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Multispectral and Hyperspectral
Image Analysis with Convex Cones
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Abstract—A new approach to multispectral and hyperspectral
image analysis is presented. This method, called convex cone
analysis (CCA), is based on the fact that some physical quan-
tities such as radiance are nonnegative. The vectors formed by
discrete radiance spectra are linear combinations of nonnegative
components, and they lie inside a nonnegative, convex region.
The object of CCA is to find the boundary points of this region,
which can be used as endmember spectra for unmixing or as
target vectors for classification. To implement this concept, we
find the eigenvectors of the sample spectral correlation matrix of
the image. Given the number of endmembers or classes, we select
as many eigenvectors corresponding to the largest eigenvalues.
These eigenvectors are used as a basis to form linear combinations
that have only nonnegative elements, and thus they lie inside
a convex cone. The vertices of the convex cone will be those
points whose spectral vector contains as many zero elements as
the number of eigenvectors minus one. Accordingly, a mixed
pixel can be decomposed by identifying the vertices that were
used to form its spectrum. An algorithm for finding the convex
cone boundaries is presented, and applications to unsupervised
unmixing and classification are demonstrated with simulated
data as well as experimental data from the hyperspectral digital
imagery collection experiment (HYDICE).

Index Terms—Classification, convex cone analysis, hyperspec-
tral digital imagery collection experiment (HYDICE), hyperspec-
tral image, multispectral image, unmixing.

I. INTRODUCTION

SPECTRAL unmixing and object classification are two
important goals of remote imaging spectrometry [1], [2].

Unmixing is used for geological and ecological research as
well as for environmental monitoring. Classification is useful
for automatic target recognition [3] and other machine vision
applications. Unmixing and classification methods generally
require a reference, i.e., a set of models or a library of
spectra that is used to derive abundances for pixel unmixing,
or a measure of distance or fit for classification. When no
such reference is available, the analyst must use unsupervised
methods to accomplish his/her goal. Principal components
analysis (PCA) [4] and related transforms, such as maximum
noise fraction (MNF) [5], are the tool of choice of many
analysts as a first step. Spectral features are visualized in their
spatial context by creating projection images. These images
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are arranged in order of decreasing variance or signal-to-noise
ratio (SNR), and mutually orthogonal. A visual analysis often
provides clues that make it possible to obtain estimates of the
endmember or target spectra. The greatest drawback of this
approach is that it usually requires a highly trained expert
to study large amounts of data. In a situation in which large
scenes must be analyzed quickly as a matter of routine, this
approach may not be effective.

This paper introduces an approach that can lead to the auto-
mated, unsupervised analysis of multispectral or hyperspectral
image scenes. The concept presented here is geometric in
nature. It was introduced by Mavrovouniotiset al. [6], [7] and
applied to the classification of biological samples using time-
resolved pyrolysis-mass spectrometry. The idea of convex
cone analysis (CCA) is based on the observation that some
physical quantities, such as radiance (in the sense of photon
counts) or mass spectra, are strictly nonnegative. The vectors
formed by such spectra thus lie inside a convex region that
contains the nonnegative spectra. The objective of CCA is to
find the boundaries of this region as defined by its vertices.
These corner spectra can then be used as endmember spectra
for unmixing or target spectra for pixel classification.

CCA can be viewed as a form of factor analysis [4]. It can be
applied to any type of multivariate data provided that it makes
sense to impose a nonnegativity constraint. Given the number
of components (i.e., targets for classification or endmembers
for unmixing) in a scene , we find the boundaries of the
region that contains all positive linear combinations of the first

eigenvectors of the spectral correlation matrix. The region
is convex [6] with a vertex at the origin, forming a cone,
as shown in Fig. 1, with (hence, the name). A slice
perpendicular to the axis of the cone forms a convex polygon
whose boundaries are formed by a number of corners (vertices)
and edges. If the corner points and their associated spectra are
interpreted as extreme components, every point inside the cone
represents a linear combination of these components. This idea
is closely linked to self modeling curve resolution (SMCR)
[8]. SMCR was introduced by W. H. Lawton and E. A.
Silvestre in 1971 to resolve two-component spectral mixtures
without prior knowledge of the component spectra, using the
concept described above. The “feasible regions,” where pure
component spectra must reside, are determined by geometric
considerations. In [9], Hamilton and Gremperline reviewed
the topic of SMCR as it applies to chemical mixture analysis.
They described the progress and research directions since the
original work, including extensions to three components and
techniques for estimating the component spectra. A paper by
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Fig. 1. Three-dimensional convex cone. Eigenvector (EV) 1–3 are the axes
defined by the eigenvectors of the spectral correlation matrix. The shaded
region is a slice of the positive subspace.

