspectral image aé%e if the error falls within the prescribed tolerance. If not,

permit the expansion of detection and classification activiti(ﬁ?ey gradually added to data reconstruction the eigenvalues in

decreasing magnitude until the error resulted within the desired
" + received October 23. 1996 revised Octoper 7. 1997 level. A second disadvantage resulting from PCA is that PCA
anuscript received October 23, ; revised October 7, . . . : -~
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resulting from OSP is an operator composed of two lineaecessarily orthogonal to the target signature, the undesired
filters, one derived from the simultaneous diagonalizati®ignatures may be scrambled into the target signature space
filter developed in [11] and the second, called the matcheather than mapping their own respective spanned spaces,
filter, derived from communication systems. However, thas does SSC. As a result of such mixing, a signature bias
model on which the OSP classifier was based assumed Hezomes indispensable. In order to cope with this problem,
complete knowledge of signature abundamcpriori, which a third approach based on oblique subspace projection [14]
is generally difficult to obtain in practice. In order for theis suggested to eliminate such a bias. It projects the target
OSP classifier to be applied to real scene experiments, thignature and undesired signatures into two separate spaces,
knowledge was obtained by the ground truth and directiis range space and null space, respectively. Since these two
extracted from scene pixels, as done in [10], where tlpaces are disjoint, no mixing will occur and, thus, no signature
signatures were estimated from the AVIRIS data themselvédsas will be generated. The resulting classifier will be referred
Despite the success of OSP in classification of AVIRIS data as an oblique subspace projection classifier (OBC). The
[10], there is a lack of theory to support this experimen©OBC comes at a price, however. It is no longer orthogonal
In this paper, we will revisit the OSP approach and offer like SSC and TSC. Nevertheless, it is still a projection. What
theoretical background for the OSP from an estimation theaityis interesting about the OBC is that SSC can actually be
point of view to explain why the OSP can be applied tdecomposed into two oblique projections, one of which is
real hyperspectral data, as demonstrated in [10]. The theexactly the OBC. In this paper, we will show a surprising result
is derived based on unconstrained least squares estimatitat SSC and OBC are essentially equivalent in the sense of
and can be viewed as posterioriapproach. More precisely, classification, regardless of the fact that one is orthogonal and
all required information for data analysis is obtained frorthe other is not. In addition, we will further show that the OBC
observed data not prior information assumed in the modslexactly identical to the UMLE derived in [12]. It should
used in [10]. As a result, the approaches presented in thiso be noted that the techniques presented in this paper can
paper can be referred to asposterioriOSP, while the OSP be used for subpixel target detection and classification, even
in [10] can be regarded aspriori OSP. A recent work in [12] though they are primarily developed for signature abundance
also derived an unconstrained maximum likelihood estimati@stimation here.
(UMLE) that generated the same classification feature vectorin order to evaluate the performance of these three classi-
as the OSP but with an extra constant. However, it is thiiers, we model their associated least squares errors as a signal
constant associated with abundance estimation. Moreowdetection problem in which the true target signature abundance
there is a difference in their approaches. The UMLE iis the desired signal and the estimation error is treated as
[12] maximized the conditional probability distribution of amoise. By means of this detection model, the effectiveness of
unknown constant specified by signature abundance, whilach classifier can be measured using the receiver operating
the OSP maximized the SNR based on Fisher’'s discriminastiaracteristics (ROC) analysis via the Neyman—Pearson detec-
criterion, which only depends upon the noise second-ord@n theory and both SSC and OBC generate identical ROC
statistics. Accordingly, the UMLE and the OSP are indeezlirves. Thus, they are essentially the same classifier in terms
different methods. of detection power for target abundance. Most importantly, the
Three approaches will be presented to extend the OSSP classifier derived in [10] produced the same classification
classifier in [10] to the case in which the signature abundandesture vector as that produced by SSC and OBC with an
are not necessarily knowa priori, but can be estimated extra constant, a result also noted in [12]. Since this extra
from the images of interest on the basis of the least squatemstant can only affect the magnitude of the classification
error criterion. They are unconstrained least squares estifeature vector that only determines the amount of signature
tion methods and are derived from the subspace projectiabundance contained in classified pixels, it does not alter the
principle. The first approach was proposed in [13], whicblassification results. Consequently, UMLE, OSP, SSC, and
projected observed pixels (in this case, the observed d&BC can be viewed as the same classifier. This validates the
pixels are pixels in real data) into a signature space generaf&tRIS experiments conducted by the OSP classifier in [10];
by an entire set of spectral signatures to reduce unwaniadwhich case, the OSP is essentially equivalent to UMLE,
interference. The projector, named LSOSP in [13], will b8SC, and OBC in classification. As mentioned previously, TSC
referred to in this paper as the signature space orthogopedduces a signature bias that deteriorates its performance.
projection classifier (SSC) to reflect the projection space. Sindewever, it will outperform SSC and OBC, as shown in
the target signature is the one needed to be classified, a seammputer simulations, if the signature bias is known and
approach is to directly project the observed pixels into themoved. However, it is very rare in real applications to obtain
space spanned by only the target signature rather than $ieh signature bias for TSC. So, the TSC proposed here only
entire signatures. The resulting classifier will be referred &erves as a theoretic approach and a transition model from
as the target signature space orthogonal projection classi&8C to OBC.
(TSC). As we might expect, TSC should perform better than The remainder of this paper is organized as follows.
SSC in the sense that the target signature space containsSeotion Il briefly reviews the OSP approach. Section Il
other signatures but the target signature itself. Unfortunatetigscribes three least squares error-based classifiers: SSC, TSC,
as shown in this paper, this is generally not the case. Thed OBC. Section IV evaluates the estimation errors using
drawback of TSC is that, since the desired signatures are R®C analysis. Section V conducts computer simulations and
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experimental results using AVIRIS data. Section VI includethe maximum SNR of (4) can be obtained by a matched filter,

