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Fisher’s Linear Spectral Mixture Analysis
Chein-I Chang, Senior Member, IEEE, and Baohong Ji, Student Member, IEEE

Abstract—Linear spectral mixture analysis (LSMA) has been
widely used in subpixel analysis and mixed-pixel classification.
One commonly used approach is based on either the least square
error (LSE) criterion such as least squares LSMA or the signal-
to-noise ratio (SNR) such as orthogonal subspace projection
(OSP). Unfortunately, it is known that such criteria are not nec-
essarily optimal for pattern classification. This paper presents
a new and alternative approach to LSMA, called Fisher’s
LSMA (FLSMA). It extends the well-known pure-pixel-based
Fisher’s linear discriminant analysis to LSMA. Interestingly,
what can be done for the LSMA can be also developed for
the FLSMA. Of particular interest are two types of constraints
imposed on the LSMA, target signature-constrained LSMA and
target abundance-constrained LSMA, which can be also de-
rived in parallel for the FLSMA, to be called feature-vector-
constrained FLSMA (FVC-FLSMA) and abundance-constrained
FLSMA (AC-FLSMA), respectively. Since Fisher’s ratio used by
the FLSMA is a more appropriate classification criterion than
the LSE or SNR used for the LSMA, the FVC-FLSMA improves
over the classical least squares based LSMA and SNR-based
OSP in mixed-pixel classification. Similarly, the AC-FLSMA also
improves abundance-constrained least squares based LSMA in
quantification of abundance fractions.

Index Terms—Abundance-constrained Fisher’s linear spec-
tral mixture analysis (AC-FLSMA), feature-vector-constrained
Fisher’s linear spectral mixture analysis (FVC-FLSMA), Fisher’s
linear discriminant analysis (FLDA), Fisher’s linear spectral mix-
ture analysis (FLSMA), linearly constrained discriminant analysis
(LCDA), mixed-pixel classification.

NOMENCLATURE

AC-FLSMA Abundance-constrained FLSMA.
AFCLS-FLSMA Abundance fully constrained least squares

FLSMA.
ANC Abundance nonnegativity constraint.
ASC Abundance sum-to-one constraint.
CEM Constrained energy minimization.
FCLS Fully constrained least squares.
FVC-FLSMA Feature-vector-constrained FLSMA.
FLDA Fisher’s linear discriminant analysis.
FLSMA Fisher’s LSMA.
LCDA Linearly constrained discriminant analysis.
LCMV Linearly constrained minimum variance.
LSMA Linear spectral mixture analysis.
OSP Orthogonal subspace projection.
LSOSP Least squares orthogonal subspace projec-

tion (a posteriori OSP).
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RMFD Correlation matched filter-based distance.
TCIMF Target-constrained interference-minimized

filter.

I. INTRODUCTION

TWO major issues of interest in remote-sensing image
processing but never encountered in the traditional two-

dimensional (2-D) image processing or three-dimensional
(3-D) video processing are subpixels and mixed pixels. Due to
the use of spectral channels in various wavelengths, an image
pixel is actually a pixel vector, of which each component is
a single pixel in an image acquired by a particular spectral
channel. As a result, it is often the case that different substances
can be diagnosed by their spectral properties in a single pixel
vector. Such a substance may appear in either at subpixel scale
or a form mixed by other substances in a pixel vector. In
order to perform data analysis caused by subpixels and mixed
pixels, pure-pixel-based traditional image processing may not
be directly applicable or effective. Instead, a common approach,
referred to as LSMA or linear spectral unmixing, is generally
used for this purpose [1]–[3]. It models an image pixel vector as
an admixture linearly mixed by substances that are assumed to
be present in the pixel vector. Accordingly, the LSMA actually
performs abundance-fraction estimation for each substance in a
pixel vector so as to achieve classification, which is opposed to
the class-map labeling process performed by pure-pixel-based
image processing.

Many algorithms have been developed for the LSMA in
subpixel analysis [3], [4] and mixed-pixel classification [1]–[3],
[5]–[13]. Despite that it has been shown in [10]–[13] that
constrained LSMA actually produced better results than un-
constrained LSMA in abundance estimation, the LSMA is
generally preferred and implemented as unconstrained spec-
tral unmixing. This is because the constrained LSMA cannot
be solved analytically and must rely on numerical solutions
[10]–[13], compared to the unconstrained LSMA that has
closed-form solutions, such as least squares based LSMA ap-
proaches [3], [5]–[9], signal-to-noise ratio (SNR)-based OSP
[6]–[9], and Mahalanobis distance-based Gaussain maximum
likelihood estimation (GMLE) [7]. These approaches to un-
constrained LSMA are second-order statistics-based techniques
and arrive at the same matched filter [3]. Consequently, they
can be considered least square error (LSE)-based approaches.
However, according to Juang and Katagiri [14], the LSE is not
necessarily the best criterion to measure classification error. It
is known that the FLDA is one of the major methods widely
used in pattern classification [15]. It makes use of the so-
called Fisher’s ratio, the ratio of between-class scatter matrix
to within-class scatter matrix, as a criterion to generate a set
of feature vectors that can constitute a feature space for better
classification. Since the FLDA-generated feature vectors are
not necessarily orthogonal, an alternative approach to FLDA
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was developed by Soltanian-Zadeh et al. [16], where Fisher’s
ratio was replaced with the ratio of interdistance to intradistance
so that its generated feature vectors could be aligned along
mutual orthogonal directions. This approach was shown to be
successful in magnetic resonance (MR) image classification.
Recently, the approach of Soltanian-Zadeh et al. was further
extended to LCDA by Du and Chang for hyperspectral image
classification to improve LSMA classification [17]. Technically
speaking, the feature vectors obtained in [16] and [17] are not
Fisher’s feature vectors because the interdistance to intradis-
tance ratio of Soltanian-Zadeh et al.’s is not Fisher’s ratio.
Second, the feature vectors were not designed for mixed-pixel
classification. In principle, the FLDA is a pure-pixel-based
class-labeling technique where the clustering procedure is per-
formed based on interpixel spatial correlation among data sam-
ples. Therefore, when it is applied to remote-sensing images,
it was implemented in a simple and straightforward manner
on a pure-pixel basis. Consequently, the FLDA produces a
class-labeled map that is different from grayscale fractional-
abundance maps generated by the LSMA.

