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Weighted Abundance-Constrained Linear
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Abstract—Linear spectral mixture analysis (LSMA) has been
used in a wide range of applications. It is generally implemented
without constraints due to mathematical tractability. However,
it has been shown that constrained LSMA can improve uncon-
strained LSMA, specifically in quantification when accurate
estimates of abundance fractions are necessary. As constrained
LSMA is considered, two constraints are generally imposed on
abundance fractions, abundance sum-to-one constraint (ASC) and
abundance nonnegativity constraint (ANC), referred to as abun-
dance-constrained LSMA (AC-LSMA). A general and common
approach to solving AC-LSMA is to estimate abundance fractions
in the sense of least squares error (LSE) while satisfying the
imposed constraints. Since the LSE resulting from each individual
band in abundance estimation is not weighted in accordance with
significance of bands, the effect caused by the LSE is then assumed
to be uniform over all the bands, which is generally not necessarily
true. This paper extends the commonly used AC-LSMA to three
types of weighted AC-LSMA resulting from three different signal
processing perspectives, parameter estimation, pattern classifi-
cation, and orthogonal subspace projection. As demonstrated by
experiments, the weighted AC-LSMA generally performs better
than unweighted AC-LSMA which can be considered as a special
case of our proposed weighted AC-LSMA with the weighting
matrix chosen to be the identity matrix.

Index Terms—Abundance-constrained linear spectral mixture
analysis (AC-LSMA), linearly constrained minimum variance
(LCMV)-weighted AC-LSMA, Mahalanobis distance (MD), MD-
weighted AC-LSMA, orthogonal subspace projection (OSP)-
weighted AC-LSMA, S 1-weighted AC-LSMA.

I. INTRODUCTION

L INEAR spectral mixture analysis (LSMA) is a versatile
technique which has shown success in solving a variety

of problems [1], [2] such as subpixel detection [3]–[5], mixed-
pixel classification [6]–[10], quantification [10]–[18], etc. It as-
sumes that there are image endmembers,
present in an image to be processed, and any image pixel vector

can be described as a linear mixture of these endmembers
with appropriate abundance fractions, with
corresponding to the abundance fraction of the th endmember

as follows [8].

(1)

where is interpreted as a model or measurement error and
is the endmember matrix formed by
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. Due to mathematical tractability, the LSMA
is widely implemented as an unconstrained technique which
does not impose any constraint on the abundance fractions

of the image endmembers .
However, it has been shown in the literature, e.g., [1], [5],
[13], and [16], that constrained LSMA can improve uncon-
strained LSMA in many aspects such as subpixel detection
[5], mixed-pixel classification [10], [13], [16], identification
[19], specially quantification [13], [16], [18], [19] when accurate
abundance fraction estimation is required. As constrained LSMA
is considered, two abundance constraints can be imposed on

in (1), abundance sum-to-one constraint (ASC),
i.e., and abundance nonnegativity-constraint
(ANC), , i.e., for all . Such con-
strained LSMA is referred to as abundance-constrained LSMA
(AC-LSMA). A general and common approach to solving
AC-LSMA is to estimate abundance fractions in the sense of least
squares error (LSE) while satisfying the imposed constraints,
which is referred to as LSE AC-LSMA. More specifically, the
model in (1) is interpreted as least squares error problem

(2)

with is modeled as least squares error, while constraining the
abundance fractions on the model in (2) to find
least squares error solutions. As a result, three types of LSE
AC-LSMA can be considered [1], [13], [16], sum-to-one con-
strained least squares (SCLS) which implements only the ASC,
nonnegativity constrained least squares (NCLS) which imple-
ments only the ANC, and fully constrained least squares (FCLS)
which implements both the ASC and the ANC [1], [13], [16].
Despite the fact that constrained LSMA may require more so-
phisticated algorithmic implementations, the pay-off is some-
times great and worthwhile, particularly, for material quantifi-
cation [16], [19]. Most importantly, it generally produces more
accurate abundance fraction estimation, thus better performance
[5], [16], [19].

