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Abstract. A widely used approach to hyperspectral image classification
is to model a mixed-pixel vector as a linear superposition of substances
resident in a pixel with additive Gaussian noise. Using this linear mixture
model many image processing techniques can be applied, such as linear
unmixing or orthogonal subspace projection. However, a third source not
considered in this model, called interference (clutter or structured noise),
may sometimes give rise to more serious signal deterioration than the
additive noise. We address this issue by introducing the interference into
the linear mixture model. Including interference in the model enables us
to treat the interference as another undesired source, like a passive
jammer, so that it can be eliminated prior to detection and classification.
This is particularly useful for hyperspectral images, which tend to have a
high SNR but a low signal-to-interference ratio with the interference dif-
ficult to identify. To find and reject interference, we propose an unsuper-
vised vector quantization-based interference rejection (UIR) approach in
conjunction with either an orthogonal subspace projection (OSP) or an
oblique subspace projection (OBSP) to simultaneously project a pixel
into signature space as well as to null out interference. Since there is no
prior knowledge about the interference, the UIR is implemented in an
unsupervised manner to generate the desired interference clusters so
that they can be annihilated by the OSP or OBSP. The proposed ap-
proach is shown by evaluation with Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) data to exhibit considerable improvement
in comparison to linear unmixing or the OSP where interference is not
considered. © 1998 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(98)00103-2]

Subject terms: classification; detection; hyperspectral image; interference rejec-
tion; oblique subspace projection; orthogonal subspace projection; vector quanti-
zation.
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1 Introduction

Recently, remote sensing has advanced to the point whe
new generation of sensors, called imaging spectrome
has been developed to fine-tune spectral resolution so
materials with very similar spectra, which can not be
solved by multispectral imagers such as the multispec
scanner~MSS! and Thematic Mapper~TM!, can be dis-
criminated and quantified. Examples of such sensors
clude the airborne visible/infrared imaging spectrome
~AVIRIS! developed by the National Aeronautics a
Space Administration~NASA! Jet Propulsion Laboratory
and the Hyperspectral Digital Imagery Collection Expe
ment ~HYDICE! sensor developed by Naval Resear
Laboratory. The concept of developing such hig
resolution spectral sensors, typically with 20 to 40-n
spectral resolution, is to take advantage of contiguous,
herently registered spectral bands to capture diagno
narrow-band spectral features present in the pixels so
their corresponding materials can be uniquely identified1
Opt. Eng. 37(3) 735–743 (March 1998) 0091-3286/98/$10.00
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Spectral unmixing has been widely used in the rem
sensing community to quantify and identify the materia
resident in multispectral and hyperspectral images.2 A re-
cent approach, orthogonal subspace projection3 ~OSP!, was
also proposed for hyperspectral image classification
has shown promise in HYDICE data exploitation. The O
has been further extended and generalized in vari
contexts.4–6 All these approaches are based on the fact t
an image pixel is linearly mixed by the materials within th
pixel and corrupted by an additive Gaussian noise. By t
ing advantage of this linear mixture model, many existi
image processing techniques that cannot be directly app
to multispectral/hyperspectral image analysis can now
adapted and modified to fit different applications in remo
sensing. However, the assumed linear mixture model
volves only signal and noise sources with interference g
erally discarded or included in noise/signals. Since hyp
spectral sensors use as many as 200 contiguous ban
capture the subtle discrepancies between spectral si
tures, it may also extract many unwanted signatures suc
clutter and background. These unwanted signatures ca
735© 1998 Society of Photo-Optical Instrumentation Engineers
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Chang, Sun, and Althouse: Unsupervised interference rejection approach . . .
viewed as interferers and must be eliminated before d
processing. Consequently, this presents another mi
problem and further complicates the situation. It has b
noted in HYDICE data that hyperspectral images tend
have a high SNR but a low signal-to-interference ratio.
a result, including interference as another distinct sourc
the linear mixture model can be beneficial. In this paper,
address this issue by modeling interference as a sep
third source in addition to target signatures and noise.
advantage of introducing interference into the model is t
it can separate the unwanted interference from signature
interest so that they can be removed early. To do so
unsupervised vector quantization~VQ!-based interference
rejection ~UIR! approach is proposed in conjunction wi
either an OSP~Ref. 3! or an oblique subspace projectio6

