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[3] S. Spitz, “Seismic trace interpolation in the F-X domaiGg&ophysics, Harsanyi [3, chapter 4] before the OSP was published. Nevertheless,

vol. 56, pp. 785-794, June 1991. _ the OSP and the MLE were developed based on different principles.
[4] J. ClaerboutEarth Sounding Analysis. Boston, MA: Blackwell, 1992. o - \ve will show that using the concept afposteriori model
[5] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via . . L.
rotational invariance techniquesgignal Processing Part Il: Control proposed in [4] the MLE can be implemented as amposteriori

Theory and Applicationsyol. 23. New York: Springer-Verlag, 1990. OSP classifier with the unknown signature abundance replaced by
[6] S. Haykin, Adaptive Filter Theory,2nd ed. Englewood Cliffs, NJ: its least-squares estimate or maximum likelihood estimate. Since the
Prentice-Hall, 1991. o . _ _ MLE is simply a scaled version of the OSP classifier by a constant
7] aéﬁa{’g'\ggéem Spectral Estimation. Englewood Cliffs, NJ: Prentice- 3, they both generate the same classification feature vector and,
[8] A. Cordova, W. Gautschi, and S. Ruscheweyh, “Vandermonde matricderefore, produce the same classification results. In the light of this
on the circle: Spectral properties and conditioningiimer. Math.yol.  interpretation, the MLE can be viewed as one of the OSP-based
57, no. 6-7, pp. 577-591, 1990. classifiers. However, it is thg that gives rise to an extra estimation
error for the MLE. Although [1] also noted the close relationship
of 3 to the abundance estimation error, it unfortunately did not go
in depth to exploit the implication and significance of theln this
communication, we provide an error analysis to show how jthe

Further Results on Relationship Between is related to the estimation error performance. Accordingly, only
Spectral Unmixing and Subspace Projection the fraction of the abundance in the classified pixels is affected by
the 3. This well explains why the OSP classifier could be used for

Chein-I Chang classification of real image data without assumangriori knowledge

about abundance as it should [2].

Abstract—A recent short communication [1] showed that an orthogonal
subspace projection (OSP) classifier developed for hyperspectral image
classification in [2] was equivalent to a maximum likelihood estimator Letr be anl x 1 column vector and denote a hyperspectral image
(MLEI) éezliﬁin?tgroméﬁagdard g“;th‘gsgf Iilnea'rf_unmixir]tg. '} furtheft  pixel vector, wherd is the number of spectral bands. Assume that
concluded that the subsumed the classifier in spite of a constant ; , - : .
difference in their magnitudes. Coincidentally, the equivalence of the OSP M is an Z. X p signature matrix denoted bjm: mo e my)
approach to linear unmixing was also derived in [3] and [4] by using the Wherem; is anl x 1 column vector represented by thith spectral
least-squares estimation with the same abundance estimate given by thesignature (reflectance) within the pixel vectoandyp is the number
MLE. In this communication, we show, on the contrary, that the MLE can  of signatures. We also let be ap x 1 abundance column vector
be viewed as ara posterioriversion of the OSP classifier and, thus, belongs given by (a; as -+ o )T wherea; denotes the fraction of the
to a family of OSP-based classifiers. More importantly, we further show = . . N J
that the constant produced by the MLE determines abundance estimation Jth S!gnature present. . . .
and has nothing to do with classification. As a result, it only alters the A linear spectral mixture model far is described by

abundance concentration of the classified pixels, but not classification :
results. r=Moa+mn 1)

Il. ERROR ANALYSIS

Index Terms—Least-squares estimate, maximum likelihood estimator wheren is anl x 1 column vector representing an additive white
(MLE), orthogonal subspace projection (OSP), spectral unmixing. Gaussian noise with zero mean and varianéé and I is thel x I
identity matrix. We can further rewrite model (1) as

I. INTRODUCTION r=da,+U~v+n 2

It? arecent paper [Z]bl-s|aprsany| andfhar;]g developedlgn OrthOglo\?v?nlereU is the undesired spectral signature matrix made up of a set of
subspace projection ( ) approac o yperspectrg mage clazs-) \ndesired signaturds = (m; m; --- m,_;) andd = m,,
fication that has shown promise in HYperspectral Digital Imagety o gesired target signature

Collection Experiment (HYDICE) data exploitation [5], [6]. For Based on model (2), an OSP projector was developed in [2] and
example, a family of OSP-based methods have been developed R/%n by '

presented in [6] since the OSP was introduced. Unfortunately, mast
of them were not published in the literature. Therefore, the OSP P=I1-UU#* 3)
approach seems to be limited to the community that involves th T LT .

HYDICE program. The potential and usefulness of the OSP has H}?Per?}' - (LE) Ud,) _L dlsbthe pseudo-inverse @f and an OSP
been recognized outside this group. Based on the fact that the osp'gpsiier can be designed by

[2] assumed complete knowledge about signature abundance, a recent ¢'r=d" Pr for any pixel vectorr. (4)
communication [1] showed that a maximum likelihood estimator ) ]
(MLE) resulting from linear unmixing could be used for abundance NOW suppose that is an unknown constant needed to be esti-
estimation. It then concluded that the OSP approach was equivalBlited- From [2], [3]-{4], and [7], the least-squares estimatex of
to a standard method of the linear unmixing and the MLE subsum¥@S given by

the OSP classifier. Interestingly, this equivalence was also derived by a= M M) M (5)
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which is identical to the first equation of (31) in [4], withgiven by easily shown from [4] and [7] that
3= rd)". )

Pr=1-30 <qu(1 —Pp)— J‘\"/PE) (12)

It should be noted that, in (6) should bei, (r), which is a function
of an observation vectar. For simplicity, ther is omitted from the

notation.l ‘ . Based on (12), we can plot an ROC curveR$ versusPr and use

~ Equation (6) shows that the least-squares estimate derived,forit to evaluate the effectiveness of the estimaigr For a detailed

in [3] and [4] is the same one obtained by the MLE dor, despite the  discussion, refer to [4], [7], and [8]. Equation (12) describes the
fact that the former used the subspace projection approach, while fgcise relationship between theand its associated estimation error,
latter used the maximum likelihood estimation approach. Comparigghich was not derived in [1] and [3].