a brief conclusion. denoted byM 4, with the designed matched signal givendy
In this case, the maximum SNR is obtained by letting ~d.
II. OSP APPROACH It is easily shown in [15] that maximizing (4) is equivalent to
finding the maximum eigenvalue of the following generalized
A. Linear Spectral Mixture Model eigenvalue problem:
Linear spectral unmixing is a widely used approach in [PLL] -1 [Pﬁrdoc?)dTPbJr]x = Ax. (5)

multispectral/hyperspectral imagery to determine and quan- o
tify individual spectral signatures in a mixed pixel. Let Since (4) and (5) present a two-class classification problem,

be anl x 1 column vector, and denote thih pixel in a the rank of the matrix on the left of (5) is one. This implies

multispectral/hyperspectral image, where the bold face is udBgt the only nonzero eigenvalue is the maximum eigenvalue,
for vectors. In this case, each pixel is viewed as a pix&fhich also solves (5) by letting = rd. Accordingly, this

vector with dimensior. Assume thaf/ is ani x p signature ©lg9envalue can be obtained as

matrix denoted bym; my --- m,;), wherem; is anl x 1 Ao = SNR

column vector represented by thth signature resident in the a2 [dTPbJ;d] [dTPLJ;d] o2

pixel r; and p is the number of signatures of interest. Let =—% THT =2d"Pyd. (6)
_ T o d¥ Prd o

a; = (i1 a2 -+ yp) be ap x 1 abundance column

vector associated witl;, wherea,; denotes the fraction of Based on the approach outlined by (3)-(6), a mixed pixel
the jth signature in the pixet;. A linear spectral mixture classification can be carried out by a two-stage process, an
model is described by undesired signature rejectét- followed by a matched filter
M. More precisely, if we want to classify a target signature
ri=Mai+n; (1) in a mixed pixel at the subpixel scale, sal based on

wheren; is anl x 1 column vector representing an additivénodel (1), we first applyP; to model (2) to eliminatel/,
white Gaussian noise with zero mean and variasteand7 then use the matched filtet/q to extract thed from (3).

is the I x { identity matrix. The operator coupling’+ with My is called an orthogonal
subspace classifier, the one derived in [10] and denoted by
B. OSP [10] Ssp= MaPF =d" Py 7

In the following, we briefly review the OSP approach given

in [10]. First of all, we rewrite model (1) as In the OSP approach, an assumption made about model (1)

was that the complete knowledge of signatukésalong with
r=da,+U~y+n (2) their fractionsa; = (a1 a2 -+ )T must be known
o ) a priori. Unfortunately, in the real image data experiments
where the subscript is suppressed and/ is made up of @ ongycted in [10], it is not possible to know the abundance
desired signaturd = m,, and the undesired spectral signaturg¢ gpectral signatures in advance. Under this circumstance, we
matrix U = (my my --- my_,). Model (2) can be extended ¢ estimate the signatures from the data themselves. So,
stralghtforwarcﬂy to more than one_deswed S|gnaturg. Hetgodel (1) may not be adequate in real-world applications and
we assume without loss of generality that the last signatyfge s to be amended. One way to circumvent this problem was
is the desired signaturd. We also assume thaid), (M) ronosed in [13], where model (1) was reformulated based on

and (U) are the spaces linearly spanned &ty U, and M, 5 posterioriinformation obtained from images and given by
respectively. The reason for separatilrigrom M is to allow

us to design an OSP to annihilaté from an observed pixel r = Mé(r) + a(r)
prior to classification. One of such desired OSP’s was derived = ddy(r) + UA(r) + f(r) (8)
in [10], given by P+ = I —UU#, whereU# = (UTU)~1UT
is the pseudoinverse éf and the notatior; in P+ indicates
that the projecto’ maps the observed pixelinto the range
space(U)+, the orthogonal complement ¢&/).

Now, applying P+ to model (2) results in a new spectra
signature model

where &(r), é,(r), and4(r) are estimates of, «;,, and~,
respectively, based on the observed pixel itselBecause of
this, the model depicted by (8) is calledposteriori model

ps opposed to model (1), which can be viewed as a Bayes
or a priori model. It should be noted that for the purpose
of simplicity, we will drop the dependency af from all the
Pgr = Pgda, + Pin (3) notations of estimates throughout the rest of the paper.

where the undesired signaturesiinhave been eliminated and
the original noise has been suppressed’tm.