According to (2) the least squares error is equally weighted
for all bands which are assumed to have their uniform effects on
LSE. In general, this may not be necessarily true. To generalize
this concept, we consider a weighted LSE approach to (2) by
introducing a weighting matrix into (2) so that the LSE is
weighted by via

(3)

Equation(3) is reduced to (2) if , identitymatrix.The key to
success in using (3) is to find an appropriate weighting matrix
that accounts for individual bands. As inspired by the three signal
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processing perspectives studied in [1] and [20] for LSMA, this
paper investigates constrained LSMA with three different ways
to select the weighting matrix for (3), which are also derived
from the same three perspectives. One is based on the param-
eter estimation perspective that is derived from the well-known
Mahalanobis distance [21] or Gaussian maximum-likelihood es-
timator (GMLE) [22]. If the weighting matrix in (3) is selected
to be the inverse of the data sample covariance matrix ,
(3) becomes the Mahalanobis distance (MD) or Gaussian
maximum-likelihood estimator. The resulting constrained
AC-LSMA iscalled MD-weightedAC-LSMA. Asan alternative,
if the weighting matrix in (3) is replaced with (i.e., the
inverse of data sample correlation matrix ), (3) is then reduced
to a form of the linearly constrained minimum variance (LCMV)
classifier [1], [23] which is referred to as LCMV-weighted
AC-LSMA. Another selection of the weighting matrix is based
on pattern classification perspective which is derived from
Fisher’s linear discriminant analysis (FLDA) [24]. It has been
shown in [25] and [26] that with constraining Fisher’s feature
vectors to mutual orthogonal directions, maximizing Fisher’s
ratio is reduced to minimizing the within-class scatter matrix

. As a result, selecting the for the weighting matrix in
(3) yields abundance-constrained Fisher’s LSMA (AC-FLSMA)
[23], [24], referred to as -weighted AC-LSMA. A third way
to select the weighting matrix is based on orthogonal subspace
projection (OSP) [8] which is derived from signal detection per-
spective. It is shown in [1] and [20] that the undesired signature
rejection matrix, , used in the OSP can be approximated by

if the prior knowledge of the undesired signatures in
is not available. Using this interpretation we can select for
the weighting matrix in (3), which results in OSP-weighted
AC-LSMA. An interesting finding is that if the weighting matrix

is selected by the signature subspace projection (SSP) matrix
in [1] and [9] that is formed by the endmember matrix in (1) or
(2), the resulting SSP-weighted AC-LSMA can be shown to be
identical to the unweighted AC-LSMA in (2), in which case the

becomes the identity matrix. This is due to the fact that both
the SSP approach and LSMA are least squares-based methods.
As a consequence, the weighted matrix specified by the SSP
does not provide any additional advantage. Nevertheless, as will
demonstrated by experiments, all these three types of weighted
AC-LSMA specified by appropriate selections for the weight
matrix in (3) generally perform better than unweighted
AC-LSMA described by (2).

This paper is organized as follows. Section II reviews the un-
weighted abundance-constrained LSMA. Section III presents
three weighted LSE approaches to abundance-constrained
LSMA. Section IV conducts computer simulations and real
image experiments for performance analysis. Section V con-
cludes some remarks.

II. ABUNDANCE-CONSTRAINED LSMA

When unconstrained LSMA specified by (1) is considered, its
unconstrained LSE solution to (2) is given by

(4)

Imposing the ASC and ANC on (2) results in three abundance-
constrained LSE AC-LSMA problems of interest [1], [13], [16]
as follows.

1) Abundance sum-to-one constrained LSMA problem

subject to (5)

2) Abundance nonnegativity-constrained LSMA problem

subject to (6)

3) Abundance fully constrained LSMA problem

subject to and (7)

The solutions to the above LSE AC-LSMA described
by (5)–(7) are well documented in [1], [13], and [16]
and referred to as SCLS, NCLS, and FCLS, respectively,
throughout this paper.

III. WEIGHTED LEAST SQUARES AC-LSMA

It should be noted that the LSE specified by (2) does not in-
clude any weighting matrix to account for significance of each
band, in which case the weighting matrix is chosen to be the
identity matrix in (5)–(7). However, this is not necessarily an
optimal way to impose the LSE since the LSE caused by every
band is not necessarily equally significant. If a weighting ma-
trix is included in (3) to account for the LSEs resulting from
different bands (i.e., replace the I in (2) with ), (2) becomes
the A-weighted LSE problem specified by (3) which is to find a
solution that solves

(8)

Suppose that is a positive-definite and symmetric matrix.
We can use , the square-root form of to whiten the LSE
in (8) as follows

(9)

Using a linear transformation defined by

(10)

an -whitened LSE can be further simplified by and given
by

(11)

which is reduced to minimization of (2) except that both the
image pixel vector and the matrix have been whitened by
the weighting matrix via the transformation . As a result,
a new set of three types of -weighted AC-LSMA that are
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similar to (5)–(7) can be also derived by replacing in (5)–(7)

with via in (10) and they are referred to as MD-weighted
SCLS, MD-weighted NCLS, MD-weighted FCLS problems,
respectively.

