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A Kalman Filtering Approach to Multispectral
Image Classification and Detection
of Changes in Signature Abundance
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Abstract—Subpixel detection and classification are important in
identification and quantification of multicomponent mixtures in
remotely sensed data, such as multispectral/hyperspectral images.
A recently proposed orthogonal subspace projection (OSP) has
shown some success in Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) and Hyperspectral Digital Imagery Collection
Experiment (HYDICE) data. However, like most techniques,
OSP has its own constraints. One inherent limitation is that
the number of signatures to be classified cannot be greater
than that of spectral bands. Owing to this limitation, OSP
may not perform well for multispectral imagery as it does for
hyperspectral imagery. This phenomenon is observed by three-
band Satellite Pour l’Observation de la Terra (SPOT) data
because of an insufficient number of spectral bands compared
to the number of materials to be classified. Further, most ap-
proaches proposed for multispectral and hyperspectral image
analysis, including OSP, operate on a pixel by pixel basis. In
this case, a general assumption is made on the fact that the
image data are stationary and pixel independent. Unfortunately,
this may be true for laboratory data, but not for real data,
due to varying atmospheric and scattering effects. In this paper,
a Kalman filtering approach is presented that overcomes the
aforementioned problems. In addition to the observation process
described by a linear mixture model, a Kalman filter utilizes an
abundance state equation to model the nonstationary nature in
signature abundance. As a result, the signature abundance can
be estimated and updated recursively by the Kalman filter and
an abrupt change in signature abundance can be detected via
the abundance state equation. The effectiveness of the proposed
Kalman filtering approach is demonstrated through computer
simulations and SPOT data. The experimental results show the
potential of the proposed Kalman filtering-based approach in
multispectral image analysis.

Index Terms—Classification, detection, estimation, hyperspec-
tral image, Kalman filter, Kalman filter-based linear mixing
(KFLM), multispectral image, orthogonal subspace projection
(OSP).

I. INTRODUCTION

SUBSPACE projection is a versatile technique that has been
commonly used in signal processing and neural networks

for a wide range of applications, such as data compression,
dimensionality reduction, and pattern recognition. Most re-
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cently, it also found an application in remote sensing [1],
in which an orthogonal subspace projection (OSP) classi-
fier was developed for hyperspectral image classification and
showed some success in Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) data. One of the important applications
in multispectral and hyperspectral imaging is target detection
and image classification. However, due to the nature of image
acquisition, an image pixel is generally mixed by various
materials present in that pixel. As a result, many image
processing techniques cannot be directly applied and need to
be modified. OSP takes advantage of subspace projection so
as to achieve dimensionality reduction and feature extraction.
Since OSP was introduced, it has been successfully applied
to Hyperspectral Digital Imagery Collection Experiment (HY-
DICE) images [2]. Nevertheless, like most techniques, OSP
can be improved by relaxing assumptions, such asa priori
knowledge about signatures. Along this line, some efforts
[3]–[4] have been made to enhance and extend the capability of
OSP to adapt to unknown environments. A class of OSP-based
methods were reported to show the potential and usefulness of
OSP in HYDICE data exploitation [4]. For example, severala
posterioriversions of OSP were proposed to estimate signature
abundance in [5] and an adaptive OSP-based technique, called
constraint energy minimization (CEM) [6], was also presented
for classification with unknown signatures and background.
However, there is an inherent limitation on OSP that cannot be
relaxed. It is called the band number constraint (BNC), which
is that the number of signatures to be classified should not be
greater than that of spectral bands. When OSP is developed for
hyperspectral images, BNC never becomes an issue because
the number of signatures of interest is generally far less than
that of spectral bands, such as 224-band AVIRIS data and
210-band HYDICE data. Unfortunately, if OSP was applied
to multispectral imagery, it was found that OSP could not
effectively reject undesired signatures due to a small number
of bands used to collect data containing a large number of
signature classes.