Equation (3) represents a standard signal detection probin order to convert the Bayes model (1) &oposteriori
lem. If the optimal criterion for the signal detection problenmodel (8), we need to develop techniques that can estimate

Ill. L EAST SQUARES SUBSPACE PROJECTION CLASSIFIERS

specified by (3) is to maximize the SNR, given by the abundancey for model (8). Three least squares sub-
[xT pL d] 2[ drp J-x] space projection-based classifiers are proposed as follows.
SNR= Y 4 over x (4) They are all unconstrained least squares error estimation

xT Pgr E[nn”] Pyrx techniques [16].
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4 Equating (15) and (16) yields
<> L
<<U> d> space r d” P Prydéy, = A" P Pydag, + gggan. (17)

Dividing (17) by d¥ P+ P,d, we obtain the estimate af,,,
denoted by&sscp

=z <d> IS5 —a 1S5 (18)

B A e B

= Py r where the last equality holds because &f P+Pyd =

<M>=<Ud> space. 4T plq. It is worth noting that (18) is identical to (31) in

[13].
<U> Based on (18), a normalized SSC classifjérsc can be
Fig. 1. Signature space orthogonal projection classifier (SSC). defined by
#sc= (A" PFPud) " ghgc= (47 PFd) " d"PF Py
A. SSC [13] 19)

Using the least squares error as an optimal criterion yiel#$ing (18) and (19), the estimation error is given by

th timal | t timateaofa i b A
e optimal least squares estimatecofiy g(r) given by £SSC, = ASSC, — (20)
& g(r) = (MTM)"*M™r. (9) = &g (21)

-1
Substituting (9) for the estimate of in (8) results in = (d" Pgd) d" Py Pynm (22)
r=Md g+ig (10) with the corresponding Sl\@scmax given by the maximum
eigenvalue
wherer is dropped from the notation @i g(r) and
PP LS( ) _aIQJ [dTPbL’PMd]Q _0412) Tpl

fg=r-Maig=Ma-dig)+n (11) ASSCumax = 52 qrplq Pid - $d'rrd. (@3

It should be noted that, if the estimatg g(r) in (9) is replaced The last equality holds because &f P+ Py;d = d7 PAd.
by the unconstrained ML estima@yy g, (10) was the  The following two comments are noteworthy.
model used in [12]'T . , 1) Comparing (23) to (6), the maximum SNR (or eigen-
t;et Py I: M(Jy Jt\ﬁ)t M” dép()tte tLhe §|gna;ture SPACE " value) generated bylgpis exactly the same as that
orthogonal projector that projecisinto the signature space ~
(M) gThen?’ JM — Proj 9 P prqduced bngsc due to dTPI}PMd = dTPtd.
C M : . . . This shows that the SNR will not be decreased or
Applying Py, to model (10) and using (11) gives rise to increased by SSC. In other words, the maximum eigen-
Py = PuMéy g+ Puiy g (12) value_)\mX obtair_1ed by (6) _remains unchang_ed after
applying Py;. This observation can be explained by

=Mas (13) using Malinowski’'s error theory [17], in which the
where the termPy, i g vanishes in (13) sinc®,; annihilates eigenvalues are divided into two classes, a primary set
fi g. containing larger eigenvalues and a secondary set of
By coupling Py, with the OSP C|assiﬁeq(T)SP given by smaller eigenvalues. The former corresponds to signa-

tures with unremovable imbedded error, and the latter
represents experimental errors that can be eliminated
by designed techniques. According to this theory, the

(7), a new classifiegZ <~ can be derived, called SSC and
. SSC
obtained as follows.

4&sc= 1OspPv = 4" PPy (14) maximum eigenvalue belongs to the primary set, thus,
it cannot be reduced by any means. Equation (23),
Fig. 1 shows the projectioggscr. equal to (6), illustrates this phenomenon. A detailed
Now, if qg Cis applied to botha priori model (1) anda error analysis resulting from least squares subspace
posteriori moﬁel (8), we obtain approaches was studied in [18].
T _— T 2) The quantityd”Ptd in (23) determines)\ssc;maX
95sd = d” Py PMMCYJFCISSCH and provides very important information because the
= dTPI}PMdocp + qgscn (15) magnitude of SNR is determined by the degree of target
signatured correlated with the undesired signatures in
and U. If d is very similar to one or more signaturesiii
. dT Ptd (i.e., the projection ofd onto (U)1) will be
L =q& C(Ma +n)g) Y C .
9Ssct = 9ss LSTHLS small. This implies that SNR will be low. As a result,

= dTPI}PMd&p. (16) it will make the target signature discrimination very
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L
<<U> d> space r

<d>

<U>

Fig. 2. Target signature space orthogonal projection classifier (TSC).

difficult. Therefore, the magnitude ai” P}d can be
used as a measure of the discrimination power of SSC.

The larger thed? Pi-d, the better the discrimination.

B. TSC [19]
In SSC, P, projectsr onto the entire signature spa¢k/).

However, since we are only interested in classifying the tar
signatured, a natural approach is to project the observed pix

r onto the target signature spa¢é) rather than(A). This
results in a second classifier, called TSC, denotedﬁxgc
and given by

drsc=4d"PgPa (24)

<U>
N

<<U> d> space

<d>

<M>=<Ud> space

<[>

Fig. 3. Oblique subspace projection classifier (OBC).