~OBSP!. The UIR is a clustering and interference gene
tion process which produces a desired set of interfere
signatures that can be annihilated or suppressed prio
detection and classification so as to achieve signal enha
ment. Due to the fact that no prior knowledge about
interference is available, the UIR employs unsupervis
VQ ~Ref. 5! to generate interference clusters, each of wh
represents a certain type of interference. These cluster
then annihilated by either the OSP or the OBSP. The nu
ber of interference clusters required for the UIR is det
mined by rank curves that are generated based on two
ferent criteria, orthogonal projection divergence for O
and eigenvalues for OBSP. It is shown through HYDIC
data that the UIR approach is a significant improvem
over the OSP or OBSP approaches with no interfere
considered in the linear mixture model.

This paper is organized as follows. Section 2 formula
the hyperspectral image classification as a linear mix
problem and Sec. 3 briefly reviews subspace projection
proaches including OSP and OBSP. Section 4 describ
VQ-based clustering process. Section 5 presents the c
plete implementation of a UIR approach, where the O
and OBSP classifiers are used for target classification. S
tion 6 conducts experiments using HYDICE data to de
onstrate the advantage of the UIR. Finally, a conclusion
given in Sec. 7.

2 Linear Mixture Model

Linear spectral mixing is a widely used approach in
motely sensed imagery to determine and quantify mu
components. Since every pixel is comprised of discr
spectral bands, it can be represented by a column ve
whose components are pixels in these individual spec
bands. More precisely, suppose thatl is the number of
spectral bands. Letr i be anl 31 column vector and denot
the i ’th pixel in a hyperspectral image where the bold fa
is used for vectors. So, each pixel is represented by a p
vector with dimensionalityl and a hyperspectral image ca
be viewed as an image cube. Assume thatM is an l 3p
signature matrix denoted by (m1m2•••mp), where mj

is an l 31 column vector, which represents thej ’th signa-
ture ~substance! resident in the pixelr i andp is the number
of these signatures. These signatures are gene
target signatures of interest to be classified. Letai
736 Optical Engineering, Vol. 37 No. 3, March 1998
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5(a i1a i2•••a ip)T be ap31 abundance column vector a
sociated withr i , wherea i j denotes the abundance conce
tration of thej ’th signature in the pixelr i .

A widely used linear mixture model in linear unmixin
assumes that the substances present in a pixel vecto
linearly superpositioned. Statistically, it can be represen
by a linear regression model as follows:

r i5Ma i1ni , ~1!

where ni is an l 31 column vector representing additiv
white Gaussian noise with zero mean and variances2I and
I is the l 3 l identity matrix.

3 Subspace Projection Approaches to
Hyperspectral Image Classification

A classical approach to solving Eq.~1! is to find a matrix
inverting Eq.~1! so that the multicomponents mixed in th
pixel vectorr i can be identified separately. This procedu
is generally referred to as linear unmixing. Since the nu
ber of bandsl is usually much greater than that of sign
turesp in hyperspectral images, Eq.~1! is overdetermined
and not full rank. Simply inverting the signature matrix w
result in singularities. In that case, singular value decom
sition ~SVD! could be used to proceed.7 In a recent study,3

an OSP approach was shown to be a promising alterna
and has proved to be effective in AVIRIS and HYDIC
data exploitation. In this section, we first review the OS
technique and then another subspace projection,6 called
OBSP.

3.1 OSP

First, we rewrite the model of Eq.~1! as

r5dap1Ug1n, ~2!

where the subscripti is suppressed,U5(m1m2•••mp21) is
the undesired spectral signature matrix comprising a se
the firstp21 signatures, andd5mp is a desired signature
Here, we assume without loss of generality that the l
signature is the desired signatured to be classified. Note
that Eq.~2! can be extended straightforwardly to more th
one desired signature. The reason of separatingU from M
is to enable us to design an orthogonal subspace proje
to annihilateU from an observed pixel prior to classifica
tion. One such projector is an undesired signature annih
tor, denoted byPU

' , given by

PU
'5I2UU], ~3!

whereU]5(UTU)21UT is the pseudoinverse ofU and the
notationU

' in PU
' indicates that the projectorPU

' maps the
observed pixelr into the space^U&', the orthogonal
complement of̂ U& ~Ref. 3!.