Borgen and Kowalski [10], also referenced in [8], proposed an
SMCR method very similar to the one presented here, but with
a focus on determining the feasible regions geometrically. In
contrast to [10], our convex cone is determined algebraically,
with geometric representations used only for visualization.
Another similar concept was proposed by Craig [11] for
application to remotely sensed data. He introduced two linear,
nonorthogonal transforms: a dark-point-fixed (DPF) transform,
and a fixed-point-free (FPF) transform that map the data onto
a positive subspace defined by the smallest simplex that will
contain all (rank-reduced) data points. The DPF transform is
based on absolute coordinates (centered at the origin), while
the FPF transform is barycentric (centered at the data). He
referred to such transforms as minimum-volume transforms
(MVT) and showed how they could be obtained using linear
programming methods. The vertices of the simplex were then
used as endmembers for unmixing. More recently, Boardman
[12], [13] successfully demonstrated this method on AVIRIS
scenes containing mixed pixels.

The paper is organized as follows. The application of CCA
to imaging spectrometry and a new algorithm to compute the
convex cone are described in Section II. Section III illustrates
the method with examples and simulation results. Examples
with experimental data are presented in Section IV, and the
paper ends with some concluding remarks in Section V.

II. CONVEX CONE ANALYSIS

In this paper, we detail the concept of CCA with appli-
cation to hyperspectral image analysis. To perform CCA, it
is desirable to work with normalized pixel spectra (scaled
to make the norm constant among all pixels) to remove the
information related to the total radiance, while retaining the

spectral pattern. The importance of normalization in CCA was
discussed in [6] and [7].

A. Derivation of the Convex Cone

Given an image with bands, the image cube is
rearranged into an matrix , where each row is a
pixel spectrum and each column contains all of the pixels
corresponding to a spectral band. The ordering of the pixels
is not important. A sample correlation matrix is then
obtained from the normalized spectral matrix

(1)

The next step is to find the eigenvectors ofby diagonalizing
using the singular value decomposition (SVD) [14] for a

square symmetric matrix

(2)

where is the orthonormal matrix made up of the eigenvectors
of and is a diagonal matrix containing the corresponding
eigenvalues. The matrices and are of the same dimension
as , and they are arranged such that the eigenvectors forming
the columns of are associated with the eigenvalues in the
same column position in . By convention, the eigenvalues
are arranged in decreasing order. We note that, in the original
convex cone work, the matrix was obtained by a direct
application of the SVD to . We have chosen to work with
the correlation matrix because it is more computationally
efficient given the typical number of data points produced
by imaging spectrometry. This transformation, known as the
Karthunen–Lo`eve Transform, is very similar to PCA, with the
important difference that the sample correlation matrix is used,
rather than the covariance matrix.

To proceed from this point, we need to knowa priori the
number of components of interestto model. This number
must be no greater than the intrinsic dimensionality of
(which is equivalent to the number of nonzero eigenvalues)
plus one. If is full column rank prior to normalization,can
be no greater thansince normalization reduces the rank of
by one [15]. In practice, however, the “true” dimensionality of

is much smaller than the number of bands for hyperspectral
data.

Given , we select the eigenvectors corresponding to the
largest eigenvalues and look for the boundaries of the convex
cone, where the linear combinations of these eigenvectors
produce vectors that are strictly nonnegative

(3)

The are the eigenvectors corresponding to thelargest
eigenvalues and is the zero vector. Since is a convex
linear combination, the coefficients of the can be multiplied
by a scaling factor so as to make the coefficient of
unity, giving free parameters . The eigenvector,
which corresponds to the largest eigenvalue, is aligned along
the direction of the cone axis. For a matrix with nonneg-
ative elements, such as a matrix of radiance or reflectance
measurements, this eigenvector contains nonnegative elements
only. To see this, consider that all-dimensional vectors
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that make the rows of the matrix are located in the
positive hyperquadrant, so that the first eigenvector will pass
through the origin and point in the direction of the data,
which contains only nonnegative values. Also, because the
eigenvectors are mutually orthogonal, the remaining ones will
necessarily have negative elements. Consequently, we can find
sets of coefficients that produce a linear combination
which contains elements of that are exactly zero, with
all of the other elements nonnegative. These points represent
the corners of the convex cone.

B. Computing the Convex Cone

A method for the computation of the convex polygon
was developed by Mavrovouniotiset al. for the cases of
two–four components [16]. Unfortunately, no formal algorithm
is provided in [16], and each case was treated differently. For
the case of two components, the cone was obtained by simply
ratioing the elements of the second and first eigenvectors and
finding the two extreme values. In the case of three and
four components, linear programming was used to find the
coefficients by maximizing the norm of , subject to
the constraint of (3). The optimization was repeated until all
possible corners were found. No prescription was provided to
extend this method beyond . We develop in this paper
a new, simpler algorithm that works with arbitraryat the
expense of some computational complexity.