The maximum SNR corresponding to (26) is given by the
maximum eigenvalue
ap _[dTPfd])”
O'2 dTPdeJrPdd

Unlike (23), which is solely determined by@?Pqid, the
SNR of TSC is determined by the ratio dfi’P;td]?
to dT PPt Pad. If two operators Py and P;- commute,
dT PPt Pad = AT P+d and (29) is reduced to (23). In this

AMTSCmax = (29)

gsé uation, TSC is the same as SSC.

& osc [19]

When TSC was compared to SSC, there was a signature bias
resulting from TSC. The attribute of the bias is mainly due to
the fact that(d) is not orthogonal tqU}, i.e., {(d) N (U} # @.

In order to resolve this dilemma, we need to find a projector
that can separatd from U. Fortunately, there exists such

where Py is defined in the same fashion thid; was defined, a projection in [14], called an oblique subspace projection,
ie, Pg = d(dd)~'d”. Fig. 2 shows the operation ofwhich designate¢d) as its range space ar@) as its null

(]T

space. In other words, the oblique subspace projection maps

TScH
Following the same argument for deriving (14) and (15), then observed pixel into the target signature space, a®’giih

counterparts of (17)—(20) for TSC can be obtained as followsSC, while annihilating all undesired signatures by mapping

(dTPbl,d)@TSQP = (d"Prd) oy + g5 gV + afgcn (25)
T _(aTpLl -l T
frsc=(d"Prd) ergc
= (dTPFd) T dT PP, (26)
a1sc, = op + drscUr + ditscn (27)

eTSCp = GTSC, — @ = dTsclU7 + dTgcn-(28)

Comparing (27) to (18), there is an extra terﬁSCUfy
in (27) that does not appear in (18). The quantji;/sCUfy

U into the null space, as dif} in SSC. The former operation
projects the target signature onto the target signature space, and
the latter projection forces the bias to zero. Of course, there is
a tradeoff for doing so. That is, the oblique subspace projection
is no longer orthogonal, although it is still an idempotent
projection. More interestingly, it was shown in [14] that the
signature space orthogonal projecfdy; used in SSC can be
decomposed as a sum of two oblique projectors, of which the
proposed oblique subspace projection turns out to one of them.
Let E'xy be a projector with range spadé and null space
Y. The Py; can be decomposed as described in Fig. 3 and

will be referred to as a signature bias due to the fact that tBRpressed by

prolectorPd used inggc

cannot effectively eliminaté/, as
in (20), and the signatures iri may be mixed into

(d) throughFPy. It is this bias to deteriorate the performancéé"ith

of TSC. However, if such a signature bias can be accurately
estimated and removed prior to target classification, TSC will
outperform SSC in terms of target classification power. This

will be further studied in Section IV-B.

Py = Equ + Epa (30)
Equ = d(d"Ptd) 1T Pt (31)
Eya =UUTPFU) T UTPE (32)

particularly, Fqyd = d and EqpU = 0.
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In analogy with (14), an OBC denoted %BC can be IV. ESTIMATION ERROR EVALUATED BY ROC ANALYSIS

constructed via (31) by In the previous section, three estimation errors were derived
T _JiTE 33 for SSC, TSC, and OBC. These errors are the penalties
qopc =4 Eav. (33) resulting from inaccurate estimation of unknown signature

abundances. In order to evaluate the error performance of
these classifiers, we cast their associated estimation errors as
a standard signal detection problem [20], wheyeis viewed
as a true target signature abundance corrupted by the noise
represented by their estimation errars By virtue of this
formulation, these three classifiers can also be interpreted as
T T subpixel target detectors that can be used to detect the presence
qopct = 4" Eavr of a target signature in a mixed pixel. The effectiveness of
= de&OBC,p +d¥Equn these detectors depends upon the accuracy of the abundance
—4q7 déopc estimated,, and can be evaluated by the ROC analysis via
P the Neyman—Pearson detection theory. An ROC curve is a
(35) graph plotted by the detection power versus the false alarm
. probability. Instead of using ROC curves as a performance
where drprdUn =0. _ criterion in [13], we define a measure called detection rate
Equating (34) and (35) yields (DR), which calculates the area under an ROC curve for
T T T the effectiveness of the detector. Obviously, DR always lies
d*dappc, = d day +d” Eavn (36) petween 1/2 and one. The worst case occurs wher=0R2,
i.e., the detection power is equal to the false alarm probability,
and which implies that the classifier is worthless. On the other
. el aT hand, the best case occurs only when BR 1, namely,
aoBC, = @p +(d"d)7"d" Equn. (37) the detection power is always one, regardless of the false
alarm probability. This ROC analysis has been widely used in
So, from (37), a normalized OBC denoted g~ can be diagnostic imaging [21], [22] for evaluation of computer-aided
defined by diagnostic methods, in which the detection power is measured
o Tt o by the true-positive probability and the false alarm probability
djogc=(d"d)""d" Eqyn (38) is represented by the false-positive probability.
Assume thatz is the projection resulting from a classifier
which produces the maximum SNR given by the maximug¥ applied to the observed pixel A signal detection model