This paper revisits the FLDA and presents a new approach,
referred to as FLSMA, which can be considered as a mixed-
pixel classification version of the FLDA. It directly extends
the FLDA to perform subpixel detection and mixed-pixel clas-
sification rather than pure-pixel classification. Therefore, an
immediate benefit from such extension is subpixel detection,
which cannot be accomplished by the FLDA. Additionally, like
other mixed-pixel classification techniques, the FLSMA can
also produce grayscale fractional-abundance maps for each of
classes to be classified. In particular, two types of constraints
imposed on the LSMA, target signature-constrained mixed-
pixel classification [3], [18] and target abundance-constrained
mixed-pixel classification, discussed in [3] and [10]–[13], can
be also derived for the FLSMA. In the LSMA, the former
constrains target signatures of interest along desired directions
to derive an LCMV approach [3], [18], [19], which includes
the CEM [20] as its special case [3], [18]. The latter imple-
ments ASC and ANC to derive three least squares abundance-
constrained LSMA approaches, called sum-to-one constrained
least squares (SCLS), nonnegativity constrained least squares
(NCLS), and FCLS [10], [13]. Interestingly, these two types of
constrained approaches can be also developed for the FLSMA.
One is called FVC-FLSMA, similar to constraints imposed on
target signatures. It constrains the FLDA in the sense that the
generated Fisher’s feature vectors are aligned along mutual
orthogonal directions in the same way that both approaches by
Soltanian-Zadeh et al. and the LCDA do for their interdistance
to intradistance ratio-generated feature vectors. The classifier
resulting from the FVC-FLSMA operates a similar functional
form to that implemented by the LCMV classifier except two
crucial differences. One is that the FVC-FLSMA replaces the
sample correlation matrix used in the LCMV classifier with
the within-class scatter matrix. A second difference is that the
FVC-FLSMA classifier is actually a mixed-pixel classifica-
tion technique using Fisher’s ratio as a classification measure
as opposed to the LCMV classifier, which uses the LSE as
a classification criterion. Therefore, as expected, the FVC-
FLSMA generally performs better than the LCMV in mixed-
pixel classification. A second type of constrained approaches
that can be derived from the FLSMA is called AC-FLSMA,

which imposes constraints on abundance fractions of feature
vectors instead of feature-vector directions. The AC-FLSMA
implements Fisher’s ratio as a criterion for optimality to carry
out mixed-pixel classification while using the LSE to perform
abundance-fraction estimation. Accordingly, three types of AC-
FLSMA can be further derived, called abundance sum-to-one
constrained-FLSMA (ASCLS-FLSMA), abundance nonnega-
tivity constrained least squares FLSMA (ANCLS-FLSMA),
and AFCLS-FLSMA. According to our conducted experiments
the AC-FLSMA generally estimates abundance fractions more
accurately than its counterpart constrained LSMA.

The remainder of this paper is organized as follows. Sec-
tion II develops a feature-vector-constrained FLDA approach
that constrains the FLDA-generated feature vectors along with
mutual orthogonal directions. Section III considers an AC-
FLSMA that imposes abundance constraints on the FLDA-
generated vectors in the least squares sense. Section IV presents
experiments to conduct a comparative performance between the
FLSMA and other LSMA-based methods. Finally, Section V
concludes some remarks and summarizes the contributions.

II. FVC-FLSMA

The FLDA is one of the most widely used pattern classifi-
cation techniques in pattern recognition [15]. An application
of the FLDA to hyperspectral image classification was also ex-
plored in [3], [16], and [17]. Its strength in pattern classification
lies on the criterion used for optimality, which is called Fisher’s
ratio, defined by the ratio of between-class scatter matrix to
within-class scatter matrix.

More specifically, assume that there are n training sample
vectors {ri}n

i=1 for p-class classification, C1, C2, . . . , Cp, with
nj being the number of training sample vectors in the jth class
Cj . Let µ be the global mean of the entire training sample
vectors, denoted by µ = (1/n)

∑n
i=1 ri, and let µj be the mean

of the training sample vectors in the jth class Cj , denoted by
µj = (1/nj)

∑
ri∈Cj

ri. The within-class scatter matrix SW,
between-class scatter matrix SB, and total scatter matrix are
defined in [15] as follows:

SW =
p∑

j=1

Sj , where Sj =
∑
r∈Cj

(r − µj)(r − µj)
T (1)

SB =
p∑

j=1

nj(µj − µ)(µj − µ)T (2)

ST =
n∑

i=1

(ri − µ)(ri − µ)T = SW + SB. (3)

By virtue of (1) and (2), Fisher’s ratio (also known as
Rayleigh’s quotient [15]) is then defined by

xTSBx
xTSWx

over vector x. (4)

The goal of the FLDA is to find a set of feature vectors that
maximize Fisher’s ratio specified by (4). The number of feature
vectors found by Fisher’s ratio is determined by the number of
classes p to be classified, which is p − 1.

In this section, we extend the FLDA to perform mixed-pixel
classification in the sense of Fisher’s ratio. One difficulty in
doing so is that the FLDA-generated feature vectors are not
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image endmembers commonly used in the LSMA. Instead, they
are discriminant vectors that are used to determine decision
boundaries among classes. Therefore, the number of feature
vectors generated by the FLDA is p − 1, which is one less than
the number of image endmembers p assumed to be present in
the image data. The FLDA finds a set of feature vectors via (4)
by solving a generalized eigenvalue problem specified by

S−1
W SBw = ηw (5)

where η is a generalized eigenvalue. Since the rank of the
between-class scatter matrix SB is only p − 1, there are only
p − 1 nonzero eigenvalues associated with (5).

However, in order to implement the FLDA as an LSMA
technique, we need p feature vectors that can be used to serve as
image endmembers rather than discriminant vectors generated
by (5). One way to mitigate this dilemma was proposed by
Soltanian-Zadeh et al. [16] and Du and Chang [17], who
replaced Fisher’s ratio with the ratio of interdistance to intradis-
tance while constraining the class means along mutual orthog-
onal directions. As a consequence, the interdistance was shown
to be constant and could be removed from the criterion, which
only involves the within-class scatter matrix SW. In this case,
these class means can be used to represent the desired image
endmembers for the LSMA rather than discriminant vectors and
the within-class scatter matrix SW describes the variance cen-
tered at each of the image endmembers. In spite of their success
in MR image classification and hyperspectral image classifica-
tion, their used criterion was not really Fisher’s ratio. Therefore,
they cannot be considered as FLDA-based approaches. In this
section, we present a Fisher-ratio-based LSMA approach, to
be called FVC-FLSMA, which directly extends the FLDA in
a similar manner that was derived in [17], where its derived
Fisher’s feature vectors are also mutually orthogonal. As a
consequence, Du–Chang’s developed LCDA can be shown
equivalent to the FVC-FLSMA. Because the derivations for the
FVC-LSMA are relatively tedious, their mathematical details
are provided in the Appendix, and only the results that will be
needed for subsequent discussions are summarized as follows.

Let wl be the lth feature vector that maximizes Fisher’s ratio
subject to the constraint that the lth feature vector must be
aligned with the lth class-mean vector µl, but also orthogonal to
other feature vectors {µk}p

k=1,k �=l. The FVC-FLSMA problem
can be cast by solving

max
wl

{
wT

l SBwl

wT
l SWwl

}
subject to the constraint that

wT
l µj = δlj , for 1 ≤ j ≤ p. (6)

Assume that r is an L-dimensional pixel column vec-
tor and M = �µ1µ2 . . . µp� is the class-mean matrix. As
shown in the Appendix, the lth feature vector produced by
the FVC-LSMA wFVC−FLSMA

l is given by (A10) where
1l is the lth p-dimensional unit vector specified by 1l =
(0, . . . , 0, 1︸︷︷︸

l

, 0, . . . , 0)T.