To derive the algorithm, we rewrite (3) as

...
(4)

where are -dimensional column vectors. For ,
is an overdetermined system of linear equations. If

we view the elements of as coefficients and those ofas
variables, there are equations of the form

for (5)

which define -dimensional hyperplanes in-dimensional
space. Exact solutions can be found by taking -tuples
among the equations. These solutions will produce linear
combinations of the eigenvectors that have at least zeros.
The boundary of the convex cone is the set of all solution
vectors that satisfy (3), or equivalently

(6)

where the minimum is taken over all .
In other words, a boundary occurs when at least one of the
vector elements in the linear combination of eigenvectors is
zero while the other elements are nonnegative. In practice, a
small tolerance for negative numbers is introduced to allow
for numerical errors. If a solution vector from a -
tuple of (5) also satisfies (6), thenwill be one of the corners
of the convex cone. Fig. 2 shows a flowchart for the convex
cone algorithm in the case where (in the trivial case
of , the solution is simply ). It takes as input the
first eigenvectors . The output is a set of corner

Fig. 2. Flowchart for convex cone algorithm. Forc > 1, the algorithm
searches through all possible combinations ofc� 1 bands to find all sets of
coefficientsa1; � � � ; ac�1 that satisfy the constraint in (3).


(i) represents
some combination of the bands.

spectra that define the cone. The algorithm searches through
all possible combinations of bands to find all sets of
coefficients that satisfy (6). The vector is
used to represent theth combination of bands.

For equations and coefficients, there are
possible solutions for , one for each -tuple of the
rows of . For , there are possible solutions for .
As increases, the number of solutions to be sought increases
at . For a 100-band hyperspectral image and five com-
ponents, there are nearly 4 million possible solutions. Clearly
this algorithm is not computationally efficient for large, but
it is still practical for many situations given current computer
capabilities. Since the solution is obtained by testing a large
number of independent cases, a multiprocessor implementation
can reduce computation time almost proportionally to the
number of processors. In addition, there are preprocessing
steps that can reduce the computation time if necessary. One
is to reduce by band selection or combination procedures.
Recent work by Shen [17] indicates that it is feasible to greatly
reduce the number of bands in hyperspectral data without
significantly affecting object classification performance. This
result has been confirmed by the authors and their colleagues
[18]. We can also divide large scenes into sections and process
each one separately, based on the premise that smaller scenes
have less components. This divide-and-conquer approach is
often used in automatic target recognition applications [3] to
reduce the amount of computation.
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C. Exploiting the Cone

After we have found the convex cone, we can use the
spectra corresponding to the corners as endmember spectra
for unmixing or target vectors for classification. There is no
lack of methods in the literature for either. We will apply basic
approaches here, which by no means represent the state of the
art in classification or unmixing. For classification, the inner
product of the normalized data with the normalized corners
(i.e., spectral angle) provides a score that can be interpreted as
a membership index. However, we have found that a spectral
matched filter [19] provides better classification performance.
In this case, we can compute the matched filters as follows:

(7)

where is the corner spectrum and is the rank-
reduced inverse of the correlation matrix. The inverse is
computed using only the eigenvectors corresponding to the

largest eigenvalues for numerical stability. This filtering
operation is equivalent to a spectral angle operation in which
both the data and corner spectrum have been rank-reduced
and sphered by the transformation . It results in
scores that are high for pixels which are similar toand low
for dissimilar pixels. The scores for each corner are then scaled
so that the largest becomes one and the smallest becomes
zero. This is consistent with the idea that, in the case of
classification, for each target spectrum, there is at least one
pixel that corresponds to it and at least one that does not.
Finally, each pixel can be assigned to the (object) class with
the maximum score.

If the application is unmixing, the standard approach is to
use least-squares regression with the intercept forced through
the origin. The operator in this case is

(8)

where is a matrix whose columns can contain either
the chosen corners of the convex cone, or representative
“pure pixel” spectra obtained through a prior classification
step (the “pure pixel” approach is also useful for subsequent
endmember identification). The unmixing operatoris a
matrix that produces an estimated abundance vector when
applied to a pixel spectrum. Because the true spectra of the
endmembers is unknown, this method cannot give quantitative
results without additional information. The estimated abun-
dances will be proportional to the true abundances with an
unknown proportionality constant. To obtain estimates of the
true abundances, we would need additional information, such
as the average abundances for the scene.

D. Corner Spectra

The method presented here makes no prior assumptions on
the shape of the convex cone. In the case of two components,
the positive subspace is confined to a line, so two corners
are always produced that correspond, respectively, to the
extreme positive and negative values of. With three or
more components, the positive subspace is a plane of two
or more dimensions (hyperplane), so the number of vertices
or corners can be greater than the number of components.