Applying (33) to model (1) and model (8) results in
quCr =d¥Eqr= deap +d Egyn (34)

and

eigenvalue based onz can be described by a test of two hypotheses as
) follows:
o -1
AOBCmax = 5z (4" Prd] (39) Ho: z = ¢™n = po(2)
versus (42)
Equation (39) turns out to be equal to (23), iIBgBC . = Hy:z=ap+ ¢ n=p(2)
ASSCimas: where the null hypothesi&l, and the alternative hypothesis

From (37), the estimation erreoec,, can be obtained as H, represent the case of noise alone: ¢“n (i.e., estimation

X Col =1l error) and the case of the true target signatugepresent in
€0OBC, = @0BC, — @ = [d' Pyd] d"Pyn.  (40) the », respectively.
The Neyman—Pearson detector associated with (41) is given
Two interesting observations can be made from (40). If wg,
compare (40) to thé,, obtained in [12], they are identical. The
estimated,, can also be derived by partitioning the signature snplz) = {1, z= q:‘;n >T (42)
matrix M into d and U, as was done in [12]. This implies 0, z=¢'n<7
that, when the UMLE and OBC are applied to linear spectral . :
o o . : : therer is the observed pixel.
mixing problems specified by (1), they both arrive at identica From (42), we can also define the false alarm probability
classifiers. If we further compare (40) to (7), there is an extra '

constantd” P+d]~! appearing in (40). This constant actuallyand detection power (detection probability) [20] as follows:

results from abundance estimation error, as will be shown o0
in the next section. Since model (1) assumes the complete Pr :/ po(z) dz (43)
knowledge of the abundanee there is no need for estimating oo
abundance in model (1). Thus, no constant was included in Pp =/ pi(z)dz. (44)

(7). In other words, the constapd? P;+d]~* accounts for the
distinction between thea priori model (1) anda posteriori Using (44), the detection power specifies the capability of
model (8). the detectorénp in detecting the true target signature,.
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Therefore, the higher the detection power, the smaller tk®at the discrimination power Q%SC is proportional to the

estimation error, the better classification the classifier. magnitude of the maximum SNR orggc,...- This makes
perfect sense since the former indicates the degree of similarity
A. SSC between the target signatuck and the undesired signatures

in U, and the latter demonstrates that SNR determines the
performance. More interestingly, if we interpkét P-d as an
inner product ofl and the projectiod’;-d, d¥ P;+d measures

Substitutingq“éSC specified by (17) forg” in (41) results
in a subpixel target detection model given by

Hy: z = égscn =nggC™ po(?) how much projection ofd is projected onto the orthogonal
versus (45) complement spacéU)+. The more the projection, the less
Hi: z = ap +iggc= pi(2) similarity betweerd andU, thus, the better the discrimination.

where the noisgiggc is generated by the estimation erronAddit,iona"y’ the dete_ction power equation (50) is aI;o a
produced by SSC. The hypothedi& in (45) represents the function of «,,. The higher thew,, the better the detection
case in which the mixed pixel does not contain the targ8f d- Despite no presence af, in (51), it is implicitly
signatured, while H, indicates the presence dfin the mixed ncluded iNAssc,,,,, given by (23). So, both (50) and (51)
pixel. are also determined by the abundance strength,of All

Based on (20)—(22) and (45), we obtain the error covarian% these relationships can be well explained by the ROC

matrix ¥ggc for the estimation errofiggc resulting from analysis.
(20), as follows:

B. TSC
_ T _ s AT
>ssc= E[ESSCESSC} - E[HSSCRSSC} The classifieq o ~, specified by (26), produces the follow-
= ngCE [mn”]dsgc ing subpixel detection problem associated with the estimation
) dTPLJY_PMPMPij_d error &TSC,]) modeled by the noisétgc:
=0
dT P PpddT Pt Pyd o )
o2 o2 Ho: 2 = g = ATsC = Po(?)
(46) versus (52)

— T = T3
dTP7Pyd dTPzd Hi: 2 =ap + g = pi(2)

Assume tham is a white Gaussian noise with zero mean
and covariance matrix2]. Substituting (46) into (45) yields Where

po(2) = N(o, aQ(dTPb%d)‘l) b=FsUy = (A7 PFd) AT PEPAUy (B3

(47)
~ 2(qT pLy—1
niz) N(%’a (d" Prd) ) is a signature bias resulting from i.e., the unknown abun-
and the thresholdggc given by dance of the undesired signaturelin The covariance matrix
1 of iTgc X1 is then given by
7ssc=o(d" Pyd)" "eTH1 - Pr) (48)
. . o b)) =F [5 L } =F [ﬁ nl }
where ®&(z) is the cumulative distribution of the standard TSC TSCTSC TSC* TSC
Gaussian random variable given by = é%sc:E nn?]drsc
‘ 22 TP+ +
@(x)z/ L% (49) =24 Fylabyd
oo V27 dT P Padd? P Pad
The desired detection pow#ks, can be derived using (49) _ 2 dTszf)iiPﬁd' (54)
(dTPzrd)?