Operating the wFVC−FLSMA
l on the image pixel vector r

yields the abundance fraction of the lth class mean µl, which
is αl, given by

αl =
(
wFVC−FLSMA

l

)T
r. (7)

Furthermore, if we define a weight matrix WFVC−FLSMA =
[wFVC−FLSMA

1 wFVC−FLSMA
2 · · · wFVC−FLSMA

p ] formed by
the p FVC-FLSMA-generated feature vectors, we can obtain
the FVC-FLSMA solution in a matrix form, given by (A14)
(see the Appendix). Applying (A14) to the image pixel vector r
results in the abundance-fraction vector α of the p-dimensional
class-mean vector present in r, which can be estimated by
(A15) with α(r) = (α1(r), α2(r), . . . , αp(r))T and αl(r)
obtained by (7). Here, we include r in the notations to indicate
the dependence of the abundance fractions on the pixel vector r.

Since the FVC-LSMA uses (7) to perform mixed-pixel clas-
sification, it produces a fractional-abundance image for each of
the classes for classification as does any other mixed-pixel clas-
sification technique. The only difference is that the image end-
members used in the LSMA are now replaced by the class-mean
vectors {µk}p

k=1. Therefore, the FVC-generated fractional-
abundance images generally require a threshold method such
as the one in [3] to calculate classification rates.

A. Relationship Between FVC-FLSMA and LCMV,
TCIMF, and CEM

Recalling the LCMV classifier in [3] and [18], its weight
matrix ([3, eq. (11.16)] or [18, eq. (6)]) is given by

WLCMV =R−1
L×LM

(
MTR−1

L×LM
)−T

C

=R−1
L×LM

(
MTR−1

L×LM
)−1

C (8)

where the matrix C is the constraint matrix and RL×L is the
data correlation matrix.

Now, let Ip×p be the p × p identity matrix. Multiplying Ip×p

on the right of (A15), we can rewrite (A15) as

WFVC−FLSMA =WFVC−FLSMAIp×p

=S−1
W M

(
MTS−1

W M
)−1

Ip×p. (9)

Comparing (9) against the LCMV-generated weight matrix
specified by (8), an immediate finding is that the FVC-FLSMA-
generated weight matrix given by (9) has the same form as does
(8), where the within-class scatter matrix SW and the identity
matrix Ip×p used by the FVC-LSMA in (9) correspond to the
sample spectral correlation matrix RL×L and the constraint
matrix C used by the LCMV in (8), respectively. The constraint
matrix Ip×p in (9) is exactly the same p constraints wT

l µj =
δlj used in (6). Similarly, when the constraint matrix Ip×p in
(9) is replaced by a constraint vector, the lth p-dimensional
unit vector 1l, the resulting weighting matrix WFVC−FLSMA

becomes a weighting vector given by (A10), which corresponds
to the TCIMF [3], [18], [19] with the within-class scatter matrix
SW in (9) replaced by RL×L. If there is only a desired target
signature d constrained by dTw = 1 via (6), (9) turns out to
be the same functional form implemented by the CEM in [3]
and [18]–[20], where the within-class scatter matrix SW and
µl are replaced by the sample correlation matrix RL×L and d,
respectively.

B. Relationship Between FVC-FLSMA and OSP

In analogy with the LCMV, we replace S−1
W in (A10) with

P⊥
U, defined by

P⊥
U = I − U(UTU)−1UT (10)
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where U = �µ1 · · ·µl−1µl+1 · · ·µp�. The weighting vector
wFVC−FRLSMA

l resulting from replacing S−1
W in (A10) with P⊥

U
in (10) becomes the LSOSP in [3] and [9]

wLSOSP
l = P⊥

UM
(
MTP⊥

UM
)−1

1l. (11)

With this interpretation, the FVC-FLSMA can be considered as
an FLDA version of the OSP.

Additionally, we can define a linear transformation by r̂ =
P⊥

Ur and M̂ = P⊥
UM for an image pixel vector r. The resulting

image with pixel vectors described by r̂ is called the P⊥
U-

whitened hyperspectral image. Let µ̂l be the P⊥
U-whitened

lth class mean defined by µ̂l = P⊥
Uµl. Equation (11) is then

reduced to

wLSOSP
l = M̂

(
M̂TM̂

)−1

1l =
(
µ̂T

l P⊥
Û

µ̂l

)−1

P⊥
Û

µ̂l (12)

where Û = [µ̂1 · · · µ̂l−1µ̂l+1 · · · µ̂p] and µ̂j = P⊥
Û

µj , for 1 ≤
j ≤ p. If we let P⊥

Û
= I, (12) is further reduced to wLSOSP

l =
(µ̂T

l µ̂l)−1µ̂l, which is exactly the same matched filter used
by the LSOSP [3] with the matched signature specified by the
desired signature µ̂l.

C. Relationship Between FVC-FLSMA and LCDA

Recently, a linearly constrained discriminant analysis ap-
proach, called LCDA, was developed by Du and Chang [17],
where the within-class and between-class scatter matrices were
replaced by intradistance and interdistance, respectively, with
the class means aligned with mutual orthogonal directions.
As shown in [17], the LCDA solution had the same equation
specified by (A10). Therefore, the LCDA is essentially the
FVC-FLSMA. Furthermore, the total scatter matrix ST is the
sum of within-class scatter matrix SW and between-class scat-
ter matrix SB in (3) and is a constant matrix. The problem
specified by (6) can be further shown to be equivalent to finding
wl that satisfies

min
wl

wT
l STwl subject to wT

l µj =δlj , for 1≤j≤p. (13)

The solution to (13) can be obtained by w∗
l = S−1

T M
(MTS−1

T M)−11l, which turns out to be the same as (A10). As
shown in [3], the total scatter matrix ST was related to the data
training sample covariance matrix Σ by ST = N · Σ, where N
is total number of training samples. Using this fact, the problem
specified by (13) is also equivalent to the following problem

min
wl

wT
l Σwl subject to wT

l µj =δlj , for 1≤j≤p. (14)

The solution to (14) is also w∗
l = Σ−1M(MTΣ−1M)−11l,

which is also the same as (A10).