For example, if the data contain three distinct components,
the two-dimensional (2-D) slice of the cone perpendicular
to the cone axis will form a triangle. However, if the data
have less than three components or the component spectra are
highly collinear (i.e., have a spectral angle near one, where the
spectral angle is the cosine of the angle between the vectors
formed by the spectra), additional corners will be produced,
forming an irregular convex polygon. Since we assume no
prior information on the shape of the data space, it is not
possible to predict the number of corners that the cone will
have.

If more corners than components are produced, some must
be eliminated by a suitable method. If , visual inspection
of a slice of the cone works quite well [6], [7], but for
larger numbers of components, it is necessary to use an
automated method. For the unmixing application, there are
variable selection techniques from regression analysis [20]. We
have successfully selected corners by performing unmixing
with all possible combinations and keeping the one that
produces the maximum number of positive abundances. If
several combinations produce all positive abundances, one is
selected arbitrarily.

In the case of classification, feature selection techniques
are available [21]. Our approach in this case is to compute
matched filter scores for all corners and select the combination
that minimizes some mutual correlation index, such as the
condition number of the correlation coefficient matrix of each
combination. In cases in which very large numbers of corners
are produced (20), this method can be computationally
cumbersome. Fortunately, many of the corners are highly
collinear, so we can reduce their number by checking for
collinearity. These suggestions have worked for the authors
in practice, but it is too soon to judge whether they are the
best approach, as we are still experimenting with them.

III. I MPLEMENTATION OF CCA WITH SIMULATED DATA

For simplicity, we will only consider scenes with two and
three components in this section. Using only a small number
of components makes it possible to visualize the convex
cone with 2-D plots. Scenes with three components can be
visualized by projecting the data on to the second and third
eigenvectors of the spectral correlation matrix to produce a
scatter plot of the projection scores. Scenes with more com-
ponents are more difficult to visualize and require additional
automation in their processing (i.e., corner selection). Since
the purpose of this paper is to illustrate idea of CCA, they are
not treated here.

A. Two Simple Examples

Two simple ten-band multispectral scenes were composed
to illustrate the implementation of CCA. The choice of ten
spectral bands is a purely artificial one. In general, the number
of bands required is larger than or equal to the number of
components. The first image consists of a uniform background
with an associated reflectance spectrum and a square “object”
with a different spectrum. No noise is added. The object
is a 33 33 pixel square centered on a 64 64 pixel
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(a) (b)

(c) (d)

Fig. 3. Illustration of CCA for image segmentation: (a) original image, (b) background (dashed line) and object (solid line) spectra, (c) first (solidline) and
second (dashed line) eigenvectors of the spectral correlation matrix, and (d) spectra corresponding to the convex cone corners.

image [Fig. 3(a)]. Fig. 3(b) shows the discrete spectra of the
object and background. These spectra were generated using
a Gaussian function with unit width constant and centered at
bands 3 and 5 for the object and background, respectively.
Normalization is not necessary in this case since all spectra
have the same total intensity, so we can compute the SVD
of the spectral correlation matrix directly. The eigenvectors
corresponding to the two nonzero eigenvalues are plotted in
Fig. 3(c). Note that one has all nonnegative elements and the
other has both positive and negative elements. As pointed out
earlier, this is a consequence of the orthogonality constraint.
We now apply our algorithm to the eigenvectors and obtain
a 2-D convex cone. The spectra corresponding to the corners
are plotted in Fig. 3(d). The original spectra are recovered
perfectly, but their identities have been lost; that is, the one-
to-one correspondence can not be determined.

The second image uses the same spectra as the first, but in
this case, each pixel is a mixture of the object and background
with a small amount of added noise. The simulated image was
created based on a simple linear model

(9)

where is a vector containing the simulated discrete spectrum,
is the matrix of endmember spectra,is the abundance

vector, and is Gaussian random noise. The noise includes
contributions from ambient (clutter) and instrumental sources.
The true abundances were generated randomly and add to one.

Fig. 4(a) and (b) show the eigenvectors and the corner spectra.
Again, the original spectra are recovered. Fig. 4(c) shows the
scatter plot of the data and the two corners projected on to
the eigenvector space. The corners appear toward the ends of
the data cloud, at the locations where the pure pixels would
show. Two lines passing through the origin and each corner are
included to show the boundaries of the 2-D convex cone. For
illustration purposes, the one-to-one correspondence between
the endmember and the corner, which is normally not known,
was determined in this example from the corner spectra in
Fig. 4(b) so that we can visualize the performance by plotting
the estimated versus the true abundances [Fig. 4(d)]. Because
of the small amount of noise and low collinearity of the
spectra, there is quantitative agreement between the estimated
and true abundances.