-1 -1(1 — I
Pssgp=1-2 <(I) (1= Pr) U(dTPer)_l/2> (50) The probability density functions (pdf'g)o(z) and p;(z)
v under Hy and H; hypotheses and the threshotggc can

=1- <I>(<I>‘1(1 — Pp) — 1/)‘SSCmax)- (51) derived as follows:

In (50), Psgc, is expressed in terms ad” Prd, which — p () %N((), aQ(dTPLJv‘d)_QdTPinPdeJid)
indicates the degree of the correlation betwekrand the y
projection P+d. On the other hand, (51) illustrates that the pi(z) ~ N(ap +b,02(dT Prd) dTszdePvad)
detection power is measured by the magnitude of SNR or,
equivalently, the maximum eigenvalue. So, both (50) and (53hd
can be used to evaluate the performance of

It is important to note that, for a fixed false alarm probability . Tl 4\/? 1
Py, (50) shows that the discrimination power g§q is TSC= {a(d Prd) "/ dT P PPy d}q) (1= Pr)
proportional to the value oi” P+d, whereas (51) suggests (56)

(55)
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TABLE |
TARGET SIGNATURES AND UNDESIRED SIGNATURES CHOSEN FORDATA SETS 1 AND 2
undesired signatures target signature
Data set 1 dry grass, red soil creosote leaves
Data set 2 sage brush, black brush creosote leaves
TABLE I
50 SMULATED PIXELS WITH ASSIGNED RELATIVE ABUNDANCES OF SIGNATURES FOR DATA SETS 1 AND 2
pixel numbers | pixel numbers | pixel numbers | pixel numbers | pixel numbers
1-10 11-20 21-30 31-40 41-50
target signature 1% 5% 10 % 15 % 20 %
undesired signature 1 49.5 % 475 % 45 % 425 % 40 %
undesired signature 2 49.5 % 47.5 % 45 % 42.5% 40 %
1 1
g o8 9 o8t
% Dry Grass % Creosote |eaves
3 0.6 3 06 1 e
S 04 Red Soil & o4t
;{,‘ 02 T Creosote Leaves E 021 y Black Brush
0 t . . . + + + ] t t . + t : +
1 21 41 61 81 101 121 141 1 21 41 61 81 101 121 141
Band's Number Desired: Creosote Band's Number Desired:Creosote
Leaves
Leaves
Fig. 4. Data set 1. Fig. 5. Data set 2.

where®(z) is given by (49). From (55) and (56), the desiregrojected byP,, into the signature spag@/) and eliminated

detection powetPrgc p Is in a subsequent projection carried out By. Nonetheless, if
P —1—& d is orthogonal to{U}, then PqUU = 0. This implies that no
TSCo projection{U/) can be projected by into (d) and, thus, the
. ap + b bias & will be zero.
7 (1-Pp) — — 1) Signature Bias Analysis for TSCet V be a subset of
o(d? Pyrd) \ d? Py PaPgd M and (V) be the space linearly spanned By Assume that
=1-®(¢7(1 - Pp) v is the dimensionality ofV), i.e.,v = dim({V}). We can
define the signature bias projection (SBP) in the following to
a,+0b i jecti :
_ M"" - _lp - - measure the magnitude of the projectionldfinto (V)
O'(dTPU d) dTPU PdPU d p— d1m((V)) p—v
v 57) SBP= ’ ==, (58)
whereb is given by (53). In analogy W'tbgsc the detection From (58), SBP describes the degree of the signature bias

power of Gt can be evaluated by (57). projection by whichd is garbled and mixed b¥/. In the case

It is worth noting that, unlikeq“ésC the detection power of of TSC,V = d with v = 1 and SBP is2=L. Then, SBP
G4 <~ is also a function of the signature biasAs mentioned is gradually reduced by increasingand finally reduced to
previously, this bias is a result of the effect of the projed®gr zero when it reache® = M andv = p, in which case, TSC
mixing U into (d), so that the bias cannot be removed. Thisbecomes SSC. This phenomenon was justified by computer
is, however, not the case of SSC, whéfecan be properly simulations in [19].
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TABLE 11l
DR FOR DATA SET 1
data set 1 0,/ 0 =05 o,/ 0 =03 o,/ =01
SSC = OBC DR =0.71 DR =0.63 DR =0.55
TSC without bias DR =0.95 DR =0.83 DR =0.63
TSC with bias DR =0.95 DR =0.83 DR =0.63
0.25 025
0.2 02
8 8
2 015 g0.15 TSC
2 TSC =2 T A R R ‘
é [X IF B e e EE SSC é 01 88C
0.05 ] 0.05
01 , , . v . . : 0} = . v ‘ ‘ .
1 6 11 16 20 26 31 336 41 46 1 6 11 16 21 26 31 36 4 46
Pixel's Number Pixel's Number
@ (@)
025 025
0.2 021
% 015 % 015 TSC
= TSC 2 ol o4 sscC
goerty  peee—d e SSC 2"
0.05 005
ol : . ' ' ' ‘ ' ' ol - - . . . . -
. 6 11 158 2 26 3 35 4 45 1 6 11 16 20 26 31 36 41 46
Pixel's Number Pixef's Number
(b) (b)
0.25
02
§ 0.15 g TSC
E IS¢ AR B e A R ssC
g oy AL e SSC 3
0.05
0 - ‘ . . . . - ‘ 6 11 16 21 26 31 36 41 46
16 11 16 21 26 31 36 4 46 -0.05 -
Pixel's Number Pixels Number
© (c)