In order to see why, let and be the set of undesired
signatures and the space linearly spanned byrespectively.
We also let denote the subspace orthogonal to As
OSP is applied, it first employs a subspace annihilator denoted
by to reject undesired signatures in by projecting the
observed pixel into so that the effects of undesired
signatures can be eliminated. Since the hyperspectral images,
such as AVIRIS and HYDICE images, are acquired by more
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than 200 spectral bands that are generally greater than sig-
natures to be classified, the rejection of undesired signatures
can be properly done in a space with large dimensionality.
However, this may not be true for multispectral imagery
with the total number of used bands less than the number
of signatures. In this case, not all undesired signatures in
can be rejected by because the dimensionality of the
rejection space is smaller than that of As a result,
some undesired signatures in may be mixed into
and will garble the desired signature. This scrambled desired
signature further deteriorates the performance of the matched
filter, which follows the projector in the OSP approach.
Consequently, the overall classification performance of OSP
is degraded. In this paper, this phenomenon is demonstrated
by Satellite Pour l’Observation de la Terra (SPOT) data.

By realizing that the BNC is a constraint directly resulting
from subspace projection, we need to reinvent an approach
other than subspace projection to cope with this dilemma. In
this paper, we present a Kalman filter-based linear mixing
approach, called KFLM, to relax the BNC. In addition to
the linear mixture model used by OSP, KFLM employs an
auxiliary equation, called abundance state equation (ASE), to
trace the signature abundance. In other words, KFLM adopts
the linear mixture model to represent the admixture of pixels
while utilizing an ASE to keep track of changes in signature
abundance. Several prominent advantages can be gained by
including the ASE in KFLM. One is to allow us to detect
an abrupt change from pixel to pixel in a nonstationary back-
ground. Another is to provide us with the information about the
spatial correlation between pixels. More importantly, the inher-
ent constraint BNC imposed on OSP does not exist in KFLM
since KFLM is designed independent of data projection that
is used in the OSP approach. It provides a new means to look
at the mixed pixel classification problems besides subspace
projection. Although Kalman filtering is not a new concept,
applying the Kalman filtering to linear mixing problems in
multispectral/hyperspectral image classification seems to be a
new application. As shown in experiments conducted in this
paper, KFLM not only performs better than OSP in three-band
SPOT data, in which the BNC is imposed, but also is compara-
ble to OSP in hyperspectral image classification, in which case
the BNC is not an issue [7]. In order to make OSP still appli-
cable to multispectral image analysis, a remedy is suggested.

The organization of this paper is given as follows. Section II
describes a linear mixing problem and KFLM approach,
in which two Kalman filtering equations are introduced to
model multispectral image pixels and signature abundance.
Section III presents computer simulations to show the capa-
bility of the KFLM in detecting abrupt change in signature
abundance and SPOT data experiments to show the constraint
of OSP. A comparative study is also made between KFLM and
OSP methods, and OSP is amended for multispectral image
applications. Section IV draws a brief conclusion.

II. KFLM FOR MIXED PIXEL CLASSIFICATION

A. Linear Mixing Problems

One of widely used techniques in multispectral/
hyperspectral image classification is linear unmixing,

which uses a linear mixture model to unmix the components
in the mixture. More precisely, assume thatis the number
of spectral bands and is the number of signature vectors.
Let be an column vector, and denote the image
pixel at the location Next, define an signature
matrix as , where is an column
vector representing the spectral signature of theth material.
Finally, define an abundance vector denoted by

, where
represents the abundance of theth material in the pixel at
location The linear mixture model is then given by

(1)

where the signature matrix is assumed to be invariant to
spatial location and the vector represents white
additive noise with zero mean and covariance matrix, given
by , with being the identity matrix. Equation
(1) is a widely used linear mixture model from which many
linear unmixing methods can be derived.