III. AC-FLSMA

It should be noted that the FVC-FLSMA solution solved by
(7) or (A15) is not abundance-constrained in the sense that there
is no constraint imposed on the abundance vector α. Therefore,
the FVC-FLSMA solution does not guarantee that α ≥ 0 (that
is, αj ≥ 0, for all 1 ≤ j ≤ p) and

∑p
j=1 αj = 1. In order to

obtain an AC-FLSMA, we first consider the following least

squares problem resulting from the FLSMA with no constraints
imposed on the abundance-fraction vector α

min
α

{
(r − Mα)TS−1

W (r − Mα)
}

. (15)

Since SW is positive definite, we express S−1
W as a square of its

square-root form S−1/2
W by S−1

W = S−1/2
W S−1/2

W . Consequently,
the S−1

W -weighted LSE in (15) (r −Mα)TS−1
W (r − Mα) can

be simplified as follows:

(r − Mα)TS− 1
2

W S− 1
2

W (r − Mα)

= (r − Mα)T
(
S− 1

2
W

)T

S− 1
2

W (r − Mα)

=
(
S− 1

2
W r − S− 1

2
W Mα

)T (
S− 1

2
W r − S− 1

2
W Mα

)
= (r̃ − M̃α)T(r̃ − M̃α) (16)

which becomes exactly the same least squares mixing problem
considered in the LSMA

min
α

{
(r̃ − M̃α)T(r̃ − M̃α)

}
(17)

with r̃ = S−1/2
W r and M̃ = S−1/2

W M. Due to the fact that the
process carried out in (16) is similar to the whitening process
performed by the covariance matrix in signal detection theory
[21], it is referred to as an SW-whitened process and (17) is
called SW-whitened least squares LSMA.

By virtue of the SW-whitened least squares LSMA, we can
impose two commonly used constraints α ≥ 0 or

∑p
j=1 αj = 1

to obtain three types of abundance-constrained least squares
FLSMA problems described as follows, which are similar to
those discussed in [3], [10], and [13]: abundance sum-to-one
constrained least squares (ASCLS), abundance nonnegativity
constrained least squares (ANCLS), and FCLS problems:

1) ASCLS-FLSMA problem;

min
α

{
(r̃ − M̃α)T(r̃ − M̃α)

}
subject to

p∑
j=1

αj = 1 (18)

2) ANCLS-FLSMA problem;

min
α

{
(r̃ − M̃α)T(r̃ − M̃α)

}
subject to α ≥ 0 (19)

3) AFCLS-FLSMA problem;

min
α

{
(r̃ − M̃α)T(r̃ − M̃α)

}

subject to α ≥ 0 and
p∑

j=1

αj = 1. (20)

The above three abundance-constrained least squares FLSMA
problems are precisely the same least squares problems consid-
ered in the LSMA [3], [10], [13]. Therefore, (18)–(20) can be
solved exactly by the same methods that solve constrained least
squares LSMA in [3], [10], and [13].

IV. EXPERIMENTS

This section conducts two sets of experiments, computer
simulations and real-image experiments, to demonstrate the
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Fig. 1. (a) Spectral band number 170 of the cuprite AVIRIS image scene. (b) Spatial positions of five pure pixels corresponding to minerals: alunite (A),
buddingtonite (B), calcite (C), kaolinite (K), and muscovite (M). (c) Five mineral spectra extracted from (b). (d) Alteration map available from USGS [22].

utility of the FLSMA. For abundance-constrained methods,
only experiments that implemented the FCLS and AFCLS-
FLSMA were included in this section for comparative analysis
due to limited space. Nevertheless, according to our conducted
experiments, the other two types of the abundance-constrained
least squares FLSMA also performed better than their counter-
parts in least squares LSMA.

The image data set used in experiments is available in
reflectance units, after being calibrated and atmospherically
corrected by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) team at the Jet Propulsion Laboratory. It is
the well-known AVIRIS image scene, available online [22]
and shown in Fig. 1(a), which was collected over the cuprite
mining site, Nevada, in 1997. This 224-band scene is well-
understood mineralogically, and has reliable ground truth where
the five pure pixels were selected based on the ground truth
corresponding to the five different minerals alunite (A), bud-
dingtonite (B), calcite (C), kaolinite (K), and muscovite (M),
which are white circled and labeled by A, B, C, K, and M in
Fig. 1(b) with their corresponding spectra shown in Fig. 1(c).
These pixels were carefully verified using laboratory spectra
provided by the U.S. Geological Survey (USGS) (available
from http://speclab.cr.usgs.gov). Fig. 1(d) also shows an alter-
ation map for some of the minerals, which was generalized
from the ground map provided by the USGS [22] and obtained
by Tricorder SW version 3.3. It should be noted that this
radiometrically calibrated and atmospherically corrected data
set available online from http://aviris.jpl.nasa.gov is provided in
reflectance units with 224 spectral channels where the data had

been calibrated and atmospherically rectified using the ACORN
software package. It was recommendation that bands 1–3,
105–115, and 150–170, due to low water absorption and low
SNR in those bands, be removed prior to data processing. As a
result, a total number of 189 bands were used for experiments,
as shown in Fig. 1(c).

With availability of the ground truth about this image scene,
the cuprite image data in Fig. 1 has been widely used for
hyperspectral image analysis. In this paper, we also used this
image scene as a standard test site to conduct performance
evaluation and analysis.

A. Computer Simulations

In order to substantiate the FLSMA, we simulated a synthetic
image with size of 200 × 200 pixel vectors with 25 panels of
various sizes, which are arranged in a 5 × 5 matrix and located
at the center of the scene shown in Fig. 2(a). These 25 panels
in Fig. 2(a) were implanted in the image background in a way
that the background pixels were replaced with the implanted
panel pixels where the background was simulated by a single
signature b obtained by averaging pixels in the square area
located at upper right corner in Fig. 1(a) marked by A. Finally,
this synthetic image with the 25 implanted panels was corrupted
by a simulated white Gaussian noise to achieve an SNR of 20 : 1
defined in [6]. The resulting noisy synthetic image is shown in
Fig. 2(b). Thus, in this synthetic image scene, there are 100 pure
pixels, 20 mixed pixels, and 10 subpixels, all of which were
simulated by five distinct pure mineral signatures.
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Fig. 2. Synthetic image. (a) Twenty-five simulated panels and (b) synthetic
image having the 25 panels simulated in (a) implanted in the background with
an additive Gaussian noise to achieve an SNR of 20 : 1.

TABLE I
MIXED PANEL PIXELS IN THE THIRD COLUMN FOR SIMULATIONS

The five mineral spectral signatures {mi}5
i=1 in Fig. 1(c)

were used to simulate these 25 panels, where each row of five
panels was simulated by the same mineral signature and each
column of five panels has the same size. Among the 25 panels
are five 4 × 4 pure-pixel panels pi

4×4, for i = 1, . . . , 5, lined
up in the first column in five separate rows, and five 2 × 2
pure-pixel panels pi

2×2, for i = 1, . . . , 5, lined up in the second
column in five separate rows for pure-pixel classification; the
five 2 × 2 mixed-pixel panels {pi

3,jk}2,2
j=1,k=1, for i = 1, . . . , 5,

lined up in the third column in five separate rows for mixed-
pixel classification and both the five subpixel panels, pi

4,1 for
i = 1, . . . , 5 lined up in the fourth column in five separate rows
and the five subpixel panels pi

5,1, for i = 1, . . . , 5, lined up in
the fifth column in five separate rows for subpixel classifica-
tion. The purpose of introducing the five panels in the third
column and subpixel panels in the fourth and fifth columns
was designed to conduct a study and analysis on five mineral
signatures with different mixing in a pixel and five mineral
signatures embedded in single pixels at subpixel scale. Tables I
and II tabulate the mixing details of mineral composition in
the 20 mixed pixels in the third column in Fig. 2(a) and the
five subpixel panels with 50% abundance of mineral signatures
in the fourth column and the five subpixel panels with 25%
abundance of mineral signatures in the fifth column in Fig. 2(a),
respectively.