As shown in [1] and [20], the LSMA can be interpreted from
three different signal processing perspectives, signal detection
which results in the orthogonal subspace projection (OSP)
approach, parameter estimation which results in Mahalanobis
distance (MD) or Gaussian maximum-likelihood estimator
(GMLE), and pattern classification which results in Fisher’s
linear discriminant analysis. Following the same treatment,
these three signal processing perspectives can be also used to
develop in parallel various versions of -weighted AC LSMA
by appropriately selecting a weighted matrix in (3).

A. Weighting Matrix Derived From Parameter
Estimation Perspective

Two ways to select the weighting matrix in (3) that ac-
counts for spectral correlation used in the parameter estimation
are the use of the covariance spectral matrix and the correla-
tion spectral matrix .

1) MD-Weighted AC-LSMA: One of the well-known ex-
amples to weight mean squared error is Mahalanobis distance
(MD), also known as GMLE which uses the data covariance
matrix as a weighting matrix. Substituting for in
(8) yields

(12)

Replacing the in (10) with yields a new linear transfor-
mation given by

(13)

Then the resulting -whitened LSE is found by

(14)

which is similar to (11). By virtue of (14), another new set
of three types of -weighted AC-LSMA can be derived by
replacing in (5)–(7) with via in (13) and they
are referred to as MD-weighted SCLS, MD-weighted NCLS,
MD-weighted FCLS problems, respectively.

2) LCMV-Weighted AC-LSMA: The LSE in (12) was de-
rived from the MD or Gaussian maximum-likelihood estima-
tion. If the data covariance matrix in (12) is replaced with
the data correlation matrix , an LCMV-based abundance-con-
strained LSE problem can be derived by

(15)

which uses the data correlation matrix as a weighting matrix.
Using a linear transformation similar to defined in
(13) by mapping and into

(16)

we can also obtain an -whitened LSE problem given by

(17)

which is a correlation-based LSE problem. Three types of
LCMV-weighted AC-LSMA can be derived by replacing
in (5)–(7) with via in (16) and they are referred to
as LCMV-weighted SCLS, LCMV-weighted NCLS, LCMV-
weighted FCLS problems, respectively.

B. Weighting Matrix Derived From Fisher’s Linear
Discriminant Analysis Perspective

FLDA is one of the most widely used pattern classification
techniques in pattern recognition [1], [24]. An application of
the FLDA to hyperspectral image classification was also ex-
plored in [1], [25], and [26]. Its strength in pattern classifica-
tion lies on the criterion used for optimality, which is called
Fisher’s ratio defined by the ratio of between-class scatter ma-
trix to within-class scatter matrix. More specifically, assume
that there are training sample vectors given by for

-class classification, with being the number
of training sample vectors in th class . Let be the global
mean of the entire training sample vectors, denoted by

and be the mean of the training sample vec-
tors in the th class , denoted by .
Now, we can define the within-class scatter matrix, and be-
tween-class scatter matrix as follows:

where

(18)

(19)

Using (18) and (19), Fisher’s ratio (also known as Rayleigh’s
quotient) is then defined by

for any vector (20)

The Fisher linear discrimnant analysis is to find a set of fea-
ture vectors that maximize Fisher’s ratio specified by (20). The
number of feature vectors found by Fisher’s ratio is determined
by the number of classes, , to be classified, which is .

It has been shown in [25] and [26] that a Fisher’s ratio-based
LSE problem, referred to as Fisher linear spectral mixture anal-
ysis (FLSMA), could be formulated as

(21)

with being used as a weighting matrix to replace the
weighting matrix in (8). So, using a transformation
defined by

(22)

(21) can be whitened by and becomes

(23)
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Therefore, three types of -weighted AC-LSMA can be de-
rived by replacing in (5)–(7) with via in (22) and

are referred to as -weighted SCLS, -weighted NCLS,
-weighted FCLS problems, respectively.

C. Weighting Matrix Derived From Orthogonal Subspace
Projection Perspective

As we have seen in Sections III-A and B, the weighting ma-
trix was selected by sample spectral correlation matrices and
Fisher’s ratio which were resulting from the maximum-likeli-
hood estimator and Fisher’s linear discriminant analysis. In this
section, we investigate the selection of the weighting matrix
based on various OSP criteria.