Now, applyingPU
' to the model of Eq.~2! results in a

new spectral signature model

PU
'r5PU

'dap1PU
'n, ~4!
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Chang, Sun, and Althouse: Unsupervised interference rejection approach . . .
where the undesired signatures inU have been eliminated
and the original noise has been suppressed toPU

'n.
Equation~4! represents a standard signal detection pr

lem. If the optimal criterion for the signal detection pro
lem specified by Eq.~4! is chosen to maximize the SNR
given by

SNR5
~xTPU

'd!ap
2~dTPU

'x!

xTPU
'E~nnT!PU

'x
, ~5!

over x, then the maximum SNR of Eq.~5! can be obtained
by a matched filter, denoted byMd using x5kd with a
constantk and the matched signald.

Based on the approach outlined by Eqs.~4! and ~5!, a
mixed pixel classification can be carried out by a two-sta
process, an undesired signature annihilatorPU

' followed by
a matched filter,Md . More precisely, if we want to classify
a desired signature, sayd in a mixed pixel based on th
model of Eq.~1!, we first applyPU

' to the model of Eq.~2!
to eliminateU, then we use the matched filterMd to extract
d from the signal detection model of Eq.~4!. The operator
couplingPU

' with Md is called an orthogonal subspace cla
sifier, POSP derived in Ref. 3 and denoted by

POSP5MdPU
'5dTPU

' . ~6!

3.2 Linear Spectral Signal-Interference Mixture
Model

According to experiments using HYDICE data, it wa
found that hyperspectral images generally had a high S
but a low signal-to-interference ratio. This means that
interference sometimes presents more serious contribu
than noise to performance degradation. However, from
model of Eq.~1!, the interference is either assumed to
discarded or included in noise or signals. In the latter ca
if the interference is included in the noise, it cannot
additive and independent as assumed in the model Eq.~1!.
If the interference is included in signals, it must be spe
fied. On the other hand, if it is ignored, the interferen
serves as a passive jammer. Therefore, it must be con
ered separately and further be removed prior to detec
and classification. In either case, the model of Eq.~1! may
not be adequate for hyperspectral images. To take car
this problem, we introduce the interference as a third se
rate source in the model of Eq.~1!. In this formulation, the
signatures inM are only those required to be classified a
the interference will be treated separately as unknown
unwanted signatures in the image. In addition, the nois
additive Gaussian noise independent of signature and in
ference. Such a model is called a linear spectral signat
interference mixture model in this paper and can be
scribed as follows.

Let S5(s1s2 ...sq)T be the interference matrix wheresk

is thek’th interference signature andfi5(f1f2 ...fq)T is
the corresponding abundance vector of the interference
natures inS. A linear spectral signature-interference mi
ture model forr i modified from the model of Eq.~1! can be
derived by

r i5Mai1Sfi1ni . ~7!
n
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3.3 OBSP

The OBSP was developed based on a concept of enhan
signals while nulling interference. Several applications
the OBSP were discussed and studied in array proces
and communications.8 A new application of the OBSP to
hyperspectral image classification was recently reporte6

which can be viewed as ana posterioriOSP method. The
idea is to take advantage of the ability of the OBSP
signal enhancement, noise suppression, and interferenc
nihilation. By relying on Eq.~7! we can develop a metho
that uses the OBSP as an interference rejecter to elimi
interference signatures inS before target detection.

Let ^M& and^S& be the spaces linearly spanned byM and
S, respectively. The OBSP is applied to hyperspectral
age pixels by specifyinĝM& as its range space and^S& as
its null space. As a resultS will be eliminated via the
OBSP while the pixel will be projected into the signatu
spaceM. From Ref. 7, a desired OBSP-based interferen
rejecter can be derived by

EMS5M~MTPS
'M!21MTPS

' , ~8!

where the first and second subscripts inEMS denote the
range spaceM and the null spaceS respectively and
EMSM5M andEMSS50. ThePS

' in Eq. ~8! is referred to
as the interference annihilator and is defined in the sa
fashion as Eq.~3! by

PS
'5I2SS]5I2PS , ~9!

and

PS5SS], ~10!

whereS]5(STS)21ST is the pseudoinverse ofS.