B. Motivation

The motivation of developing KFLM arises from an attempt
to improve and enhance the OSP approach so as to adapt itself
to more challenging environments, such as unknown noise,
unknown signatures, unknown background and interference,
etc. As mentioned in Section I, several OSP-based methods
were developed to extend OSP capability in detecting a
low-probability target in unknown background, such as LPD
in [6], or in an adaptive means, such as CEM in [6], or
in a posteriori fashion by taking advantage of observation
information to estimate the signature abundance, such asa
posteriori LSOSP in [4], or in an unsupervised manner to
estimate unknown signatures from the background, such as
UODSP in [8]. However, all of these methods are bound to the
subspace projection with an inherent limitation, the BNC. As a
consequence, they may not be suitable for multispectral image
analysis. As shown in [4],a posterioriLSOSP can significantly
improve OSP performance if the background noise is knowna
priori . Unfortunately, it is not often the case for real data. One
way to mitigate this problem is to use an adequate statistical
model to describe the noise. Inspired by the work in [4], it
prompts us to look into the potential of the Kalman filtering
in hyperspectral image applications in which the measurement
equation in conjunction with the state equation can be used to
model the noise resident in pixels and the noise in signature
abundance. A few immediate advantages can result from the
Kalman filtering, as follows.

1) Kalman filtering is recursive and a well-known real-time
processing technique widely used in control, communi-
cation, and signal processing communities. This implies
that a technique designed based on Kalman filtering
should be practical in real applications.

2) It can be used to process nonstationary data. This is an
important advantage over OSP for processing remotely
sensed image data due to unknown parameters and
atmospheric and scatter effects.
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3) It is adaptive and updates the abundance state by taking
into account the interpixel spatial correlation. Compared
to OSP, which works on a pixel by pixel basis, a Kalman
filtering-based technique provides more information than
OSP. Consequently, it should perform better than OSP
if models are chosen properly.

4) There is no BNC in KFLM. This advantage makes
KFLM applicable to applications in multispectral im-
ages.

It should be noted that, despite the success of the Kalman
filtering in many fields, there still remains some challenging
problems, such as the model selection and parameter estima-
tion.

C. KFLM Approach

The KFLM presented in this subsection is a Kalman filter
with the linear mixture model given by (1) as the measurement
equation and state equation given by the following abundance
equation:

(2)

where the spatial position in (1) is replaced by to
indicate the discrete time instant at which the pixel is
currently being processed. The vector represents the
amount of the abundance at time, and is a known

state transition matrix used to describe the state of the
change in the abundance from timeto time is
the abundance noise vector independent of and
assumed to be a zero-mean, white process with covariance
matrix given by

(3)

where is the variance of the abundance noise vector,
is Kronecker’s notation given by

and the matrix represents the identity matrix. In
accordance with the discrete-time Kalman filtering notation at
discrete time we rewrite (1) as

(4)

where the vector represents the observed pixel at time
and is a known signature matrix at time The

measurement noise is represented by in (1), which is
assumed to be a zero-mean, white process with covariance
matrix given by

(5)

The goal of KFLM is to obtain the minimum mean-squared
estimate of the abundance state given that the data
are observed. Using the knowledge of the predicted , we
can classify and detect the pixel

Let represent the minimum mean-squared pre-
dictor of given the past observations for all
from one to are also defined similarly.

We further define to be the error covariance matrix at
time given the past observations for all from one to
and to be the one-step prediction error covariance
matrix at time given the past observations for
all from one to Then KFLM is performed recursively
as follows. For detailed implementation of Kalman filtering,
refer to [9].

• Initial Conditions:

and
: mean of
: covariance matrix of .

• Kalman Gain: Compute Kalman gain at the current time

(6)

• Abundance and Error Measurement Updates:

a) Update the abundance estimate at the current time
with

(7)

b) Update the error covariance matrix at the current
time

(8)

• Abundance and Error Measurement Predictions:

a) Predict the abundance at next time

(9)

b) Predict the error covariance matrix at next time

(10)