. . . ig. 7. Performance curves produced by SSC and TSC without bias, respec-
E|g. 6. Performance curves _produced by SSC and TSCiW|thput bias, resd;ev%ly’ based on data set 1 with (a) SNR50: 1, (b) SNR= 30:1, and (c)
tively, based on data set 1 with (a) SNR50:1, (b) SNR=30:1, and (c) SNR= 10:1. where th lid is TSC and the dotted is SSC
SNR=10:1, where the solid curve is TSC and the dotted curve is SSC. = 1J:1, where the solid curve IS and the dotted curve I1s ’

C. OBC with the noise covariance matriXogc given by

Analogous to (45) and (52), the OB&?SC given by (38) “opc = E[EOBC‘%B(:] = E[ﬁOBCﬁch]

enerates the following subpixel target detection problem: " -
’ 9 SUBPRETIT P = dopcEmn"liosc
(AT pL ]\l 47 pL T AT pINT (4T pL 7)1
Hoz:(j_(r)BCn:ﬁOBcgpo(z) = (d fUd) d PUE[nn ](d PU) (d PU )
versus (59) _ ¢ (60)
o dTPb%d'

H:z=aqp —i—ﬁOBC = pi(2)
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TABLE IV
DR FoRrR DATA SeT 2
Data set 2 Op/C =05 0,/ 0 =03 0/ G =0.1
SSC =OBC DR =0.57 DR =0.54 DR =0.52
TSC without bias DR =0.95 DR =0.83 DR =0.63
TSC with bias DR =0.95 DR =0.83 DR = 0.63
Data Set 1 Data Set 2
8 ®
g 8
E bt
© 4 ©
a oM L I | L L a 0 I ) L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
1 False Alarm probability i} ’ False Alarm probability
o = = R 5 E——————— ™
g Z
a o
505 ANR =0.3 b §05
s 8
5 @
Q O L 1 ] Il 1 o 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
1 False Alarm probability y
5 T T T S
3 g
a a
505 - 8
B 8
[ @
[a [
0 . L ) L |

O 20 40 60 80 100 120 0 20 40 60 80 100 120
Faise Alarm probability False Alarm probability

Fig. 8. ROC curves produced by SSC, TSC without bias, and TSC with bi&dg. 9. ROC curves produced by SSC, TSC without bias, and TSC with bias,
respectively, based on data set 1 with ¢a)/o = 0.5, (b) a3/ = 0.3, and respectively, based on data set 2 with 4a)/o = 0.5, (b) a3/c = 0.3, and

(c) as/o = 0.1, where the asterisked, dotted, and solid curves are generatellas /o = 0.1 , where the asterisked, dotted, and solid curves are generated
by SSC, TSC without bias, and TSC with bias, respectively. by SSC, TSC without bias, and TSC with bias, respectively.

Substituting (60) into (59), we obtain the same pdfigz) A. Computer Simulations
and p;(z) given by (47) for the detection problem equation
(59). As a result, the thresholghgc is equal torggcgiven
by (48) and the desired detection POWEHBC

In the following simulations, two laboratory data sets in
[10] were used and each data set contains three field spectral
reflectances with spectral range from 0.4 to 2. In this

case, the signature matrix /¥ = (m; my mg3), consisting
Popcp=1-2 &1 - Pp) - % (61) of three spectral signatures with abundance givenaby
’ o(dTPgd)" / (a1 a2 a3)T. We also letd = m3 be the target signature

4 14 _ specified by abundance; andU = (m;, m) be the matrix
=1 (I)((I) (1 - Pr) \/)‘SSCmaX> (62) made up of undesired signatures with abundances given by

(a1 a2)?. Data set 1 shown in Fig. 4 contains dry grass, red
soil, and creosote leaves, with creosote leaves designated as
d (see Table I). Data set 2 is shown in Fig. 5 withmade
up of sage brush, black brush, add= creosote leaves (see
Table 1). The difference between data set 1 and data set 2
V. COMPUTER SIMULATIONS AND EXPERIMENTAL RESULTS s that the spectrum of the target signature in data set 2 is
In this section, computer simulations and a scene of AVIRM&ry similar to that of sage brush, while all three spectra in
data will be used to evaluate the relative performance of thrdata set 1 are distinguishable. Fifty mixed pixels are simulated
proposed classifiers: SSC, TSC, and OBC. with abundances in accordance with Table II. In this paper, we

is identical to the detection powelssGp- This implies that
dE R~ iS essentially equivalent in the sense that the
OoBC 1afly ¢ SC y
both generate identical ROC curves.
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@ (b)

Fig. 10. LCVF scene of AVIRIS data classified by OSP with (a) cinders as the target signature, (b) rhyolite as the target signature, (c) playa as the
target signature, (d) vegetation as the target signature, and (e) shade.