4 VQ

In the model of Eq.~7!, the interference matrixS is as-
sumed to be known. Unfortunately, a description ofS is
generally not available in practice and must be obtain
from the data. In this section, an unsupervised VQ-ba
clustering process5 is proposed to automatically generate
desired interference matrixS for the model of Eq.~7!. The
only assumption made in this approach is that the num
of interference signatures must be givena priori. However,
this number can be determined by rank curves as dem
strated in experiments. The VQ procedure described ne
based on the well-known Linde-Buzo-Gray~LBG!
algorithm9 and the criterion for optimality to be used is th
mean squared error~MSE!.

4.1 VQ

Assuming thatq is the number of codewords to be gene
ated for a codebook, the VQ algorithm is as follows

1. Initialization: Code15$xj
1% j 51

q , where $xj
1% j 51

q is a
set ofq initial clusters generated by an algorithm.10

2. Iterative procedure for reclustering at stepi .1 to
generate thei ’th code book Codei5$xj

i % j 51
q :

xj
i 5E~XuXPRj

i 21! ~11!
737Optical Engineering, Vol. 37 No. 3, March 1998
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Chang, Sun, and Althouse: Unsupervised interference rejection approach . . .
whereRj
i 21 is the j ’th cluster produced by the cod

book at stepi 21, Codei 215$xj
i 21% j 51

q .

3. Stopping rule: The reclustering will be terminate
when no more data vectors are shuffled from o
cluster to another. More specifically, as the algorith
iterates, the MSE between data vectors and th
nearest cluster centers will be reduced until there
no change in the codebook. As a result, either
MSEs in two consecutive iterations remain u
changed or their difference is below a prescrib
threshold. In this case, no data vector will b
shuffled.

5 UIR Approaches

After a desired set ofq interference clusters is generated
the VQ algorithm, two approaches can be used to annih
theseq interference signatures. One is the OSP-based
supervised interference rejection~OSPUIR! approach,
which treats the interference signatures as part of undes
signatures. In this case, theU described in Eq.~2! is aug-
mented by including the interference matrixS in U. A sec-
ond approach, called oblique subspace-based unsuper
interference rejection~OBSPUIR!, uses the OBSPEMS in
Eq. ~8! to annihilate theseq interference signatures. Afte
interference elimination, the signature matrixM is further
decomposed into a target signature, denoted byd and un-
desired signature vectors inU as described in the model o
Eq. ~2!. Then a second OBSP operator defined byEdU

5 d(dTPU
'd)21dTPU

' via Eq. ~8! is applied again to extrac
the target signature. Thus, in the OBSP approach, the
OBSP,EMS , is served as an interference annihilator a
the second OBSP,EdU , is used as a target classifier. Th
major difference between OSPUIR and OBSPUIR is t
the former is ana priori approach, which assumes th
abundance of all signatures in the model of Eq.~7! is
known a priori, while the latter is considered to be a
a posterioriapproach, where the abundance of signature
M andS must be estimated from the data. As shown in R
6, the OSP and OBSP classifiers detected different fract
of abundance for target signatures despite the fact that
both produced the same classification feature vector. H
ever, for the OSPUIR to generate desired interfere
signatures for annihilation, we apply an opera
PM

'5I2MM], which is defined in a similar fashion to Eq
~3! to project all image pixels into the orthogonal comp
ment space of the signature space generated byM. As a
result4 of PM

' , the a priori OSPUIR becomesa posteriori
classifier as is the OBSPUIR classifier and both the O
based and OBSP-based classifiers will produce nearly
same results. This fact will be demonstrated by HYDIC
data in Sec. 6. Note that the interference considered in
paper is not limited to background interference, which u
ally can be determined by inspection, e.g., grass, trees
also includes interferers that can be difficult to ident
from the data.

In contrast to the OSPUIR, the OBSPUIR is carried o
in a two stage process. The first stage is to design an in
ference annihilator and then develop an OBSP-based c
sifier in the second stage to eliminate the undesired sig
738 Optical Engineering, Vol. 37 No. 3, March 1998
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tures. The OSPUIR and OBSPUIR are summarized
follows.

5.1 OSPUIR

1. Initial condition: Select a set of target signaturesM.

2. Find the orthogonal complement space ofM. Apply
PM

'5I2MM]5I2M(MTM)21MT via Eq. ~3! to all
image pixel vectorsr .