B. Classification Simulations

Two parameters were modified to study the behavior of
CCA: the SNR and the collinearity of the component spectra
as measured by their spectral angle. For simplicity, we have
assumed uniform illumination throughout the scene. Although
this assumption is artificial, we make it here because the
pixel spectra are typically normalized prior to computing the
covariance matrix, so illumination information is discarded in
any case.

For the simulations, we will define the SNR for each band
as the ratio of the 50% reflectance signal level to the standard
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(a) (b)

(c) (d)

Fig. 4. Illustration of CCA for unmixing: (a) first (solid line) and second (dashed line) eigenvectors of the spectral correlation matrix, (b) spectracorresponding
to the convex cone corners, (c) projections of the pixel spectra as well as the corners of the convex cone on to the eigenvector space, and (d) scatter
plot of the estimated versus true abundances for the first endmember.

deviation of the noise [22]. This results in noise standard
deviation that is roughly proportional to the average signal,
a phenomenon that is often observed in radiometric data. The
additive random noise was simulated by using numbers with
a standard normal distribution obtained from a pseudorandom
number generator. The simulated data were obtained by

SNR
(10)

for each pixel . The simulated images were created by setting
one component of the vector to one and the rest to zero to
indicate class membership. Scaling the signal by 50% of the
SNR is equivalent to reducing the noise standard deviation by
the inverse factor (2/SNR), so that the simulated data meets
the SNR definition. The vector terms in the parentheses are
multiplied element by element. To change the collinearity
of the single-peak spectra, we keep the width of the peaks
constant and change their relative location. As the peaks get
closer, the spectral angle approaches one and we should see
an SNR-dependent degradation in performance.

Two simulations were conducted for the two and three-
class images, respectively. The single-object (two-class) image
is the same as the example in section A. The two-object
(three-class) image contains two 24 24 pixel objects in
a 64 64 image with a uniform background. The objects
are located in the top left and bottom right corners. For each
image, SNR values of 5, 10, 20, and 40 were used. These

numbers are representative of what is typically found in real
sensors, such as HYDICE (see Section IV). The peak for the
background spectrum was kept centered at band 5, and the
peak of the object spectra were moved toward it to increase
the amount of overlap. For the image with one object, the
peak was placed at 3.5, 4, 4.5, and 4.8, giving spectral angles
of 0.57, 0.78, 0.94, and 0.99. For the two-object image, the
second spectrum was located at 6.5, 6, 5.5, and 5.2 so that both
objects have the same spectral angle with the background. In
the cases with low SNR, the simulated data contained a small
proportion of negative values. This situation is not unusual for
radiometrically calibrated spectra. We deal with them here by
simply setting them to zero. This approach can be used if the
number of negative values is relatively small. This issue will
be discussed further in Section IV.

We will examine the results of the segmentation of a single
object using an SNR of ten and a spectral angle of 0.94.
This situation is typical of experimental data. Fig. 5 shows
(a) the original spectra of the object and background, (b)
the eigenvalues of the covariance matrix, and (c) the corner
spectra. Fig. 5(d) shows the projections of the pixel spectra as
well as the corners of the convex cone on to the eigenvector
space. The cone in this case is 2-D and has a vertex at the
origin, with edges passing through each corner, as shown.
Note that some of the pixels appear to lie outside the cone.
Since the convex cone is obtained from a low rank subspace,
the signal associated with the unused eigenvectors can cause
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(a) (b)

(c) (d)

Fig. 5. Results of segmentation of noisy two-class image: (a) original spectra of the object (solid line) and background (dashed line), (b) first (solid
line) and second (dashed line) eigenvectors of the spectral correlation matrix, (c) corner spectra, and (d) projections of the pixel spectra as well as the
corners of the convex cone on to the eigenvector space.

some of the pixels to project outside the cone boundaries.
Using the spectra from the corners, we create two matched
filters and their corresponding output images [Fig. 6(a) and
(b)]. Even though the output is noisy, we can easily see the
object. The matched filter classifier works quite well in this
case [Fig. 6(c)] in spite of the significant collinearity of the
spectra. The segmentation produces the object, corrupted only
by some “salt and pepper” noise. This noise can be nearly
eliminated (at the expense of some image degradation) by
using a 3 3 median filter [23]. Fig. 6(d) shows the filtered
image.

To study a three-class case, we use the same SNR and a
spectral angle of 0.78 (Fig. 7). We can visualize the result in
two dimensions by projecting the data and the corners on to
the second and third eigenvectors, as shown in Fig. 7(d). This
is in essence a slice through the cone. We could visualize
the full cone by plotting the first eigenvector in the third
dimension. The corners would then become the edges of the
three-dimensional (3-D) cone, with a vertex at the origin. In
this case, there are quite a few pixels that lie outside the cone,
and there are more than three corners (seven, in this case), but
they are arranged in the shape of a triangle in the eigenvector
space. We need to select the appropriate corners to proceed
with the analysis. For this illustration, we choose corners 1,
2, and 7, which are closest to the data cloud. The resulting
matched filtered output images are shown in Fig. 8(b)–(d).