D. Discussions

It should be noted that OSP and KFLM are developed based
on different design rationales, even though they both share a
linear mixture model. The former applies a subspace projection
to pack the desired signature in a small subspace while
rejecting undesired signatures so as to achieve dimensionality
reduction and noise suppression. It does not require image
statisticsa priori nor the background noise. The latter takes a
statistical approach, in which the measurement equation and
ASE are described by statistical models. So, the performance
of KFLM depends heavily on how accurately these two
Kalman filtering equations fit the data, particularly, the model
selection and parameter estimation of the ASE. This is a
difficult and challenging problem in spectral estimation. In
general, three statistical models can be used for this purpose,
viz., moving average (MA), autoregressive model (AR), and
autoregressive-moving average model (ARMA). Since inves-
tigating this problem is beyond the scope of the paper, it will
not be discussed here. However, we will briefly describe a
model to be used in this paper that is governed by a first-order
Gauss–Markov process.

According to the ASE given by (2), we immediately recog-
nize that it is indeed a first-order Gauss–Markov model that
can be also viewed as a first-order AR model. The utilization
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of the transition matrix is to describe the correlation
between signatures from examining a pixel at timeto the
next pixel at time In this paper, we assume that

is an identity matrix. This means that theth abundance
at time is predicted solely on the abundance

of its immediate past pixel. This type of prediction is
generally referred to as the zero-order holder interpolation used
in predictive coding, such as differential pulse code modulation
(DPCM) in communications, signal, and image processing. Of
course, we can replace the first-order Gauss–Markov model
with a th order AR by including more past pixels to improve
prediction. However, in this case, we need to determine the
model order and the prediction coefficients. This problem
has been studied extensively in array processing and spectral
estimation [10]–[12]. Some criteria have been proposed for
this purpose, such as an information criterion (AIC) [13] or
minimum description length (MDL) [14].

III. COMPUTER SIMULATIONS AND SPOT DATA EXPERIMENTS

OSP has demonstrated its potential in hyperspectral im-
age data for image classification and detection [1]–[6]. As
mentioned previously, the application of OSP to multispectral
imaging has not yet been explored. In this section, we will
show that OSP does not perform well in real multispectral data
as expected since the number of distinct undesired spectral
signatures may be greater than the total number of spectral
signatures, as shown in the following for three-band SPOT
data in which there are more than three classes of materials
to be discriminated. In this case, it is obvious that we cannot
properly project more than two undesired signatures into a
subspace with two dimensions (note that the desired signature
space requires at least one dimension). Consequently, some
undesired signatures will be blended into the desired signature
that results in signal deterioration; a similar finding was also
observed in [5].

In this section, we will demonstrate this phenomenon and
show that KFLM outperforms OSP in both computer sim-
ulations and SPOT data, in which the ASE is modeled by
a first-order Gauss–Markov process with the identity state
transition matrix

A. Computer Simulations

A set of four spectral radiances directly extracted from a
SPOT scene will be used in computer simulations to evaluate
the performance of KFLM and OSP.

Experiment 1 (Mixed Pixel Classification):The spectral
signatures used in the simulated data were obtained directly by
extracting pixels from an image scene shown in Fig. 1. These
data were collected by the SPOT system from three bands, two
of which are from the visible region of the electromagnetic
spectrum referred to as band 1 (0.50–0.59m) and band 2
(0.61–0.68 m), and the third band is from the near-infrared
region of electromagnetic spectrum referred to as band 3
(0.79–0.89 m). These three images were coregistered and
combined into an image cube. In this case, the term pixel
refers to a 3 1 vector in which the three components of the
vector correspond to the three bands of the SPOT data.

In order to generate desired signatures, four sets of pix-
els were extracted from four different scenes in the SPOT
image that represent buildings, roads, vegetation, and water,
respectively. Each set consists of nine pixels corresponding to
a particular scene to be used for classification. For example,
the building signature was generated from Falls Church High
School, Falls Church, VA, the road signature from the Little
River Turnpike, the water signature from the lake in the
upper right of the image, and the vegetation signature from
Mill Creek Park. All nine sample pixels were averaged and
normalized, then used as the desired spectral signature of the
materials they represent. These signatures shown in Fig. 2
were used to generate the 34 signature matrix , in which
the unit vectors were the columns of the matrix. This matrix
was then used in (1) to generate the linearly mixed pixels
that were used in the experiments. Since the SPOT image has
only three dimensions, in order for OSP to work well on (1),
no more than three signatures are allowed. In this case, four
choices are possible. In the following experiment, we simply
selected buildings, roads, and vegetation for desired signatures
and set the water signature to 0%. Another three possibilities
were also conducted, and their results were very similar to
what we present here.