only consider the case in which the undesired signature vectappreciable difference in the experiments, particularly for the
share their abundances evenly for illustrative purpose. For tthesired signature with high abundance. In addition to signature
case of uneven abundancedinrefer to [19], which shows no vectors, different Gaussian noise levels are also simulated and
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@ (b)

Fig. 11. LCVF scene of AVIRIS data classified by SSC with (a) cinders as the target signature, (b) rhyolite as the target signature, (c) playa as the
target signature, (d) vegetation as the target signature, and (e) shade.

added to generate SNR 50:1, 30:1, and 10:1, with the SNESC, only results generated by SSC are plotted in all figures.
defined in [10] as 50% reflectance divided by the standaFigs. 6 and 7 show performance comparisons between SSC
deviation of the noise. Since OBC is essentially equivalent &md TSC for two data sets (Fig. 6 for data set 1 and Fig. 7 for
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(@) (b)

(e)

Fig. 12. LCVF scene of AVIRIS data classified by TSC with (a) cinders as the target signature, (b) rhyolite as the target signature, (c) playa as the
target signature, (d) vegetation as the target signature, and (e) shade.

data set 2), where figures labeled by (a), (b), and (c) are resu#ispectively, and the TSC used here has already eliminated
obtained based on SNR 50:1, 30:1, and 10:1, respectivelye signature bias. As shown in these figures, TSC with bias
The dotted and solid curves are produced by SSC and TS&noved performed better than SSC. However, it is not true if
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TSC is used with bias. It was shown in [19] that the abundandéference. This implies that both SSC and OSP vyield the same
curves produced by TSC with the bias were nearly flat acrgssrformance when no prior knowledge about data is available.
all 50 pixels (i.e., 1.175 for data set 1 and 0.85 for datas a conclusion, SSC can be viewed asaaposterioriOSP

set 2). This implies that all pixels contain almost the samand a practical version of OSP.

abundance. Obviously, it is not the case that the pixels were

simulated. This phenomenon can also be explained in terms

of ROC analysis and will be further justified in Fig. 12 for VI. CONCLUSION

AVIRIS, where the classification results using TSC with bias a, osp classifier was recently developed for hyperspectral

are erroneous because in real data it is impossible to estimgte e classification. However, the model on which it is based

and eliminate the bias. o requiresa priori knowledge about the abundance of signatures,
In order to evaluate the estimation error performance of S§¢ich is generally not case in real data. In this paper, three

and TSC, their ROC curves are plotted in Figs. 8 and 9 for the, st squares subspace projection-based classifiers, SSC, TSC,
two data sets with the same three signatures used for Fig$,f§ opc, were introduced to estimate signature abundance
and 7. Figures labeled by (a), (b), and (c) are results generaigel; 1, classification. SSC estimates the target signature by
by az/o = 0.5, 0.3, and 0.1, respectively. The asteriskedysiecting a mixed pixel into the signature space from which
curve is the ROC curve generated by SSC. The dotted §fd 14get signature can be extracted by a matched filter. Rather
solid curves are the ROC curves produced by TSC withoyfan mapping a mixed pixel into the entire signature space,
bias and with bias, respectively. It should be noted that eaglc projects the pixel directly into the target signature space.
ROC curve is generated by one mixed pixel with a givefnsortunately, it does not produce satisfactory performance,
_deswed signature abundance-to-noise ratio (ANRYo. _For due to the fact that the undesired signatures are also projected
instance, ifez /o = 0.5 and oz = 0.3, the noise level will be 54 mixed into the target signature space. As a consequence,
o = 0.6 and the other two undesired signatures will evenly, \,nnown signature bias is created. In order to eliminate this
split the remaining abundance 0.7. Theilrdetectlon rates (DRiﬁ)as, OBC is further proposed to project the target signature
are tabulated in Tables Il and IV, which measure effects @fy; iis range space while projecting the undesired signatures
different ANR’s aqd spectral similarity. As gxpected, detectiofyio its null space. The paid price is that OBC is no longer
rates for TSC with bias removed are higher than that fgf, orthogonal projector, but still an idempotent projection.
SSC. However, what is unexpected is that TSC with bias evBfagyite such a difference in projection principle between SSC
produces a little bit higher DR values than those without biag, 4 OBC, it was shown in this paper that SSC and OBC are
This is due to the fact that when the bias is not known in reglsenially equivalent, in the sense that they generate identical
data, it must be considered to be a part of the target signaturgyd . cyrves. Their comparative performances are evaluated
the detection power equation (57). As a result, the targetsigr5§,l ROC analysis through computer simulations and AVIRIS
is strengthen_ed by the_b_ias in generating the ROC curves @{periments. Since all three classifiers, SSC, TSC, and OBC,
TSC. From Figs. 6-9, it is also shown that SNR and spectigly gesigned on the basis of observed pixels, they work as
similarity play a role in performance. a posteriori OSP, as opposed @ priori OSP in [10]. More
importantly, in addition to mixed pixel classification, ttze
posterioriOSP can also be used for estimating the abundance

B. AVIRIS Data ; . ) X
of a desired target signature as well as for subpixel detection.
The AVIRIS data used in this experiment were the same data
in [10], which is a scene of the Lunar Crater Volcanic Field,
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