This synthetic image was particularly designed to evaluate
the performance of the FLSMA in addressing three issues,
classification of pure pixels in the first and second columns,
classification of mixed pixels in the third column, and classi-
fication of subpixels with two different abundance fractions in
the fourth and fifth columns.

TABLE II
SUBPIXELS IN THE FOURTH AND FIFTH COLUMNS FOR SIMULATIONS

Fig. 3. Six targets produced by ATGP.

Three scenarios were conducted for performance evaluation:
1) by comparing the FVC-FLSMA to unconstrained classi-
fiers FLDA and LSOSP; 2) by comparing the FVC-FLSMA
to signature-constrained classifiers CEM and TCIMF; and
3) by comparing the AFCLS-FLSMA to the fully abundance-
constrained classifier FCLS. All the three scenarios were
conducted in an unsupervised manner. That is, no prior knowl-
edge about the synthetic image in Fig. 2(b) was assumed. In
particular, there was no knowledge about how many signatures
would represent the image scene. In this case, we first needed to
determine the number of signatures p required to represent the
scene. In order to resolve this dilemma, a recently developed
concept, called virtual dimensionality (VD) in [3] and [23], was
used to estimate this number, which was six.
Example 1 (FVC-FLSMA Versus Unconstrained Classifiers

FLDA and LSOSP): In order to produce a set of six desired
signatures for the synthetic scene, the automatic target-
generation process (ATGP) developed in [24] was used to find
six targets {ej}6

j=1, which included five panel pixels specified
by all the five different panel signatures {pi}5

i=1 and one
background pixel shown in Fig. 3, with the numbers indicating
the order that the six target pixels were generated.

The purpose of this example was to demonstrate the
performance of the FVC-FLSMA in comparison with the
commonly used unconstrained classifiers, the FLDA and
LSOSP, where the FLDA is a best known classical pure-pixel
classifier and the LSOSP is a widely used least squares LSMA.
Since both the FVC-FLSMA and the FLDA required training
samples for classification, the Spectral Angle Mapper (SAM)
was used as a spectral similarity measure with the threshold
set to 0.04 to find pixels that were similar to each of the six
target signatures {ej}6

j=1 to form a set of training data for each
of the p classes {Cj}6

j=1. The value of threshold 0.04 was set
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empirically according to our experiments and experience. Then,
the means of each of the six classes were further calculated
{µj}6

j=1 to form the desired signature matrix M for the FVC-
FLSMA and the FLDA. However, for the LSOSP, the target
signature matrix was formed directly by the ATGP-generated
target pixels {ej}6

j=1 because LSOSP did not need training
samples. Fig. 4(a)–(c) shows the classification results of the
25 panels in Fig. 2(b) produced by the FVC-FLSMA, FLDA,
and LSOSP, respectively. Since both the FVC-FLSMA and the
LSOSP are mixed-pixel classifiers, they produced grayscale
fractional-abundance images for each of five panel classes in
Fig. 4(a) and (c), respectively. To the contrary, the FLDA is
a pure-pixel-based class-labeling classifier. Thus, the images
shown in Fig. 4(b) are five classification maps, one for each of
panel classes.

As shown in Fig. 4(a)–(c), the FLDA was the worst among
the three classifiers in the sense that it misclassified p1

4,1, p5
4,1

as the second panel signature, and also p2
4,1, p4

4,1, p1
5,1, p2

5,1,
p4
5,1, p5

5,1 as the third panel signature. Comparing Fig. 4(a)–(c),
we also see that the FVC-FLSMA performed better than the
LSOSP in terms of background suppression for panels in the
third row and reduction of the false alarms caused by other
panels. This experiment demonstrated that the FVC-FLSMA
performed the best among the three classifiers in terms of target
detection and classification as well as background suppression
and small false-alarm rate.
Example 2 (FVC-FLSMA Versus Target Signature-

Constrained Classifiers CEM and TCIMF): This example
was designed to compare the FVC-FLSMA against two
target signature-constrained classifiers CEM and TCIMF [3],
[19]. The FVC-FLSMA implemented in this example was
the same one in Example 1. The CEM was implemented
by considering one of the five ATGP-generated panel
signatures e1 = p5, e2 = p1, e4 = p4, e5 = p2, e6 = p3 in
Example 1 as a desired target signature d separately, and
was performed for each of five minerals. The TCIMF
was implemented in a similar manner that the CEM was
implemented but it also used the other five ATGP-generated
target pixels for undesired target annihilation. Fig. 5(a)–(b)
shows the classification results of the CEM and TCIMF,
respectively, where the TCIMF performed slightly better than
the CEM did due to the fact that the CEM produced more false
alarms for panels in the third, fourth, and fifth rows.

Now, comparing Fig. 5(b) to Fig. 4(a), both the FVC-FLSMA
and the TCIMF performed comparably, but the FVC-FLSMA
performed slightly better in terms of background suppression
in panels in the third row.
Example 3 (AFCLS-FLSMA Versus Fully Abundance-

Constrained Classifier FCLS): This example studies the rela-
tive performance of the AFCLS-FLSMA to the FCLS classifier
in [3] and [13], where the required target knowledge used
for both the AFCLS-FLSMA and FCLS was obtained in
Example 1. Since the abundance fractions are of major in-
terest, only fully abundance-constrained classifiers were con-
sidered. Fig. 6 graphically plots the abundance fractions of
the panel pixels obtained by the AFCLS-FLSMA and FCLS
for abundance quantification analysis, respectively, where it
clearly shows that the AFCLS-LSMA performed significantly
better than the FCLS according to the accuracy of estimated
abundance fractions plotted in Fig. 6 for all 130 pure and

mixed panel pixels plus subpixel panels. Additionally, the
LSEs calculated for the AFCLS-FLSMA and FCLS were 0.176
and 0.884, respectively, which further demonstrated that the
AFCLS-FLSMA outperformed the FCLS.

B. Real-Image Experiments

In this section, the AVIRIS cuprite image scene in Fig. 1(a)
was used for experiments. One major difference between the
real cuprite image scene and the simulated synthetic im-
age in Fig. 2(b) used for computer simulations is that the
image background in Fig. 1 was unknown compared to the im-
age background in Fig. 2(b), which was simulated by complete
knowledge.

Since no prior knowledge about the cuprite scene is available,
two preprocessing steps are needed prior to implementation
of the FLSMA. One is to determine the number of classes in
the image data. If we translate that each class is represented
by one spectrally distinct signature, the number of classes can
be determined by the number of spectrally distinct signatures
present in the data, which can be estimated by VD. Table III lists
the values of the VD with various false-alarm probabilities PF.