The first simulation was performed to determine the re-
sponses of KFLM and OSP to constant abundance levels of the
materials. The 550 mixed pixels were generated using the three
spectral signatures described above. The three signatures were
combined in the abundance values given in Table I. White
Gaussian noise was added to each pixel to generate signal-to-
noise ratios (SNR’s) of 30 : 1, in which the SNR was defined in
[1] as 50% of the reflectance divided by the standard deviation
of the noise.

The results of the simulations are given in Fig. 3, which
shows the responses of KFLM and OSP operating on the
simulated data. As seen in the figure, OSP did accurately
estimate the abundance of any of the three materials. An
observation about OSP can be made from the results in Fig. 3.
That is, each operator had different scales for the minimum
energy and the maximum energy. This occurs because OSP
first projects the input pixel onto a space that is orthogonal
to the undesired signatures. The space that the input pixel
is projected onto changes for each desired signature. This
projection is not done to maximize the energy within the
desired signature, but to minimize the energy in the interfering
undesired signatures. The result is that OSP can be used to
determine if one pixel has more material of a desired signal
than another pixel, but it cannot be used to determine if a
single pixel has more material of one signature than another
signature.

The results in Fig. 3 also show that KFLM accurately
estimated the abundance of all three materials. This experi-
ment demonstrates the strength of KFLM in estimating the
abundance of multispectral data. The results also indicate that
the estimate of KFLM for the abundance vector can track the
abundances of different materials. As a consequence, KFLM
can be used to determine if there is more abundance of one of
the materials in the pixel than the other materials, while OSP
performs neither of these functions.
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Fig. 1. Scene from SPOT data.

Fig. 2. Four radiances—buildings, roads, water, and vegetation—from
SPOT data.

Experiment 2 (Detection of Abrupt Change in Abundance):
The second experiment was performed to determine the re-
sponses of KFLM and OSP to abrupt changes in the abundance
of the materials. This experiment addresses the fact that KFLM

TABLE I
ABUNDANCE ASSIGNMENT FOR550 SIMULATED PIXELS

uses the abundance vector of the previous pixel to estimate
the abundance vector of the current pixel being processed.
This experiment was designed to see if large differences
between the initial estimate and actual values of the abundance
vector will have an affect on the estimate KFLM. Since
OSP processes each pixel individually and independently, the
estimate of the abundance is not applicable to OSP. The three
spectral signatures employed inExperiment 1 were used
in this experiment. The three signatures were combined to
form 550 mixed pixels with the abundance of the building
signature equal to 0%, the abundances of the road signature
and the water signature equal to 50%. Every fiftieth pixel
of this sequence was replaced with a pixel that contains a
nonzero abundance of the building signature and the remaining
abundance split evenly between the road signature and the
vegetation signature. The amount of the building signature in
the fiftieth pixels started at 10% for the fiftieth, 20% for the
hundredth, and so on, until the building signature abundance in
the five hundredth pixel was 100%. White Gaussian noise was
added to each pixel to generate SNR of 30 : 1. This experiment
allows for observation of the response of KFLM to changes
in abundance for only one pixel.

The results are shown in Fig. 4, which represents the output
of KFLM corresponding to the abundance of the building
signature in the pixel. Fig. 4 indicates that the estimate of
the abundance generated by KFLM made an increase in
the abundance of building signature at every fiftieth pixel.
These abrupt increases were witnessed by the increase in
values corresponding to the increasing abundance of building
signature in the pixel. These results verify that a rapid change
in the abundance vector between consecutive pixels can be
accurately estimated by KFLM. Fig. 4 also shows the output of
OSP corresponding to the three materials in which OSP could
detect the occurrence of sudden changes, but the results of
abundance estimate for each operator were based on different
scales.

