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Further Results on Relationship Between
Spectral Unmixing and Subspace Projection

Chein-I Chang

Abstract—A recent short communication [1] showed that an orthogonal
subspace projection (OSP) classifier developed for hyperspectral image
classification in [2] was equivalent to a maximum likelihood estimator
(MLE) resulting from a standard method of linear unmixing. It further
concluded that the MLE subsumed the OSP classifier in spite of a constant
difference in their magnitudes. Coincidentally, the equivalence of the OSP
approach to linear unmixing was also derived in [3] and [4] by using the
least-squares estimation with the same abundance estimate given by the
MLE. In this communication, we show, on the contrary, that the MLE can
be viewed as ana posterioriversion of the OSP classifier and, thus, belongs
to a family of OSP-based classifiers. More importantly, we further show
that the constant produced by the MLE determines abundance estimation
and has nothing to do with classification. As a result, it only alters the
abundance concentration of the classified pixels, but not classification
results.

Index Terms—Least-squares estimate, maximum likelihood estimator
(MLE), orthogonal subspace projection (OSP), spectral unmixing.

I. INTRODUCTION

In a recent paper [2], Harsanyi and Chang developed an orthogonal
subspace projection (OSP) approach to hyperspectral image classi-
fication that has shown promise in HYperspectral Digital Imagery
Collection Experiment (HYDICE) data exploitation [5], [6]. For
example, a family of OSP-based methods have been developed and
presented in [6] since the OSP was introduced. Unfortunately, most
of them were not published in the literature. Therefore, the OSP
approach seems to be limited to the community that involves the
HYDICE program. The potential and usefulness of the OSP has not
been recognized outside this group. Based on the fact that the OSP in
[2] assumed complete knowledge about signature abundance, a recent
communication [1] showed that a maximum likelihood estimator
(MLE) resulting from linear unmixing could be used for abundance
estimation. It then concluded that the OSP approach was equivalent
to a standard method of the linear unmixing and the MLE subsumed
the OSP classifier. Interestingly, this equivalence was also derived by
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Harsanyi [3, chapter 4] before the OSP was published. Nevertheless,
the OSP and the MLE were developed based on different principles.
Here, we will show that using the concept ofa posteriori model
proposed in [4] the MLE can be implemented as ana posteriori
OSP classifier with the unknown signature abundance replaced by
its least-squares estimate or maximum likelihood estimate. Since the
MLE is simply a scaled version of the OSP classifier by a constant
�, they both generate the same classification feature vector and,
therefore, produce the same classification results. In the light of this
interpretation, the MLE can be viewed as one of the OSP-based
classifiers. However, it is the� that gives rise to an extra estimation
error for the MLE. Although [1] also noted the close relationship
of � to the abundance estimation error, it unfortunately did not go
in depth to exploit the implication and significance of the�. In this
communication, we provide an error analysis to show how the�

is related to the estimation error performance. Accordingly, only
the fraction of the abundance in the classified pixels is affected by
the �. This well explains why the OSP classifier could be used for
classification of real image data without assuminga priori knowledge
about abundance as it should [2].

II. ERROR ANALYSIS

Let rrr be anl� 1 column vector and denote a hyperspectral image
pixel vector, wherel is the number of spectral bands. Assume that
M is an l � p signature matrix denoted by(mmm1 mmm2 � � � mmmp)

wheremmmj is an l� 1 column vector represented by thejth spectral
signature (reflectance) within the pixel vectorrrr andp is the number
of signatures. We also let� be ap � 1 abundance column vector
given by (�1 �2 � � � �p)

T , where�j denotes the fraction of the
jth signature present inrrr.

A linear spectral mixture model forrrr is described by

rrr =M� + nnn (1)

wherennn is an l � 1 column vector representing an additive white
Gaussian noise with zero mean and variance�2I andI is the l � l

identity matrix. We can further rewrite model (1) as

rrr = ddd�p + U
 + nnn (2)

whereU is the undesired spectral signature matrix made up of a set of
p� 1 undesired signaturesU = (mmm1 mmm2 � � � mmmp�1) andddd = mmmp

is the desired target signature.
Based on model (2), an OSP projector was developed in [2] and

given by

P = I � UU
# (3)

whereU#
= (UTU)�1UT is the pseudo-inverse ofU and an OSP

classifier can be designed by

q
T
rrr = ddd

T
Prrr for any pixel vectorrrr: (4)

Now suppose that� is an unknown constant needed to be esti-
mated. From [2], [3]–[4], and [7], the least-squares estimate of�

was given by

�̂ = (M
T
M)

�1
M

T
rrr: (5)

Equation (5) turns out to be exactly the same form derived by the
MLE in [1]. In particular, the estimate of abundance�p, denoted by
�̂p, can be expressed by

�̂p = �(ddd
T
P )rrr (6)
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which is identical to the first equation of (31) in [4], with� given by

� = (ddd
T
Pddd)

�1
: (7)

It should be noted that̂�p in (6) should bê�p(rrr), which is a function
of an observation vectorrrr. For simplicity, therrr is omitted from the
notation.

Equation (6) shows that the least-squares estimate derived for�p

in [3] and [4] is the same one obtained by the MLE for�p, despite the
fact that the former used the subspace projection approach, while the
latter used the maximum likelihood estimation approach. Comparing
(6) to (4), the only difference is the constant� appearing in (6) but
not in (4). In [1], it was noted that the� is closely related to the mean-
square prediction error of�p and could be useful if it is compared
against the theoretical predictions afforded by the prediction error
matrix �2(MTM)�1. In this communication, we will further exploit
the role of the� in the estimation of abundance using a receiver
operating characteristics (ROC) analysis within the Neyman–Pearson
detection theory setting.