3. Find interference signatures using VQ. Use VQ
generateq clusters with thej ’th center or centroid
denoted bysj . These centers constitute a set ofq
interference signatures$s1 ,s2 ,s3 ,...,sq%. Let S
5(s1s2 ...sq).

4. Apply the OSP classifier given by Eq.~6! with U
5(m1m2 ...mp21S) to extractd.

The complete execution of OSPUIR can be expressed
terms of the following mathematical operations

POSPUIR5POSP~VQ!PM
'5dTPU

'~VQ!PM
' , ~12!

whereM5(m1m2 ...mp21d) andU5(m1m2 ...mp21S).

5.2 OBSPUIR

1. Initial condition: Select a set of target signaturesM.

2. Find the orthogonal complement space ofM. Apply
PM

' via Eq. ~9! to all image pixel vectorsr .

3. Find interference classes using VQ. Use VQ to g
erateq clusters with thej ’th center or centroid de-
noted bysj . These centers constitute a set ofq inter-
ference signatures $s1 ,s2 ,s3 ,...,sq%. Let S
5(s1s2 ...sq).

4. Eliminate the interference classes using the inter
ence rejecterEMS . Now apply an OBSP operato
EMS given by Eq.~8! with M5(m1m2 ...mp21d).

5. Null the undesired signatures in U
5(m1m2 ...mp21) and extract the target using th
OBSP classifierEdU .

The OBSPUIR is carried out by two oblique subspace p
jections in conjunction with a VQ-based clustering proce
described as follows.

POBSPUIR5EdUEMS~VQ!PM
' . ~13!

Note that the OBSP used in step 5 of the OBSPUIR can
replaced by the OSP given by Eq.~6! to achieve the nearly
the same classification results. This is because it w
shown4,6 that when the OBSP and the OSP are applied
the model of Eq.~2!, they both produce the same classi
cation feature vectordTPU

' with a constant difference in
their magnitudes given by (dTPU

'd)21. This constant alters
only the fraction of abundance detected in the classifi
pixels but does not affect the classification performance
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6 Experiments Using HYDICE Data

In this section, we describe experiments using hypersp
tral images that illustrate the advantages of using the lin
signature-interference spectral mixture model@Eq. ~7!#.

The HYDICE data used in the experiments are an im
scene taken in Maryland in August 1995 using 210 ba
of 10-nm spectral resolution with the coverage 0.4 to
mm and the average ground sampling distance~GSD! rang-
ing from 1 to 4 m. However, for illustrative purposes w
selected an image scene collected by a low-altitude fl
and the GSD is approximately 0.78 m. A 1283128 subim-
age was cropped from this image and is shown in Fig
This figure shows a single-band image scene~band 30!
with tree lines along the left one eighth and a grass field
the right seven eighths. This grass field also contains a r
running along the right edge of the image. Four vehic
along the tree line are vertically aligned. The top three
treaded vehicles and the bottom one is a wheeled veh
The size of treaded vehicles is approximately 438 m and
the size of the wheeled vehicle is about 336 m. There is
one object located near the center of the scene. The ex
ment is designed to demonstrate a situation when only
tial knowledge of the signatures is available.

Suppose that three signatures are of interest and
will serve as the targets to be classified: the three trea
vehicles, the wheeled vehicle, and the object. There
some partial knowledge about the background, which
help to determine background interference signatures.
the trees, the grass, and the road be such background
natures. Let@the first treaded vehicle signature, the whee
vehicle signature, the object signature# be the target matrix,
denoted byT and@tree signature, grass signature, road s
nature# be the background matrix denoted byB. The first
experiment was conducted to see howB affects the classi-
fication performance. The images in the first, second

Fig. 1 HYDICE image scene.
-
r

d

.

i-
-

y
d

t
g-

third columns of Fig. 2 were obtained by the OSP withM
5T, the OSP withM5TøB and the OBSP usingEMS
with M5TøB, respectively, where one of the target si
natures was designated as the desired signatured and U
consisted of the other two undesired target signatures.
can be seen, the classification was greatly improved by
cluding the background matrixB. In addition, the figure
also shows that both OSP and OBSP produced nearly
same results. It is interesting to note that in Fig. 2, the th
treaded vehicle was missed when the treaded vehicles w
classified. Instead, it was picked up in the wheeled vehi
classification. This occurrence is not surprising because
spectrum of the third treaded vehicle is very similar to th
of the wheeled vehicles as shown in Fig. 3. As a resu
classifying one will detect the other.