For our experiments, the VD was chosen to be 22, with
the false-alarm probability PF = 10−4. To find these 22 dis-
tinct signatures, ATGP was also implemented for this purpose.
Fig. 7 shows the found 22 target pixels {tk}22

k=1 with numbers
indicating the orders that target pixels were found. Since each
of the 22 target pixels represents one single distinct class, a
second preprocessing is to find training samples for each of
the 22 target classes, denoted by {Ci}22

i=1. It has been shown
in [3] that the CEM is very effective in target detection. There-
fore, the CEM was used for our experiments to find training
samples {Ci}22

i=1, where the threshold selected for the CEM
was empirically set to 0.4. Table IV provides the numbers of
training samples found for each of 22 classes {Ci}22

i=1, where
the numbers in the top row indicate class numbers and the
numbers in the bottom row are the number of training samples
found by the CEM for each of the 22 classes.

In order to find which ATGP-generated target pixels are
specified by five minerals, a spectral measure is required for
identification. According to recent results reported in [25], the
RMFD defined by

RMFD(ti, tj) = tT
i R−1tj (21)

was shown to perform significantly better and more effec-
tively than did the commonly used pixel level-based SAM in
discrimination and identification of subpixels and mixed pixels
for real hyperspectral images, where the matrix R is the sample
correlation matrix and ti and tj are two target pixels to be
discriminated. Therefore, the RMFD was used to identify the
22 ATGP-generated target pixels against the five minerals of
interest A, B, C, K, and M by the RMFD via (21), where
the signatures of the five minerals in Fig. 1(c) were used.
Table V is the identification results of these 22 ATGP-generated
target pixels, where t11, t5, t10, t4, and t8 were identified and
highlighted by shade as the five minerals A, B, C, K, and M,
respectively. For the methods that involve training samples such
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Fig. 4. Classification results of the 25 panels in Fig. 2(b) produced by the FVC-FLSMA, FLDA, and LSOSP, respectively. (a) FVC-FLSMA, (b) FLDA, and
(c) LSOSP.

Fig. 5. Classification results of the 25 panels in Fig. 2(b) produced by the CEM and TCIMF, respectively. (a) CEM and (b) TCIMF.

as FVC-FLSMA, FLDA, and AFCLS-FLSMA, the CEM-found
training samples in {Ci}22

i=1 through the 22 ATGP-generated
target pixels {tk}22

k=1 were used to form the desired training
pool. For the LSOSP and FCLS, the means µ11, µ5, µ10, µ4,
and µ8 of the training classes specified by the five pixels t11,
t5, t10, t4, and t8 were calculated to form the signature matrix,
while the CEM and TCIMF used the five pixels t11, t5, t10, t4,
and t8 as the target pixels.

Fig. 8 also shows the results of the FVC-FLSMA, FLDA,
LSOSP, CEM, and TCIMF, respectively. According to the
ground truth provided in Fig. 1(b) and (d), the FVC-FLSMA
seemed to perform the best in terms of classifying the four
minerals alunite (A), calcite (C), kaolinite (K), and muscovite
(M), except buddingtonite (B) in Fig. 8(a), while the LSOSP
was the worst. Surprisingly, the FLDA also performed reason-
able well in the classification of all five minerals. The reason

that the FVC-LSMA performed poorly on the classification
of buddingtonite might be due to the fact that the training
samples were heavily mixed and could not characterize the
buddingtonite. However, such dilemma could be resolved by
imposing abundance constraints on the found training samples,
as shown in Fig. 9, where both the AFCLS-FLSMA and FCLS
significantly improved their unconstrained counterparts. In par-
ticular, the AFCLS-FLSMA clearly outperformed the FCLS.

Most interestingly, if we compare the classification result
of buddingtonite in Fig. 8 to that in Fig. 9, the FVC-FLSMA
performed very poorly in Fig. 8(a), but its counterpart, the
AFCLS-FLSMA, turned out to be the best in Fig. 9(a) among
all the unconstrained or abundance-constrained classifiers if
abundance constraints were fully imposed on training samples.
As a comment made previously on simulation results, the
LSOSP and FCLS might perform well if the target signatures
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Fig. 6. Graphical representation of abundance fractions of 130 panel pixels in Fig. 2(b) for visual assessment. (a) One hundred pure-pixel panels in the first and
second columns. (b) Twenty mixed pixels in the third column. (c) Fifty percent subpixel panels in the fourth column. (d) Twenty-five percent subpixel panels in
fifth column.

TABLE III
VD ESTIMATED FOR THE CUPRITE SCENE WITH VARIOUS

FALSE-ALARM PROBABILITIES

Fig. 7. ATGP-generated 22 target pixels.

were more accurate. In this case, if we used the five ATGP-
generated target pixels t11, t5, t10, t4, and t8 to replace the
means of the five training classes as the signature matrix, the
classification results in Fig. 10(a) and (b) show that the LSOSP
performance was significantly improved in Fig. 10(a), while
the FCLS performance remained about the same in Fig. 10(b).
This experiment demonstrated that fully abundance-constrained
classifiers were generally preferred in mixed-pixel classifica-
tion and subpixel detection.

According to the experiments conducted in this paper, two
concluding remarks are noteworthy.

1) The main strength of the FVC-LSMA is its ability in
pattern classification, not in target abundance fractions.
In order to resolve this dilemma, an AC-FLSMA ap-
proach can be further developed to accurately estimate
the abundance fractions of mixed pixels and subpixels.
As shown in the experiments, when such abundance
constraints are imposed on the FLSMA, the resulting
performance was significantly improved and better than
the fully constrained spectral unmixing method FCLS.

2) In order to provide consistent experimental results, only
one real hyperspectral image, the cuprite image scene,
was used throughout the paper. As a matter of fact,
many simulation results and real-image experiments have
been conducted and were not included in this paper
to further substantiate our proposed FLSMA due to
limited space. In particular, similar experiments based
on HYperspectral Digital Imagery Collection Experiment
(HYDICE) data were also conducted with similar conclu-
sions in [27].

V. CONCLUSION

This paper presents a new approach to LSMA, referred
to as FLSMA, which directly extends the well-known FLDA
to the LSMA in two different ways. One is called feature-
vector-constrained FLSMA (FVC-FLSMA), which constrains
the Fisher’s ratio-generated feature vectors to mutual orthogo-
nal directions. Another is called AC-FLSMA, which imposes
the sum-to-one and nonnegativity constraints on abundance
fractions in the least squares sense. It has been shown that the
FVC-FLSMA operates the same functional form as the LCMV
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TABLE IV
NUMBER OF TRAINING SAMPLES GENERATED BY CEM FOR EACH CLASS WITH A TOTAL NUMBER OF 710 PIXELS