1) OSP-Weighted AC-LSMA: According to the signal-de-
composed interference-annihilated (SDIA) model in [27], the
signal sources can be decomposed into desired signal sources
which are assumed to be in the signature matrix and un-
wanted signal sources which are assumed to be interferers
to the signal sources in the . If we let be the unwanted
signature matrix made up of such interferers, we can project
all image pixels onto the space that is orthogonal to the
space linearly spanned by the signal sources in and then
perform the LSE problem specified by (2) in . Inspired by
this approach, the weighting matrix in (8) can be selected by
the unwanted signature rejector, defined in [28] by

(24)

The resulting LSE problem from replacing in (8) with in
(24) is

(25)

Since is idempotent, and . This
implies that

(26)

Using a linear transformation defined by mapping and
into

(27)

we can also obtain a similar form to (11) given by

(28)

which is referred to as OSP-weighted abundance-constrained
LSE problem. Consequently, three types of OSP-weighted AC
LSMA can be derived by replacing in (5)–(7) with via

in (27) and they are referred to as OSP-weighted SCLS,
OSP-weighted NCLS, OSP-weighted FCLS problems, respec-
tively. A key to success in the OSP-weighted ACLSMA is to find
the unknown signal sources used in the matrix in an unsuper-
vised manner. The one of particular interest is called automatic
target detection and classification algorithm (ATDCA) that was
developed in [29] and can be used for this purpose.

2) SSP-Weighted AC-LSMA: As an alternative to (28), we
can also formulate an LSE problem based on performing abun-
dance estimation in the space that is linearly spanned by the
signal sources in the signature matrix exclusively. Such an
LSE problem resulting from replacing in (24) with a signa-
ture subspace projector, defined in [1], [9], [28], and [30]
by

(29)

is referred to as SSP-weighted AC-LSMA which is to find the
solution to the following optimization problem:

(30)

Once again, is idempotent, and
. Using a linear transformation defined by mapping

and into

(31)

(30) becomes

(32)

Interestingly, the solution to (32) is

(33)

which is identical to the unconstrained least squares LSMA so-
lution given by (4). As a result, the three types of SSP-weighted
AC-LSMA obtained by the linear transformation in (31)
turn out to be the same unweighted ASC-LSMA. ANC-LSMA
and AFC-LSMA described by (5)–(7). This is because the
weighted matrix specified by the SSP does not provide any
additional advantage as shown by (31) and (33) due to the fact
that .

IV. EXPERIMENTS

This section conducts two sets of experiments, computer
simulations and real image experiments to demonstrate the
utility of various weighted least squares error approaches to
AC-LSMA. All the experiments were based on a Hyperspectral
Digital Image Collection Experiment (HYDICE) image scene
shown in Fig. 1(a), which has a size of 64 64 pixel vectors
with 15 panels in the scene and the ground truth map in Fig. 1(b)
[1]. It was acquired by 210 spectral bands with a spectral cov-
erage from 0.4–2.5 m. Low signal/high noise bands: bands
1–3 and bands 202–210; and water vapor absorption bands:
bands 101–112 and bands 137–153 were removed. So, a total
of 169 bands were used. The spatial resolution is 1.56 m and
spectral resolution is 10 nm. Within the scene in Fig. 1(a) there
is a large grass field background, and a forest on the left edge.
Each element in this matrix is a square panel.

For each row , the three panels were painted by
the same material but have three different sizes. For each column

, the five panels have the same size but were painted
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(a) (b)

(c)

Fig. 1. (a) HYDICE panel scene which contains 15 panels. (b) Ground
truth map of spatial locations of the 15 panels. (c) Spectral signatures of
p ;p ;p ;p , and p .

by five different materials. It should be noted that the panels
in rows 2 and 3 are made by the same material with different
paints, so did the panels in rows 4 and 5. Nevertheless, they were
still considered as different materials. The sizes of the panels in
the first, second and third columns are 3 m 3 m, 2 m 2 m,
and 1 m 1 m, respectively. So, the 15 panels have five dif-
ferent materials and three different sizes. Fig. 1(b) shows the
precise spatial locations of these 15 panels where red (R) pixels
are the panel center pixels shown as black pixels in grayscale
images and the pixels in yellow (Y) are panel pixels mixed
with background and shown as white pixels in grayscale im-
ages. The 1.56-m spatial resolution of the image scene suggests
that the panels in the second and third columns, denoted by
p p p p p p p p p p in Fig. 1(b) are one
pixel in size. Additionally, except the panel in the first row and
first column, denoted by p which also has size of one pixel,
all other panels located in the first column are two-pixel panels
which are the panel in the second row with two pixels lined up
vertically, denoted by p and p , the panel in the third row
with two pixels lined up horizontally, denoted by p and p ,
the panel in the fourth row with two pixels also lined up hor-
izontally, denoted by p and p . and the panel in the fifth
row with two pixels lined up vertically, denoted by p and
p . Since the size of the panels in the third column is 1 m 1
m, they cannot be seen visually from Fig. 1(a) due to the fact
that its size is less than the 1.56-m pixel resolution. Fig. 1(c)
plots the five panel spectral signatures for ob-
tained by averaging R pixels in the 3 m 3 m and 2 m 2 m

Fig. 2. Twenty-panel synthetic image. (a) Twenty simulated panels. (b) Panels
with background. (c) Image with noise.

panels in row in Fig. 1(b). It should be noted the R pixels in
the 1 m 1 m panels are not included because they are not pure
pixels due to that fact that the spatial resolution of the R pixels
in the 1 m 1 m panels is 1 m smaller than the spatial resolution
(ground sampling distance), 1.56 m, in which case the size of a
1 m 1 m panel is /pixel and can be consid-
ered as a subpixel panel. These panel signatures along with the
R pixels in the 3 m 3 m and 2 m 2 m panels were used as
required prior target knowledge for the following comparative
studies.