They clearly correspond to the background and objects. The
segmented image is shown in Fig. 8(e) and (f). Again a 3
3 median filter is used to clean the image.

Tables I and II show the ten-run average classification error
rates for each combination of SNR and spectral angle. In the
case of the two-class image, we have perfect classification
down to an SNR of ten for well-separated spectra and good
separation at five. As the spectral angle increases, the clas-
sification error rates increase. For highly similar spectra, the
performance is good down to an SNR of 20, but degrades
quickly thereafter. The results are similar with the three-class
image, but there is faster degradation in performance with
increasing spectral angle. For a spectral angle of 0.99, the
performance is poor at all SNR values used.

C. Unmixing Simulations

Scenes with two and three endmembers and random abun-
dance distributions were generated. The same SNR and spec-
tral angle values were used as with the classification simula-
tions. Fig. 9 shows the results of the CCA of a tree endmember
scene with SNR of 20 and spectral angle of 0.78. Nine
corners are produced in this case [Fig. 9(c)], again forming
a triangle in the eigenvector space. We choose corners 1, 2,
and 9 to use as endmembers and estimate the abundances.
Even though these are not the vertices of the triangles, they
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(a) (b)

(c) (d)

Fig. 6. Matched filter output and segmented images for two-class image: (a) corner 1, (b) corner 2, (c) segmented image, and (d) segmented image
after median filtering.

are closer to the data, so the abundance estimates derived
from these corners will be closer to the true abundances
than estimates derived from the corners 2, 5, and 6. The
resulting rms error in fractional abundance is 0.09. Fig. 9(d)
shows a scatter plot of the true versus estimated fractional
abundance of one of the endmembers. Again, the one-to-
one correspondence was determined by comparing the chosen
corners with the true spectra. Note also that the slope is less
than unity. When the corners of the convex cone are further
from the data than the true endmember spectra, the abundance
will be underestimated. Conversely, if the chosen corners
were closer to the data than the true endmember spectra, the
abundances would be overestimated. This effect is inherent to
the unsupervised nature of the method, and it is worsened by
increased endmember collinearity or decreased SNR. The ten-
run average rms errors for all simulation runs are presented in
Tables III and IV. As in the case of classification, the rms error
increases with reduced SNR or increased collinearity. Unlike
the case of classification, there is no significant difference in
performance between two and three endmembers.

IV. A PPLICATION OF CCA TO EXPERIMENTAL DATA

We present in this section an application of CCA to exper-
imental data. The purpose of these illustrations is to demon-
strate some of the nuances and pitfalls associated with using
real sensor data. We describe some additional preprocessing
steps required to prepare the images for CCA. Of course, in

general, the preprocessing will depend on the specifics of the
data under study.

The HYDICE sensor [24], [25] was designed to investigate
the utility of hyperspectral imaging technology for military and
civil applications. The sensor is operated from an aircraft in a
pushbroom fashion, oriented at nadir, with 320 spatial pixels
per line and 210 spectral bands created by dispersive optics.
The spectral range extends from 400 to 2500 nm, with nominal
wavelength spacing of 10 nm. Ground sampling distance
ranges from 0.75 to 4 m, depending on aircraft altitude. The
data were delivered with the radiometric calibration already
done, so it is in units of W/m/Sr/ m. Spectral calibration,
nonuniformity correction, and bad pixel compensation were
also done prior to delivery.

To demonstrate the CCA method, we have selected 64
64 pixel portions from two HYDICE images (Fig. 10).

The images contain the same scene but were collected at
two different altitudes. The first (low altitude) contains two
vehicles of the same type on a grass field with trees on the
left edge. The second (high altitude) includes the objects from
the first plus another two vehicles and an object. The task is to
segment the objects or features for subsequent mapping and
identification.

A. Preprocessing

Since we derive the target spectra from the data, it is not
necessary to convert from radiance to apparent reflectance.
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(a) (b)

(c) (d)

Fig. 7. Results of segmentation of a noisy three-class image: (a) original spectra of the objects (solid and dashdot lines) and background (dashed line), (b)
first (solid line), second (dashed line) and third (dashdot line) eigenvectors of the spectral correlation matrix, (c) spectra corresponding to corners 1 (solid), 2
(dashed), and 7 (dashdot), and (d) projections of the pixel spectra as well as the corners of the convex cone on to the eigenvector space.

Instead, the spectra are normalized and a correction is done to
deal with negative radiance values.