TABLE V
RMFD-BASED SPECTRAL SIMILARITY VALUES OBTAINED BY COMPARING THE 22 ATGP-GENERATED TARGET

PIXELS {tk}22
k=1 AGAINST THE FIVE MINERAL REFLECTANCE SIGNATURES IN FIG. 1(c)

classifier does, with the only difference that the data correlation
matrix used in the LCMV is replaced by the within-class
scatter matrix in the FLSMA. Because the within-class scatter
matrix is a more effective measure than the data correlation
matrix in pattern classification, the FVC-FLSMA generally
performs better than the LCMV in mixed-pixel classification
provided that an appropriate set of training sample data is used.
Additionally, the LCDA can be also shown to be the same
as the FVC-FLSMA. As for the AC-FLSMA, there are also
three types of constraints that can be imposed in parallel in
the same fashion that three types of constraints are imposed on
the LSMA. The resulting AC-LSMA is called ASCLS-FLSMA,
ANCLS-FLSMA, and AFCLS-FLSMA, with their respective
counterparts in the abundance-constrained least squares LSMA,
SCLS, NCLS, and FCLS. Since the mixed-pixel classification
is performed by the proposed AC-FLSMA using Fisher’s ratio
as a classification measure and LSE as an abundance estima-
tion criterion, the AC-FLSMA also performs better than the
abundance-constrained least squares LSMA and abundance-
unconstrained FVC-FLSMA given that the training data are ap-
propriately selected. As shown in our experiments conducted in
this paper as well as the experiments in [27], the unsupervised
FLSMA can perform as well as the FLSMA can if the training
data generated unsupervisedly provide sufficient representative
samples for each of classes. Furthermore, the performance of
the FLSMA relies heavily on the training samples. If the image
is ill represented by a given sample pool, the FLSMA may
perform poorly.

APPENDIX

In this appendix, we derive the FVC-LSMA solution to the
problem specified by (6). In analogy with the same argument
developed in [17], the numerator wT

l SBwl can be further
simplified by

wT
l SBwl =wT

l

 p∑
j=1

nj(µj − µ)(µj − µ)T

wl

= nl − 2
p∑

j=1

njδljwT
l µ +

p∑
j=1

nj

(
wT

l µ
) (

wT
l µ

)T

(A1)

with µ being the global mean of the sample training data. Since

2
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p∑
j=1

nlδlj

⌊
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the wT
l SBwl in (A1) can be further reduced to

wT
l SBwl = nl − 2
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n2
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n

)
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(
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)
= nl −

(
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l
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)
(A4)
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Fig. 8. Classification results of the five minerals by FVC-FLSMA, FLDA, LSOSP, CEM, and TCIMF, respectively. (a) FVC-FLSMA, (b) FLDA, (c) LSOSP,
(d) CEM, and (e) TCIMF.

which is independent of wl. As a consequence, the FVC-
FLSMA problem specified by (6) is reduced to the one find-
ing wFVC−FLSMA

l , which satisfies the following constrained
optimization problem:

min
wl

wT
l SWwl subject to wT

l µj =δlj , for 1≤j≤p. (A5)

In order to solve the above problem, we define an objection
function for each wl given by

J(wl) = wT
l SWwl +

p∑
j=1

λl
j

(
wT

l µj − δlj

)
(A6)

where {λl
j}p,p

j=1,l=1 are Lagrange multipliers. Differentiating
(A6) with respect to wl yields

∂J(wl)
∂wl

∣∣∣∣
wFVC−FLSMA

l

= 2SWwFLSMA
l +

p∑
j=1

λl
jµj =0 (A7)

which results in

2SWwFVC−FLSMA
l +

p∑
j=1

λl
jµj

= 2SWwFVC−FLSMA
l + Mλl = 0

⇒ wFVC−FLSMA
l = −

(
1
2

)
S−1

W Mλl (A8)
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Fig. 9. Classification results of the five minerals produced by AFCLS-FLSMA and FCLS, respectively. (a) AFCLS-FLSMA and (b) FCLS.

Fig. 10. Classification results produced by LSOSP and FCLS using the five ATGP-generated target pixels t11, t5, t10, t4, and t8 as the target information.
(a) LSOSP and (b) FCLS.

where M = �µ1 µ2 · · · µp� and λl = (λl
1, λ

l
2, . . . , λ

l
p)

T is
the Largrange multiplier vector.

Using the constraint that (wFVC−FLSMA
l )Tµj = δlj for 1 ≤

j ≤ p, the Lagrange multiplier vector λl can be obtained by

λl =−2
(
MTS−1

W M
)−1

1l with 1l =(0, . . . , 0, 1︸︷︷︸
l

, 0, . . . , 0)T.

(A9)

Substituting (A9) for λl in (A8) yields the lth weight vector
wFVC−FLSMA

l given by

wFVC−FLSMA
l = S−1

W M
(
MTS−1

W M
)−1

1l. (A10)

Furthermore, we can even derive a matrix form for
all the optimal solutions {wFVC−FLSMA

l }p
l=1 for (A5).

If WFVC−FLSMA = �wFVC−FLSMA
1 wFVC−FLSMA

2 · · ·

wFVC−FLSMA
p � and Γ = �λ1λ2 · · ·λp�, the constraints in (A5)

can be expressed in the following matrix form:

(WFVC−FLSMA)TM = I (A11)

and (A8) becomes

WFVC−FLSMA = −
(

1
2

)
S−1

W MΓ. (A12)

Using (A12) and the constraint specified by (A11) we obtain

−
(

1
2

)
ΓTMTS−1

W M=I⇒ΓT =−2
(
MTS−1

W M
)−1

. (A13)

Substituting (A13) into (A12) results in the FVC-FLSMA
solution in a matrix form given by

WFVC−FLSMA =S−1
W M

(
MTS−1

W M
)−T

=S−1
W M

(
MTS−1

W M
)−1

. (A14)



2304 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 8, AUGUST 2006

where X−T is defined by X−T ≡ (X−1)T. Applying the
WFVC−FLSMA to a sample vector r, the abundance vector α(r)
associated with r can be expressed as

α(r)=(WFVC−FLSMA)Tr=
(
MTS−1

W M
)−1

MTS−1
W r. (A15)

ACKNOWLEDGMENT

The authors would like to thank A. Plaza who provided the
cuprite image scene along with its ground truth used in this
paper. In particular, the authors would like to acknowledge his
valuable suggestions and useful discussions with the scene.

REFERENCES

[1] J. B. Adams and M. O. Smith, “Spectral mixture modeling: A new
analysis of rock and soil types at the Viking Lander 1 suite,” J. Geophys.
Res., vol. 91, no. B8, pp. 8098–8112, Jul. 10, 1986.

[2] J. B. Adams, M. O. Smith, and A. R. Gillespie, “Image spec-
troscopy: Interpretation based on spectral mixture analysis,” in Re-
mote Geochemical Analysis: Elemental and Mineralogical Composition,
C. M. Pieters and P. A. Englert, Eds. Cambridge, U.K.: Cambridge Univ.
Press, 1993, pp. 145–166.

[3] C.-I Chang, Hyperspectral Imaging: Techniques for Spectral Detection
and Classification. New York: Plenum, 2003.

[4] D. E. Sabol, J. B. Adams, and M. O. Smith, “Quantitative sub-pixel
spectral detection of targets in multispectral images,” J. Geophys. Res.,
vol. 97, no. E2, pp. 2659–2672, Feb. 1992.