(6) to (4), the only difference is the constantappearing in (6) but  From (7), thes is also determined by the correlation between the
notin (4). In [1], it was noted that the is closely related to the mean- desijred signaturd and the OSP projectaP. Let the inner product
square prediction error af, and could be useful if it is compared of two vectorsz andy be defined by(z,y) = z”y. The 3 given by

against the theoretical predictions afforded by the prediction errgr) can be expressed as the inner product aihd Pd by
matrix 72(M " M)~". In this communication, we will further exploit

the role of thes in the estimation of abundance using a receiver
operating characteristics (ROC) analysis within the Neyman—Pearson
detection theory setting.

As shown previously, (4) was derived from the model given by (1yhere Pd is the projection ofl via the OSP projectoP. By virtue

that assumes complete knowledge about the model, includifignis  ©f (13), theJ is inversely proportional to the correlation betwaén
model was referred to a priori or Bayes model in [4]. Since no @nd Pd. The less the correlation betwednand U, the larger the

estimation is required for model (1), there is fioncluded in (4). On magnituded’ Pd. Thus, the smaller the, the greater thé®;. This

the other hand, (6) was obtained by estimating the unknewAs a further implies that the estimation method is better. From (13) we
result, a constant is introduced in (6) at the expense of inaccurat@/so note that

estimation ofa. It is a direct result of the error from estimating

B=(d"Pd)~" =(<d.Pd>)"" (13)

«. Therefore, thed provides an important measure of the estimated 0<d"Pd<d’d=d"d< < . (14)
abundance present in the classified pixels. Unfortunately, this point
was not addressed in [1] and [3]. In particular, ifd is normalized, i.e.d”d = 1, thens > 1. Equation

In WI’_lat'fOHOWS, we W|_II show that the _estlmatlon error of abun(14) shows that the OSP classifier specified by (4) produces the
dance is indeed a function of thé The idea is to formulate the mayimum detection power and provides an upper bound to (12). This
error as the noise considered in a standard signal detection mogely ~s sense since (4) assuragsriori knowledge about. So, the
By appealing for the Neyman-Pearson detection theory, the detecipfly error resulting from the OSP classifier is the classification error,
power can be interpreted as the effectiveness of an abundaggg there is no estimation error involved in (4). On the other hand,
estimation technique and evaluated by the ROC curve. any means used to estimatewill generate a constant, which is

From the last equation of (31) in [4], (6) can be represented by, guantitative measure of the estimation error. Increasingjtiie

(12) will decrease the detection pow#&¥. This indicates that the

Gp =ap + 1 (8) error resulting from the MLE not only contains a classification error
produced by (4), but also an estimation error incurred by jghe
where Another interpretation of thej is to view the3 as a differential
o . ) measure of abundance in the classified pixels between the OSP
i = (3d" Pn~ N(0,005p) (9  classifier and MLE. A detailed study of this phenomenon along with
with experiments can be found in [8].
cosp= o’ (8d" P)(pd" P)" =0’ (10)
Ill. CoNcLUSION

and N (0, o'ésp) is a Gaussian distribution with zero mean and

variances? .

It is worth noting that (8) was also derived in [3], [4], [7], and®@" be con5|d_ered to be one .Of the OSP based methods used for
[8]. The @ in (9) is the noise resulting from the estimation errorhyper_s_pectral image_classification. This is be_c_aus_e both the OSP
As can be seen in (9), there appears a constaiib the noise classifier and the MLE produce the same classification feature vector
variance. Now, if3 = 1: (8) is reduced to model (1), where theqT = d' P given by (4).Asaconsequgnce,nthg_resultmg classm_catlop
i in (9) becomes the same noise in model (1). In this case, the O uld be the same. However, there is a significant difference in their

: ; magnitudes specified by a constahtThis 3 is closely related to the

approach can be thought of riori version of linear unmixing. error created by the estimation of true abundance. In order to assess
For unknown abundance, the a priori OSP classifier given by (4) y ; o ) .
the role of the3 in abundance estimation, an error analysis was

can be implemented osterioriOSP classifier using the followin . .
b &P 9 g presented in the framework of Neyman—Pearson detection theory.

a posteriorimodel proposed in [4] Although the MLE generates the same classifier as does the OSP
approach, it does not imply that the MLE and the OSP are the
r=Ma+n (11)  same approach. As a matter of fact, they are designed by completely
different concepts. The MLE maximizes the prior probability density
wheren = r — M4 is the noise estimate and the true unknown function of the observation data, which requires statistics of all orders.
is replaced with the estimat by (5). It is an a priori approach operating on aa posteriori model. On
If we define Pr and Pp to be the false alarm probability and thethe other hand, the OSP classifier derived by a subspace projection
detection power (or the probability of detection), respectively, it iapproach requires only the second-order statistic of the noise, i.e.,

In this communication, we showed that the MLE derived in [1]
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covariance matrix. When the noise is assumed to be additive whifg]
Gaussian, it is not surprising that they both arrive at the same
classification feature vector since a Gaussian distribution can be
completely determined by its first two order statistics. When th
noise is not Gaussian, the MLE and the OSP may not produce the
same classifier. Therefore, the MLE and the OSP approach should be
considered to be different methods. [5]
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