1) Normalization: The selected images contain significant
illumination nonuniformity due to the shadows produced by
the trees and vehicles, so careful normalization is critical.
We will normalize each spectrum to unity. Prior to normal-
ization, we must subtract the additive portion produced by a
combination of atmospheric scattering (radiance not reflected
by the surface) and any errors from the spectral calibration
process (which can produce negative radiance values in low
SNR bands). If normalization is done with this offset, a
significant amount of unnecessary error will be introduced,
which will reduce the class separability. To correct this, we
use an approach similar to (but simpler than) the regression
intersection method [26]. Prior to normalization, the offset is
calculated for every band image using least-squares regression
and subtracted from each pixel spectrum. The regressor in this
case is the sum of all bands in the spectrum. Since the offset
correction affects the sum, the regression is repeated until the
baseline becomes acceptably small. It was found that three
iterations are sufficient for this data.

2) Negative Values:A problem that must be corrected prior
to the application of CCA is the presence of negative values
in the data, which are caused by instrumental noise and
calibration errors in the low SNR bands and the effects of
our normalization process. Recall that a basic assumption is

that radiance values are strictly nonnegative. Having negative
values in the first eigenvector may cause a significant portion
of the data to fall outside the convex cone, and may even
cause the algorithm to fail due to lack of a solution. To
solve this problem, we could simply set any negative values
to zero, but this will introduce additional variance. Adding a
constant to every spectrum to make everything nonnegative is
another possibility, but this requires keeping track of additional
numbers and in practice increases the number of vertices in the
convex cone. We have found empirically that the best approach
is to determine the number of negative pixel values for every
band image. If the number of negative values is greater than
one per 1000 samples, we ignore the band completely. This
somewhat arbitrary cutoff corresponds to approximately 3.1
standard deviations away from the mean (i.e., it is equivalent to
deleting bands whose mean is less than 3.1 standard deviations
from zero). The remaining negative values are then set to
zero. This approach minimizes the amount of induced variance
but protects from deleting useful bands because of an outlier
and potentially reducing the amount of spectral information.
After the negative values have been eliminated, the data are
renormalized.

B. Results

Sample class spectra obtained from the first image are
shown in Fig. 11(a). Their mutual spectral angles are 0.80 for
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(a) (b)

(c) (d)

Fig. 8. Results of three-class segmentation of noisy image: (a) original scene, (b) matched filter output of corner 1, (c) matched filter output of corner 2,
(d) matched filter output of corner 7, (e) segmented image, and (f) segmented image after median filtering.

TABLE I
ERROR RATES FOR TWO-CLASS CLASSIFICATION SIMULATION

AT FOUR SNR VALUES AND FOUR SPECTRAL ANGLES

the vehicles and trees, 0.90 for the vehicles and background,
and 0.96 for the trees and background. The convex cone was
computed for three components. In this case, there are a total
of 11 corner spectra produced. We have chosen corners 1, 2,
and 5 as targets for computation of matched filters based on
the shape of the data space and the convex cone projection

TABLE II
ERROR RATES FOR THREE-CLASS CLASSIFICATION SIMULATION

AT FOUR SNR VALUES AND FOUR SPECTRAL ANGLES

in Fig. 11(b). In the eigenvector space, these corners form
a simplex that contains all pixels. However, this choice of
corners is not the only possible one. Corners that are close
in this eigenvector space tend to produce similar matched
filter scores. For instance, choosing corner 6 instead of 5
would make little or no difference to the final segmentation
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(a) (b)

(c) (d)

Fig. 9. Results of unmixing of a noisy three-endmember image: (a) first (solid line), second (dashed line), and third (dashdot line) eigenvectors, (b)spectra
for corners 1 (solid), 2 (dashed), and 9 (dashdot), (c) projections of the pixel spectra as well as the corners of the convex hull on to the eigenvector space,
and (d) scatter plot of the estimated versus true abundances for the first endmember.

(a) (b)

Fig. 10. HYDICE scenes selected for study: (a) low altitude and (b) high altitude.

results. The selected corner spectra are shown in Fig. 11(c)
for comparison with the class spectra. In this case, the corner
spectra are not generally similar to the class spectra. We can
see in Fig. 11(b) that the corners are far apart from the data in
eigenvector space, which can account for the lack of similarity.
However, since we are interested in classification, there is no
need for the corner spectra to match the class spectra as long
as the results are demonstrably correct. If class spectra are

needed for further processing (e.g., object identification), they
can be easily obtained by finding the highest scoring pixels for
each class. Fig. 11(d) shows the spectra corresponding to the
highest scoring pixels in our test image. They closely match
the class spectra in Fig. 11(a).

The matched-filtered score images for the chosen corners
are shown in Fig. 12. We can see that image 12(a) correlates
closely with the background 12(b) with the trees, and 12(c)
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(a) (b)

(c) (d)

Fig. 11. CCA of a three-class HYDICE scene: (a) sample spectra of the vehicles (solid), trees (dashed), and background (dashdot), (b) projections of the
pixel spectra as well as the corners of the convex cone on to the eigenvector space, (c) spectra for corners 1 (solid), 2 (dashed), and 5 (dashdot), and (d)
spectra associated with highest-scoring pixels for corners 1 (solid), 2 (dashed), and 5 (dashdot).