B. SPOT Experiments

In the following SPOT data experiments, we will demon-
strate two things. One is the constraint BNC imposed on
OSP. When it is violated, OSP performs poorly. On the other
hand, KFLM does not have such limitation and still performs
well. Another is an amendment of OSP that is modified for
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Fig. 3. Computer simulations for signature estimation.

Fig. 4. Computer simulations for detection of abrupt change in abundance.

experiments. Even in this case, KFLM still outperforms OSP.
The initial conditions to be used for SPOT data experiments
were chosen empirically. The measurement noisewas

chosen to achieve the ratio of the signature energy to noise
energy, 20 dB, and for for and
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(a) (b)

(c) (d)

Fig. 5. SPOT experiments for OSP.

The scene in Fig. 1 contains several buildings, bodies of
water, highways, and secondary roads. These features were
used as desired signatures for KFLM and OSP. The signatures
used were the same as the ones described previously in
Section III-A. The three images in Fig. 1 are coregistered and
have a ground sampling resolution of 20 m. The data used in
this experiment are 256 256 pixels with 256 grayscales and
thus represent 5120 5120 m. The pixel vectors were then
normalized to create a unit vector before they were processed.
These normalized pixel vectors were processed by KFLM and
OSP.

1) OSP Results:OSP classifiers were generated for each
of the four spectral signatures and then applied to the SPOT
data. The results are provided in Fig. 5 compared to a map
of the region given by Fig. 6. These four images are labeled
according to the desired signature used to generate OSP
classifiers. The images in Fig. 5 show that OSP fails to classify
the targets of interest. The OSP classifier with the building
signature as the desired signature shows the buildings in the
scene. The OSP classifier with the desired signature for the
water detected the buildings in the scene, but not the water.
The OSP classifier with the roads signature as the desired
signature did pick up the roads, but it also picked up the
large lake in the area around the pixel at vertical position 175

and horizontal position 25. OSP classifier with the vegetation
signature as the desired signature brings out the lake and the
roads in the scene as the brightest areas. These four images
show that the four OSP classifiers failed to locate pixels within
the SPOT data that contained the desired signatures.

2) KFLM Results: Fig. 7 shows the SPOT results of the
estimated abundance using KFLM and contains four images,
building, roads, bodies of water, and vegetation, in the scene.

1) Fig. 7(a) shows that the areas where there were high
levels of the abundance of the building signature corre-
spond to buildings on the map. The Falls Church High
School located in the area around the pixel at vertical
position of 200, horizontal position of 75, and the Fairfax
Hospital located in the area around the pixel at vertical
position of 100, horizontal position of 100, appear as
large white areas in the image. The region located in
the area around the pixel at vertical position of 100,
horizontal position of 25, contains several buildings in
which individual buildings can be determined. Fig. 7(a)
clearly shows the building located in the region.

2) Fig. 7(b) shows the results of KFLM estimating the
abundance using the spectral signature of roads. The
areas in the image that represent roads correspond to
the location of roads on the map. The estimate of the
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Fig. 6. Map of a scene from SPOT data.

abundance generated by KFLM not only revealed the
major highways, but also the secondary and residential
streets in the region. Even the turns and cul-de-sacs of
the residential streets can be seen in this image. This
can be seen most clearly in the area around the pixel
at vertical position of 160 and horizontal position of
110. This area of the image shows a unique pattern
of turns in the residential roads that could be seen in
the corresponding area of the map. The results of the
experiment also reveal large areas of roads near the top
and bottom of the image. These large areas of roads
occur around buildings and represent parking lots. Since
parking lots were not represented on the map, a visit to
the area was made to determine if these areas contained

parking lots. The visit confirmed that these areas were
parking lots. This evidence further proves that KFLM
effectively and accurately estimates the position of the
roads and parking lots in the region.