A. Computer Simulations

In this section, a synthetic image similar to the real scene
in Fig. 1(a) was simulated. It has size of 64 64 pixel vectors
and 20 panels with various sizes arranged in a 5 4 matrix and
located at the center of the scene shown in Fig. 2(a).

The five panel signatures in Fig. 1(c) were used to sim-
ulate these 20 panels. For row , the panel signature
was used to simulate four panels with a 2 2-pixel panel,
p p p p in the first column, a 1 2-pixel

panel, p p in the second column, a one-pixel panel,
p in the third column and a one-pixel panel, p in the fourth
column, respectively. While the pixels in all the 2 2-pixel
panels and the 1 2-pixel panels are pure pixels simulated by
100% panel signature , the panels, p and p are subpixel
panels simulated by (50% , 50% ) and (25% ,75% )
where the background signature, was a grass signature
obtained by averaging all the pixels in the area A marked in
Fig. 2(c). Fig. 2(b) is a synthetic image simulated by implanting
the 20 panels in Fig. 2(a) in the grass signature -generated
image background in Fig. 2(c). Fig. 2(c) was obtained by
adding a Gaussian noise to the synthetic image in Fig. 2(b)
with signal-to-noise ratio 20 : 1 defined in [8]. This synthetic
image was particularly simulated to mimic the image scene in
Fig. 1(a) for comparative analysis. Since full constraints, i.e.,
ASC+ANC on abundance fractions are of major interest in this
paper, the algorithms to be evaluated for comparative analysis
were weighted fully abundance constrained LSMA which
are MD-weighted AC-LSMA, LCMV-weighted AC-LSMA,

-weighted AC-LSMA, and OSP-weighted AC-LSMA
plus the FCLS which is the unweighted AC-LSMA (i.e.,

, unweighting AC-LSMA) and also turns out to be
the SSP-weighted AC-LSMA (i.e., , unweighting
AC-LSMA).

Example 1 (With Complete Knowledge of Panel Signatures
and Background Signature): This example assumes that the
complete knowledge of the five panel signatures in Fig. 1(c)
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Fig. 3. Abundance fraction results of 20 panels estimated by the supervised
five AC-LSMA methods and unconstrained LSOSP.

and the background signature was given a priori. Fig. 3
shows the abundance fractions of the 20 panels in Fig. 2(c)
estimated by the six methods, (a) MD-weighted AC-LSMA,
(b) LCMV-weighted AC-LSMA, (c) -weighted AC-LSMA,
(d) OSP-weighted AC-LSMA, (e) FCLS, and (f) unconstrained
LSOSP, respectively, with additional results produced by the un-
constrained LSOSP [30] included in Fig. 3 for comparison.

As shown in Fig. 3, all the weighted AL-LSMA methods
produced very comparable results and performed significantly
better than did the unconstrained LSOSP. It should be noted
that the -weighted AC-LSMA requires a training set to im-
plement. For our experiments, the training samples were se-
lected and consisted of the pixels in the 2 2-pixel panels in the
first column of five rows in Fig. 2(a) and all background pixels
in area A marked in Fig. 2(c). Also, when the OSP-weighted
AC-LSMA was implemented, the threshold chosen empirically
for the spectral angle mapper (SAM) to find interferers was set
to 0.03 which resulted in 18 interferers. Fig. 4 graphically plots
the abundance fractions of the 20 panels obtained for images
in Fig. 3 for quantification analysis where the -weighted
AC-LSMA labeled by (c) was the best in producing accurate
abundance fractions in most of the 20 panels. This was due to
the fact that the -weighted AC-LSMA used training sam-
ples to perform classification based on Fisher’s ratio.

According to Fig. 4, both the MD-weighted AC-LSMA and
LCMV-weighted AC-LSMA labeled by (a) and (b) performed
very similarly. Surprisingly, the OSP-weighted AL-LSMA
labeled by (d) did not perform as well as did the MD-weighted
AC-LSMA and LCMV-weighted AC-LSMA. On the other

hand, the FCLS labeled by (e) seemed to perform very well
and slightly better than the MD-weighted AC-LSMA and
LCMV-weighted AC-LSMA in quantification of full panel
pixels, but not for subpixel panels.