[5] M. O. Smith, J. B. Adams, and D. E. Sabol, “Spectral mix-
ture analysis-new strategies for the analysis of multispectral data,”
in Image Spectroscopy—A Tool for Environmental Observations,
J. Hill and J. Mergier, Eds. Dordrecht, The Netherlands: Kluwer, 1994,
pp. 125–143.

[6] J. C. Harsanyi and C.-I Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785, Jul. 1994.

[7] J. J. Settle, “On the relationship between spectral unmixing and sub-
space projection,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 4,
pp. 1045–1046, Jul. 1996.

[8] C.-I Chang, “Further results on relationship between spectral unmixing
and subspace projection,” IEEE Trans. Geosci. Remote Sens., vol. 36,
no. 3, pp. 1030–1032, May 1998.

[9] C.-I Chang, X. Zhao, M. L. G. Althouse, and J.-J. Pan, “Least squares
subspace projection approach to mixed pixel classification in hyper-
spectral images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3,
pp. 898–912, May 1998.

[10] J. J. Settle and N. A. Drake, “Linear mixing and estimation of ground
cover proportions,” Int. J. Remote Sens., vol. 14, no. 6, pp. 1159–1177,
1993.

[11] Y. E. Shimabukuro and J. A. Smith, “The least-squares mixing models to
generate fraction images derived from remote sensing multispectral data,”
IEEE Trans. Geosci. Remote Sens., vol. 29, no. 1, pp. 16–20, Jan. 1991.

[12] S. Tompkins, J. F. Mustarrd, C. M. Pieters, and D. W. Forsyth, “Opti-
mization of targets for spectral mixture analysis,” Remote Sens. Environ.,
vol. 59, no. 3, pp. 472–489, 1997.

[13] D. Heinz and C.-I Chang, “Fully constrained least squares linear
mixture analysis for material quantification in hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.

[14] B. H. Juang and S. Katagiri, “Discriminative learning for minimum
classification errors,” IEEE Trans. Signal Process., vol. 40, no. 12,
pp. 3043–3054, Dec. 1992.

[15] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[16] H. Soltanian-Zadeh, J. P. Windham, and D. J. Peck, “Optimal linear
transformation for MRI feature extraction,” IEEE Trans. Med. Imag.,
vol. 15, no. 6, pp. 749–767, Dec. 1996.

[17] Q. Du and C.-I Chang, “A linear constrained distance-based discrimi-
nant analysis for hyperspectral image classification,” Pattern Recognit.,
vol. 34, no. 2, pp. 361–373, Feb. 2001.

[18] C.-I Chang, “Target signature-constrained mixed pixel classification for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5,
pp. 1065–1081, May 2002.

[19] H. Ren and C.-I Chang, “Target-constrained interference-minimized
approach to subpixel target detection for hyperspectral imagery,” Opt.
Eng., vol. 39, no. 12, pp. 3138–3145, Dec. 2000.

[20] J. C. Harsanyi, Detection and Classification of Subpixel Spectral Signa-
tures in Hyperspectral Image Sequences. Baltimore County: Dept. Elect.
Eng., Univ. Maryland, Aug. 1993.

[21] H. V. Poor, An Introduction to Signal Detection and Estimation Theory.
New York: Springer-Verlag.

[22] G. Swayze. (1997). “The hydrothermal and structural history of the
Cuprite Mining District, Southwestern Nevada: An integrated geologi-
cal and geophysical approach,” Ph.D. dissertation, University of Colo-
rado, Boulder. [Online]. Available: http://speclab.cr.usgs.gov and ftp://
ftpext.cr.usgs.gov / pub / cr / co / denver / speclab / pub / cuprite /gregg.thesis.
images/mineralzone.thesis.gif

[23] C.-I Chang and Q. Du, “Estimation of number of spectrally distinct signal
sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 42, no. 3, pp. 608–619, Mar. 2004.

[24] H. Ren and C.-I Chang, “Automatic spectral target recognition in hyper-
spectral imagery,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,
pp. 1232–1249, Oct. 2003.

[25] C.-I Chang, W. Liu, and C.-C. Chang, “Discrimination and identification
for subpixel targets in hyperspectral imagery,” in Proc. IEEE Int. Conf.
Image Process., Singapore, Oct. 24–27, 2004, pp. 3339–3342.

[26] C.-I Chang and S.-S. Chiang, “Anomaly detection and classification for
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6,
pp. 1314–1325, Jun. 2002.

[27] B. Ji, C.-I Chang, J. L. Jensen, and J. O. Jensen, “Unsupervised con-
strained Fisher’s linear discriminant analysis,” in Proc. SPIE, Denver, CO,
Aug. 1–4, 2004, vol. 5546, pp. 344–353.

Chein-I Chang (S’86–M’87–SM’92) received the
B.S. degree from Soochow University, Taipei,
Taiwan, R.O.C., the M.S. degree from the Institute
of Mathematics at National Tsing Hua University,
Hsinchu, Taiwan, R.O.C., and the M.A. degree from
the State University of New York at Stony Brook,
all in mathematics. He also received the M.S. and
M.S.E.E. degrees from the University of Illinois at
Urbana-Champaign and the Ph.D. degree in elec-
trical engineering from the University of Maryland,
College Park, in May 1987.

He has been with the University of Maryland, Baltimore County (UMBC)
since 1987 and is currently a Professor in the Department of Computer Science
and Electrical Engineering. He was a Visiting Research Specialist in the
Institute of Information Engineering at the National Cheng Kung University,
Tainan, Taiwan, R.O.C., from 1994 to 1995. He was a Distinguished Lecture
Chair at the National Chung Hsing University sponsored by the Ministry of
Education in Taiwan, R.O.C., from 2005 to 2006. He is the holder of three
patents and several pending on hyperspectral image processing. He is on the
editorial board of the Journal of High Speed Networks and was the Guest
Editor of a special issue of the same journal on telemedicine and applications.
His research interests include multispectral/hyperspectral image processing,
automatic target recognition, medical imaging, information theory and coding,
signal detection and estimation, and neural networks. He has authored the book
Hyperspectral Imaging: Techniques for Spectral Detection and Classification
(New York: Kluwer, 2003).

Dr. Chang received an National Research Council (NRC) Senior Research
Associateship award during 2002–2003, sponsored by the U.S. Army Soldier
and Biological Chemical Command, Edgewood Chemical and Biological
Center, Aberdeen Proving Ground, MD. He is an Associate Editor in the
area of hyperspectral signal processing for the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING. He is a Fellow of SPIE, and a member
of Phi Kappa Phi and Eta Kappa Nu.

Baohong Ji (S’05) received the B.S. and M.S. de-
grees, both in computer science, from the Jilin Uni-
versity of Technology Changchun, China, in 1993
and 1996, respectively, and the Ph.D. degree in elec-
trical engineering from the University of Maryland,
Baltimore County, Baltimore, in 2006.

From 1997 to 2000, she served as a Lecturer in the
Jilin University of Technology, China. Her research
interests include remote sensing, image processing,
signal processing, data compression, and pattern
recognition.