3) Fig. 7(c) shows the abundance estimate results generated
by KFLM using the spectral signature of water. This
image clearly indicates the lake located in the area
around the pixel at a vertical position of 175 and
horizontal position of 25. In addition, a small pond is
also picked up in the area around the pixel at vertical
position of 70 and horizontal position of 220, which can
be identified in the map. Fig. 7(c) also shows that KFLM
accurately estimates the position of the bodies of water
in the region.
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(a) (b)

(c) (d)

Fig. 7. SPOT experiments for KFLM. (a) Buildings as the desired signature. (b) Roads as the desired signature. (c) Water as the desired signature.
(d) Vegetation as the desired signature.

4) Fig. 7(d) is the abundance results produced by KFLM
using the spectral signature of vegetation. This image
shows large areas of high levels of vegetation in almost
all areas of the region. The map reveals many parks in
the region. These parks include Accotink Stream Valley
Park, Mill Creek Park, Wakefield Park, and Luria Park.
The comparison of this image with the map confirms that
the large areas of high levels of vegetation correspond
to the parks and residential areas in the region. These
are areas where high levels of vegetation should be
expected. The dark areas in the images represent low
levels of vegetation that correspond to areas where
buildings, roads, parking lots, or bodies of water were
located in the previous images. These are areas where
no vegetation should be found.

The images discussed in Fig. 7(a)–(d) demonstrate that KFLM
successfully classifies four different classes of materials, while
OSP works poorly in classification.

3) Remedy for OSP:As demonstrated in Section III-B1,
the performance of OSP was poor in classifying one desired
signatures from three undesired signatures. This results from
the BNC. In order to comply with this constraint, only two
undesired signatures should be used in OSP. Under this

circumstance, the remaining unused signature will be viewed
as an interfering signature. So, three OSP operators can be
generated from selecting two out of three undesired spectral
signatures. These operators were then applied to the SPOT
data in four different cases, each case corresponds to one
interference selected from the four signatures, roads, buildings,
water, and vegetation. The results showed that the KFLM
performs better than OSP for all four cases. In this paper,
only one selected for best illustration is shown in Fig. 8.

The images in Fig. 8 are the results of the three OSP
operators with the road signature as the desired signature,
two of three other signatures as undesired signatures, and the
fourth as an interfering signature. The image in Fig. 8(a) is
the result of OSP with the building and the water signature as
undesired signatures and vegetation as interfering signatures.
OSP could not detect the roads in the image. Instead, OSP
detected the vegetation in the scene and appeared similar to
the images generated by OSP with vegetation as the desired
signature. When we applied OSP to the road and vegetation
signatures, respectively, it was found that OSP detected almost
ten times as much of the energy of the vegetation signature
as for the road signature. The reason for this is that OSP
projects the pixel’s energy into a subspace orthogonal to
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(a) (d)

(b) (e)

(c) (f)

Fig. 8. OSP results using roads as the desired signature. (a) Buildings and water as undesired signatures and vegetation as an interfering signature.(b)
Buildings and vegetation as undesired signatures and water as an interfering signature. (c) Vegetation and water as undesired signatures and buildings
as an interfering signature. KFLM results using roads as the desired signature. (d) Buildings and water as undesired signatures and vegetation as an
interfering signature. (e) Buildings and vegetation as undesired signatures and water as an interfering signature. (f) Vegetation and water as undesired
signatures and buildings as an interfering signature.

the undesired signatures. This orthogonal subspace is close
to being orthogonal to the desired signature if one of the
undesired signatures is very similar to the desired signature.
In this case, the signature for roads is very similar to the
signature for water; hence, much of the energy from the road
signature is eliminated by the projection. Fig. 8(b) is the result
of OSP with the building and the vegetation signature as
undesired signatures and the water as an interfering signature.
OSP could detect the roads in the image, but it also could
detect the lake in the scene. Again, applying OSP to the
road and water signatures, respectively, showed that OSP
detected twice as much of the energy of the water signature
as for the road signature. These two images show that OSP
has problems distinguishing between the similar signatures
of roads and water. Fig. 8(c) is the result of OSP with the
water and the vegetation signature as undesired signatures
and the buildings as an interfering signature. The buildings
in the scene can be seen more clearly in this image then the
roads. Once again, applying OSP to the road and building
signatures, respectively, shows that OSP detected twice as
much of the energy of the buildings signature as for the