1) Example 2 (With No Prior Knowledge About Panel Sig-
natures and Background Signature): Unlike Example 1 no
prior knowledge about the synthetic image in Fig. 2(c) was
assumed. In particular, there was no knowledge about how
many signatures that would represent the image scene. In this
case, we ought to find a set of these signatures directly from
the data in an unsupervised manner. First of all, we need to
determine the number of signatures required to be generated
for the scene. Recently, Chang and Du developed a concept,
referred to as virtual dimensionality (VD) in [1] and [31] which
provided a good estimate of the number of spectrally distinct
signatures, in hypeprspectral image data where two proposed
approaches, called Harsanyi–Farrand–Chang (HFC) method
and noise-whitened HFC (NWHFC) method were used for this
example to determine the . Table I tabulates the VD estimated
by the HFC and NWHFC methods in accordance with various
false alarm probabilities indicated by . According to Table I,
a good estimate for the was set to 6.

In order to produce a set of six desired signatures for the
synthetic scene, the N-finder algorithm (N-FINDR) developed
by Winter in [32] was used to find, six endmembers,
shown in Fig. 5 that include five panel pixels specified by all
the five different panel signatures, and one background
pixel.

The spectral signatures of these six pixels were then used to
form the desired signature matrix . Additionally, according
to [27] the performance can be improved by eliminating inter-
ference prior to classification. In this case, the automatic target
generation process (ATGP) developed for the automatic target
detection and classification algorithm (ATDCA) in [1] and [29]
was applied to find all potential interferers. The ATGP was
terminated when a warning sign of matrix singularity occurred.
Since some of the ATGP-generated target pixels may also
happen to be very similar or identical to the N-FINDR-gener-
ated endmembers, these ATGP-generated target pixels could
not be considered as interferers. So, when the OSP-weighted
AC-LSMA was implemented, the unwanted signature matrix

would be made up of all the ATGP-generated target pixels
by excluding those that also happened to be N-FINDR gen-
erated endmembers. In this case, the SAM was set to 0.04
which was used to determine if an ATGP-target pixel was
also an endmember. As a result, 22 interferers were found for
OSP annihilation. On the other hand, when the -weighted
AC-LSMA was implemented, a set of training samples was re-
quired. In this case, the SAM was empirically set to 0.04 to find
pixels that were similar to each of the six endmembers,
to form a set of training data for each of the classes, .
Then the means of each of the classes were further calculated,

to form the desired signature matrix . With the
knowledge provided by the and , the six methods,
MD-weighted AC-LSMA, LCMV-weighted AC-LSMA,

-weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS,
and unconstrained LSOSP labeled by (a)–(f) were implemented
for comparison. Fig. 6 shows their corresponding abundance
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Fig. 4. Graphical representation of abundance fractions of panel pixels in Fig. 2(a) for visual assessment. (a) Thirty pure panel pixels in first and second columns.
(b) Fifty percent subpixel panels in third column. (c) Twenty–five percent subpixel panels in fourth column.

TABLE I
VD ESTIMATED BY THE HFC AND NWHFC METHODS WITH

VARIOUS FALSE ALARM PROBABILITIES P

Fig. 5. Six endmembers produced by the N-FINDR.

fraction results of the 20 panels in Fig. 2(c) with full abun-
dance constraints (i.e., ASC ANC) respectively where the

-weighted AC-LSMA clearly outperformed all other five
methods and the unconstrained LSOSP was the worst.

Fig. 7 graphically plots the abundance fractions of the 20
panels obtained by the six methods (a)–(f) in Fig. 6 for quan-
tification analysis where the -weighted AC-LSMA labeled
by (c) was the only one produced most accurate abundance frac-
tions of all 20 panels and performed very comparably to its su-
pervised counterpart in Example 1. Unfortunately, it was not the
case for all other five methods specified by (a)–(b) and (d)–(f)
which apparently could not compete against their supervised
counterparts in Example 1.

Fig. 6. Abundance fraction results of 20 panels estimated by unsupervised five
AC-LSMA methods and unconstrained LSOSP.

B. Real Image Experiments

In this section, the 15-panel HYDICE image scene in Fig. 1
was used for experiments. One major difference between the
real HYDICE image scene in Fig. 1 and the simulated syn-
thetic image in Fig. 2(c) is that very little knowledge of the
image background in Fig. 1 was known compared to the image
background in Fig. 2(b) which was simulated by complete
knowledge. As we may expect, an AC-LSMA classifier may
not perform as well as it did for the synthetic image if the image
background in Fig. 1 is not well characterized. In order to
demonstrate this fact, two scenarios were used to characterize
the image background as follows. Additionally, we also as-
sumed that the knowledge of the nine R pixels in the 3 m 3 m
and five R pixels in 2 m 2 m panels in Fig. 1(b) was available
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Fig. 7. Graphical representation of abundance fractions of panel pixels in Fig. 2(a) for visual assessment. (a) Thirty pure panel pixels in first and second columns.
(b) Fifty percent subpixel panels in third column. (c) Twenty-five percent subpixel panels in fourth column.