(a) (b) (c)

(d) (e)

Fig. 12. Results of three-class segmentation of HYDICE image: (a) score image corresponding to corner 1, (b) score image corresponding to corner 2, (c)
score image corresponding to corner 5, (d) segmented image, and (e) segmented image after 3� 3 median filtering.
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(a) (b)

(c) (d)

(e)

Fig. 13. Results of 4-class segmentation of HYDICE image: (a) score image corresponding to corner 1, (b) score image corresponding to corner 3, (c) score
image corresponding to corner 4, (d) score image corresponding to corner 19, and (e) segmented image.

TABLE III
RMS ERRORS FORTWO-ENDMEMBER UNMIXING SIMULATION

AT FOUR SNR VALUES AND FOUR SPECTRAL ANGLES

with the vehicles. The final segmentation is obtained as before
by selecting the largest score for each pixel and is again
enhanced by 3 3 median filtering. We can compare the
segmented images in Fig. 12(d) and (e) with the broadband

TABLE IV
RMS ERRORS FORTHREE-ENDMEMBER UNMIXING SIMULATION

AT FOUR SNR VALUES AND FOUR SPECTRAL ANGLES

(total radiance) image in Fig. 10(a). The method segments the
objects in spite of the strong illumination nonuniformity and
the mismatch between the corner spectra and the true spectra
of the objects in the scene.
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To segment the second image, we have assumed four
classes: grass, trees, vehicles, and object. We show the
matched-filtered score and segmented images in Fig. 13. Again
they correlate strongly with the object classes. In this case, we
have chosen corners 1, 3, 4, and 19 out of a total of 29 by the
automated method mentioned earlier, rather than attempting
to make the selection graphically. No median filtering is done
in this case. Because some of the objects in the scene occupy
only a few pixels, even a 3 3 filter would have annihilated
them.

V. CONCLUSIONS

The use of CCA for multispectral and hyperspectral image
analysis is a new application. The idea of using endmembers
derived from the data for classification and unmixing with
remote imaging spectrometry has been considered before
[11]–[13], but there have been few methods for deriving the
component spectra. In contrast, the literature abounds with
methods that rely on external information sources, such as
spectral libraries [21], [22]. Unfortunately, such information is
often not available in practice, so data analysts have resorted
to clustering methods to estimate the component spectra. CCA
offers an alternative approach to solve this problem. Unlike
clustering, or the MVT, it does not require initialization or
iterations. All optimizations are done by searching, so there
are no problems with local minima. In addition, it takes
full advantage of the spectral correlations via the SVD and
produces physically meaningful components using only the
information contained in the data.

Geometrically, CCA is very similar to Craig’s DFP trans-
form [11]. Although the concept of the MVT essentially
accomplishes the same goals as CCA, it is different in essence.
While the MVT assumes that endmembers are estimated by
the vertices of the smallest simplex that embraces the data,
our method looks for vertices that are as far away from each
other as possible, subject to the positivity constraint. Therefore,
we seek to maximize the difference between the estimated
component spectra. Another significant difference between the
two approaches is that the convex cone is a unique function
of the eigenvectors of the correlation matrix, while the MVT
is one of a possibly very large set of solutions obtained by
iterative optimization.

As with any new approach, there are some unresolved issues
that may present challenges over time. The first is the classic
problem of determining the number of components in the
scene. In this paper, we have used examples in which the
number of classes is knowna priori. In a fully automated
system, we must estimate the number of components from the
scene data. Reference [4] contains a long list of methods that
are used to estimate the intrinsic dimensionality of multivariate
data. A simple approach is to look at the plot of the ordered
eigenvalues from the SVD of the sample correlation matrix
[27]. Information theoretic measures, such as an information
criterion (AIC) or minimum description length (MDL) [21],
can also be used, although they tend to overestimate the true
dimensionality. In some cases, the number of components is
equal (or close) to the intrinsic dimensionality, but that is not

always the case in images with spatially extended objects. Very
often, objects in a multispectral or hyperspectral image require
two or more spectral dimensions, and thus, they increase the
intrinsic dimensionality of the data.

A second issue, related to the first, is that of using the
eigenvectors of the spectral correlation matrix. In imaging
spectrometry data, the information is not necessarily associated
with the directions of maximum variance, so a portion may be
discarded along with the discarded eigenvectors. These two
issues may be addressed simultaneously by using an alternative
orthogonal transformation, such as MNF [5] or projection
pursuit [28], to reduce the dimensionality of the data while
preserving more of the information. This is the subject of our
current research.
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