road signature. These three images show very different results
for the three OSP operators to detect roads. We also applied
KFLM in comparison with OSP to the SPOT image scene
in the same fashion as we did for Fig. 8(a)–(c), and the
results are shown in Fig. 8(d)–(f), respectively. As we can see,
KFLM performs better than does OSP. The same experiments
were also conducted using buildings, water, and vegetation
as desired signatures, respectively, and similar results were
obtained but not included in this paper. The reason to select
Fig. 8 for illustration is because roads and water have very
similar signatures. This allows us to see how the undesired
signature water interferes with the desired signature roads.

The above experiments showed that the performance of
OSP depends on the relationship between the signatures.
For instance, OSP using the road as desired signature with
different combinations of undesired signatures has a significant
effect on the performance of these operators. The water
signature was so similar to the road signature that, if the
water signature was not included as an undesired signature,
OSP could not distinguish between the two classes. The OSP
operator that included the water signature as an undesired
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Fig. 9. Best four-class classification results generated by OSP (left column) and KFLM (right column), respectively.

signature reduced a significant amount of the road’s energy
while nulling out the water’s energy. Since this operator
annihilated so much of the road’s energy, the energy from the
interfering signature overwhelmed the OSP detector such that
the operator mistakenly detected this interfering road signature.
So, in order to implement OSP in multispectral imagery, a
knowledge of the relationship between the target signatures is
required to produce best results. The images in the left column
of Fig. 9 show a set of best results in four-class (building, road,
water, and vegetation) classification, which are selected from
four different experiments. However, they do not come from
the same OSP operator. This implies that one single OSP will
not perform well when the number of undesired signatures
is larger than the number of bands. In this case, a judicious
selection of undesired signatures and interfering signature is
necessary to warrant the applicability of OSP.

In order to compare the performance of KFLM against OSP,
we applied the same signatures that were used for OSP to
KFLM. A best four-class classification result is also selected
and shown in the right column of Fig. 9. As expected, KFLM
performed better than OSP.

IV. CONCLUSION

OSP has shown to be a promising technique in AVIRIS and
HYDICE data analysis and exploitation. It was found that a

constraint inherited from subspace projection prevents it from
applications in multispectral image analysis. In this paper, we
presented KFLM as an alternative to OSP, which can be used
in multispectral and hyperspectral image analysis to detect and
estimate nonstationary or pixel-varying signature abundance.
The idea is to introduce an ASE into the linear mixture model
so that the changes in abundance from pixel to pixel can be
detected via the ASE. Since the two Kalman filter equations
(i.e., linear mixture equation and abundance state equation)
can be implemented recursively, the proposed KFLM has a
potential in real-time data processing. The experimental results
showed that KFLM not only performed better than OSP in
computer simulations, but also worked effectively in SPOT
data, of which OSP seemed to fail in classification. This failure
is primarily attributed to the fact that a complete rejection of
undesired signatures is not possible since it does not have a
sufficient number of bands to accommodate the number of
materials to be classified. On the other hand, KFLM does
not have this constraint. With the help of the ASE, KFLM
can further capture the nature of nonstationarity in real data
and keep track of changes in signature abundance so as to
achieve subpixel detection. Nevertheless, we do not claim that
KFLM is a better technique than OSP in all aspects because
they are completely different approaches and have different
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strengths. For instance, OSP is particularly useful when there is
no prior statistical knowledge available about the background,
as demonstrated in [6] and [8], while KFLM will do better if
the used models faithfully reflect the data. Finally, it should
be noted that, in this paper, we only dealt with multispectral
image classification problems. The same conclusion does not
automatically apply to hyperspectral image classification in
which the BNC is no longer a constraint. In this case, OSP
and KFLM were shown in [7] to perform equally well in
classification.
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