Fig. 8. Fifteen-panel abundance fraction results of the supervised five
AC-LSMA methods and unconstrained LSOSP.

a priori. So, the panel signatures in Fig. 1(c) and 14 R pixels in
both the 3 m 3 m and 2 m 2 m panels were considered to
be prior knowledge.

By viewing the scene in Fig. 1(a), a large portion of the
image background is made up of 1/4 of a forest on the left and
3/4 of a large grass field. Using this supervised knowledge, we
conducted two experiments to represent the image background.
One is to use the area A to characterize the image background.
In this case, a single background signature was used for
experiments, and the training samples used for -weighted
AC-LSMA were all the pixels in the area A for one background
class as we did in Example 1. Another scenario was to use
ATGP to produce necessary background knowledge in an
unsupervised manner.

Example 3 (Scenario 1: Single Background Signature): Like
Example 1, the signature matrix M used for experiments was
formed by . The 14 R pixels in both
the 3 m 3 m and 2 m 2 m panels and pixels in the area A
provided training samples for the -weighted AC-LSMA.
The six methods labeled by the five AC-LSMA methods,
MD-weighted AC-LSMA, LCMV-weighted AC-LSMA,

-weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS,
and unconstrained LSOSP were evaluated for comparative
analysis. Fig. 8 shows their respective abundance fraction
results of the 15 panels in Fig. 1 with full abundance con-
straints (i.e., ASC+ANC), respectively. By visual inspection,
once again, the unconstrained LSOSP was the worst. The
MD-weighted AC-LSMA and LCMV-weighted AC-LSMA
performed slightly better than -weighted AC-LSMA and
also seemed among the best.

For visual assessment, Fig. 9 further graphically plots
the abundance fractions of the 14 pure R panel pixels
(i.e., p p p p p p p p p p p
p p p ) in Fig. 9(a) and abundance fractions of the five
R panel subpixels (i.e., p p p p p ) in Fig. 9(b) that
were obtained by the six method labeled by (a)–(f) in Fig. 6. The
quantification results show that the -weighted AC-LSMA
specified by (c) was the best in the sense that it produced the
most accurate abundance fractions of the 19 panel pixels. Fig. 9
demonstrated that visual inspection of Fig. 8 may not provide
reliable quantification estimates of abundance fractions.

Example 4 (Scenario 2: Unsupervised Background Knowl-
edge): As demonstrated in Example 3, due to the fact that a
single background signature could not completely characterize
the image background, the AC-LSMA performance was not so
good as it did for the synthetic image in Example 1. In order
to improve its performance, we need to find an appropriate set
of background pixels that can well represent the image back-
ground. According to [31], the number of spectrally distinct sig-
natures in the scene in Fig. 1(a) was estimated by the VD as 18
via NWHFC. This implies that we need at least 13 distinct sig-
natures to characterize the image background in addition to the
five panel signatures in Fig. 1(c). In this case, the N-FINDR al-
gorithm was applied to find the 18 endmembers, shown
in Fig. 10 to form the desired signature matrix where the
found pixels labeled by numbers 3, 5, 9, 15, and 17 in Fig. 7
represented five panel signatures in five different rows in Fig. 1.
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Fig. 9. Graphical representation of abundance fractions of 19 R panel pixels
in Fig. 1(b) for visual assessment. (a) Fourteen R pure panel pixels in first and
second columns. (b) Five R subpixel panels in third column.

Fig. 10. Eighteen endmembers produced by the N-FINDR.

Fig. 11. Unsupervised 15-panel abundance fraction results of five AC-LSMA
methods and unconstrained LSOSP.