As shown previously, (4) was derived from the model given by (1)
that assumes complete knowledge about the model, including�. This
model was referred to asa priori or Bayes model in [4]. Since no
estimation is required for model (1), there is no� included in (4). On
the other hand, (6) was obtained by estimating the unknown�. As a
result, a constant� is introduced in (6) at the expense of inaccurate
estimation of�. It is a direct result of the error from estimating
�. Therefore, the� provides an important measure of the estimated
abundance present in the classified pixels. Unfortunately, this point
was not addressed in [1] and [3].

In what follows, we will show that the estimation error of abun-
dance is indeed a function of the�. The idea is to formulate the
error as the noise considered in a standard signal detection model.
By appealing for the Neyman–Pearson detection theory, the detection
power can be interpreted as the effectiveness of an abundance
estimation technique and evaluated by the ROC curve.

From the last equation of (31) in [4], (6) can be represented by

�̂p = �p + n̂ (8)

where

n̂ = �ddd
T
Pnnn � N 0; �

2

OSP (9)

with

�
2

OSP= �
2
(�ddd

T
P )(�ddd

T
P )

T
= �

2
� (10)

and N(0; �2OSP) is a Gaussian distribution with zero mean and
variance�2OSP.

It is worth noting that (8) was also derived in [3], [4], [7], and
[8]. The n̂ in (9) is the noise resulting from the estimation error.
As can be seen in (9), there appears a constant� in the noise
variance. Now, if� = 1, (8) is reduced to model (1), where the
n̂ in (9) becomes the same noise in model (1). In this case, the OSP
approach can be thought of asa priori version of linear unmixing.
For unknown abundance�, the a priori OSP classifier given by (4)
can be implemented asa posterioriOSP classifier using the following
a posteriori model proposed in [4]

rrr =M�̂+ n̂nn (11)

wheren̂nn = rrr �M�̂ is the noise estimate and the true unknown�

is replaced with the estimatê� by (5).
If we definePF andPD to be the false alarm probability and the

detection power (or the probability of detection), respectively, it is

easily shown from [4] and [7] that

PD = 1� � �
�1
(1� PF )� �p

�
p
�

: (12)

Based on (12), we can plot an ROC curve ofPD versusPF and use
it to evaluate the effectiveness of the estimator�̂p. For a detailed
discussion, refer to [4], [7], and [8]. Equation (12) describes the
precise relationship between the� and its associated estimation error,
which was not derived in [1] and [3].

From (7), the� is also determined by the correlation between the
desired signatureddd and the OSP projectorP . Let the inner product
of two vectorsxxx andyyy be defined byhxxx; yyyi = xxxT yyy. The� given by
(7) can be expressed as the inner product ofddd andPddd by

� = (ddd
T
Pddd)

�1
= (< ddd; Pddd >)

�1 (13)

wherePddd is the projection ofddd via the OSP projectorP . By virtue
of (13), the� is inversely proportional to the correlation betweenddd
and Pddd. The less the correlation betweenddd and U , the larger the
magnitudedddTPddd. Thus, the smaller the�, the greater thePD. This
further implies that the estimation method is better. From (13) we
also note that

0 � ddd
T
Pddd � ddd

T
ddd) ddd

T
ddd � � � 1: (14)

In particular, ifddd is normalized, i.e.,dddTddd = 1, then� � 1. Equation
(14) shows that the OSP classifier specified by (4) produces the
maximum detection power and provides an upper bound to (12). This
makes sense since (4) assumesa priori knowledge about�. So, the
only error resulting from the OSP classifier is the classification error,
and there is no estimation error involved in (4). On the other hand,
any means used to estimate� will generate a constant�, which is
a quantitative measure of the estimation error. Increasing the� in
(12) will decrease the detection powerPD. This indicates that the
error resulting from the MLE not only contains a classification error
produced by (4), but also an estimation error incurred by the�.
Another interpretation of the� is to view the� as a differential
measure of abundance in the classified pixels between the OSP
classifier and MLE. A detailed study of this phenomenon along with
experiments can be found in [8].

III. CONCLUSION

In this communication, we showed that the MLE derived in [1]
can be considered to be one of the OSP-based methods used for
hyperspectral image classification. This is because both the OSP
classifier and the MLE produce the same classification feature vector
qT = dddTP given by (4). As a consequence, the resulting classification
should be the same. However, there is a significant difference in their
magnitudes specified by a constant�. This� is closely related to the
error created by the estimation of true abundance. In order to assess
the role of the� in abundance estimation, an error analysis was
presented in the framework of Neyman–Pearson detection theory.
Although the MLE generates the same classifier as does the OSP
approach, it does not imply that the MLE and the OSP are the
same approach. As a matter of fact, they are designed by completely
different concepts. The MLE maximizes the prior probability density
function of the observation data, which requires statistics of all orders.
It is an a priori approach operating on ana posteriori model. On
the other hand, the OSP classifier derived by a subspace projection
approach requires only the second-order statistic of the noise, i.e.,
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covariance matrix. When the noise is assumed to be additive white
Gaussian, it is not surprising that they both arrive at the same
classification feature vector since a Gaussian distribution can be
completely determined by its first two order statistics. When the
noise is not Gaussian, the MLE and the OSP may not produce the
same classifier. Therefore, the MLE and the OSP approach should be
considered to be different methods.
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