In analogy with Example 2, the ATGP was implemented
to find potential interferers, and the ATGP was implemented
until a warning sign of matrix singularity occurred. In our
experiments, there were 169 target pixels. Since some of
such ATGP-generated target pixels may also happen to be
very similar or identical to the 18 endmembers generated
by the N-FINDR, these ATGP-generated target pixels could
not be considered as interferers. So, when the OSP-weighted
AC-LSMA was implemented, the unwanted signature matrix

would be made up of all the ATGP-generated target pixels
except those that also happened to be N-FINDR-generated
endmembers. In this case, the SAM was set to 0.06 to deter-
mine if an ATGP target pixel is also an endmember. On the
other hand, when the -weighted AC-LSMA was imple-
mented, a set of training samples was required. In this case,
the SAM was empirically set to 0.025 to find pixels that were
similar to each of the 18 endmembers, to form a set
of training data for each of the 18 classes, where
the total number of found training samples was 375. Then the
mean of training samples in each of the 18 classes were further
calculated, to form the desired signature matrix .
Six methods, AC-LSMA methods, MD-weighted AC-LSMA,
LCMV-weighted AC-LSMA, -weighted AC-LSMA,
OSP-weighted AC-LSMA, FCLS, and unconstrained LSOSP
labeled by (a)–(f) were evaluated for comparative analysis.

Fig. 11 shows their respective abundance fraction results of
the 15 panels in Fig. 1 with full abundance constraints (i.e.,
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Fig. 12. Graphical representation of abundance fractions of 19 R panel pixels
in Fig. 1(b) for visual assessment. (a) Fourteen R pure panel pixels in first and
second columns. (b) Five R panel subpixels in third column.

ASC+ANC) where the -weighted AC-LSMA was the best
compared to the unconstrained LSOSP which was the worst.

Unlike Example 3, which only used one background
signature, the use of additional 12 background signatures
to find training samples made a significant difference for
the -weighted AC-LSMA. As shown in Fig. 11, the

-weighted AC-LSMA labeled by (c) clearly outperformed
all other five AC-LSMA methods. Interestingly, the FCLS
seemed to perform well in detection of 19 R panel pixels visu-
ally shown in Fig. 11 at the expense of many falsely alarmed
pixels. However, their quantitative results plotted in Fig. 12
show otherwise where Fig. 12(a) and (b) plots quantified
abundance fractions of 14 R pure panel pixels and five R panel
subpixels in Fig. 11, respectively, where the MD-weighted
AC-LSMA and LCMV-weighted AC-LSMA labeled by (a)–(b)
estimated abundance fractions more accurately than the FCLS
for most of panel pixels. Nevertheless, the -weighted
AC-LSMA by (c) was still the best shown by Fig. 12 in terms
of quantifying abundance fractions of panel pixels.

A remark on the threshold used for the SAM is noteworthy.
This threshold was selected empirically for the SAM in our ex-
periments. It was based on our experience working on labo-
ratory and real data. Since laboratory data are generally used
for simulations, its tolerance to the threshold is more robust

TABLE II
SUMMARY OF UNWEIGHTED AC-LSMA (FCLS)

AND FOUR WEIGHTED AC-LSMA METHODS

than real data. So, the threshold selected for simulations can be
higher that that chosen for real data. Nevertheless, the interval of
[0.03, 0.05] for simulated data and the interval of [0.02, 0.03] for
real data seem reasonable ranges from which a threshold can be
selected. As for the threshold used by the SAM to find undesired
signatures for the OSP-weighted LSMA, it was set to 0.06 which
is a little bit higher than the thresholds used to find endmembers.
This was because undesired signatures were not necessarily as
subtle as endmembers. Nonetheless, the selection threshold is
generally sensitive to spectral characteristics of signatures to be
analyzed. It is advised that several trials of selecting different
values in this range may be worthwhile.

As a concluding comment, despite the fact that the
-weighted AC-LSMA was shown to be the best among

the six evaluated methods, it requires a good set of training
samples to produce the within-class matrix . If the sample
pool is not well representative like Example 3, it will not
perform effectively. On the contrary, if the training samples
are selected judiciously as the way was done in Example 4,
the -weighted AC-LSMA will be one of best AC-LSMA
methods. Finally, the threshold values used in our experiments
for SAM were not optimal, but rather empirical selections.

V. CONCLUSION

Abundance-constrained linear spectral mixture analysis
using the least squares error as a criterion has been studied
extensively in the literature. It is generally referred to as least
squares AC-LSMA. However, including a weighting matrix in
the least squares AC-LSMA to account for significance of indi-
vidual bands has not been explored in the past years. This paper
investigates weighted least squares AC-LSMA and further de-
velops three approaches to weighted least squares AC-LSMA,
each of which can be obtained by the commonly used criteria,
Mahalanobis distance or Gaussian maximum-likelihood esti-
mation, Fisher’s ratio and orthogonal subspace projection. In
particular, the least squares AC-LSMA can be considered as an
unweighted AC-LSMA. The experimental results demonstrate
that weighted AC-LSMA generally performs better than the
unweighted AC-LSMA.

As a concluding remark, we summarize the advantages and
disadvantages of the unweighted AC-LSMA (i.e., FCLS) along
with all the four weighted AC-LSMA methods considered in
this paper in Table II.
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