In the HYDICE image scene, we could obtain by inspe
tion some partial interference from the data such as ba
ground signatures. However, there are many other type
unknown interference signatures, which deteriorate
classification performance. To identify possible interfe
ence signatures including unobservable ones, an unsu
vised VQ-based clustering process was used to genera
class of clusters that is used to form the interference ma
S. The images in the first column of Fig. 4 were obtain
by the OSPUIR with 10 interference signatures genera

Fig. 2 First column is the results produced by the OSP with M5T,
the second column is the results produced by the OSP with M
5TøB, and the third column is the results produced by the OBSP
with M5TøB.
739Optical Engineering, Vol. 37 No. 3, March 1998
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Chang, Sun, and Althouse: Unsupervised interference rejection approach . . .
by VQ to form the interference matrixS as part of the
signature matrixM ~i.e., M5TøBøS!. The second col-
umn of Fig. 4 shows the images obtained by OBSPU
with M5TøB as the signature matrix and withS as the
interference matrix. Comparing Fig. 4 to Fig. 2, the ima
classification in Fig. 4 is significantly improved because
images in Fig. 4 have eliminated interference signatu
which were not considered in Fig. 2.

Since there is no knowledge about how many interf
ence signatures needed to be generated by VQ, the qua
h5dTPU

'd, called orthogonal projection correlation inde
is used as a criterion for OSPUIR to determine a des
number of interference signatures to achieve the best
sible classification. The rationale of choosingh5dTPU

'd is
based on the orthogonal projection correlation betweed
andU. It gives a clue to determining how many addition
interference signatures are required for classification
how much orthogonal projection a new signature can c
tribute. Thus,h can be used as a measure of the inform
tion about how many interference signatures need to
generated. Ifh is small, it implies that most of the signifi
cant interference signatures are already contained in
current interference signature setS. That is, it indicates tha
the number of generated interference signatures is suffic
to warrant good classification results. Figures 5~a!, 5~b!,
and 5~c! are the rank curves generated byh with the
treaded vehicles, the wheeled vehicle, and the object as
designated desired targets, respectively. These are pl
on the basis of the value ofh versus the number of inter
ference signatures. Each curve was calculated by using
ferent numbers of VQ-generated interference signatu
ranging from 1 to 20. A major disadvantage is compu
tional complexity due to the fact that the VQ-based clust
ing process must be carried out for each given numbe
clusters. The classes of interference clusters generate
VQ for different numbers of clusters do not necessa

Fig. 3 Spectra of the three treaded vehicles, the wheeled vehicles,
and the object.
740 Optical Engineering, Vol. 37 No. 3, March 1998
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embrace one another. For example, the three interfere
signatures generated by VQ based onq53 are not neces-
sarily included in the class of the five interference sign
tures based onq55. Some of them may be overlapped, b
not necessarily all. This is demonstrated in Fig. 5 where
rank curve is not monotonically decreasing. Figure
~where the first column designates treaded vehicles as
desired signature, the second column designates
wheeled vehicle as the desired signature, and the third
umn designates the object as the desired signature! shows
the OSPUIR classification results with 5, 10, 15, and
interference signatures. If we choose the number of in
ference signatures required for classification to be the n
ber at which the rank curve shown in Fig. 5 drops rapid
and sharply, then they are 6 or 10 for the treaded vehic
5 for wheeled vehicle, and one of$3,7,11% for the object.
Comparing the results in Fig. 6, these numbers may
overestimated a little bit. But they seem still good estima
by considering the fact that no information about interfe
ence was givena priori. Nevertheless, the number of inte
ference signatures should not be too greatly overestima
For example, the rank curve of the object classificat
shown in Fig. 5~c! is completely flat after 11 interferenc
signatures were generated. This is because theh is very

Fig. 4 First column is the results produced by the OSPUIR using
M5TøBøS and the second column is the results produced by the
UIR using M5TøB and S as the interference matrix, where S con-
sists of 10 interference signatures generated by VQ.



no
ce
res
no
e
ws
ew
sig
se
inc
res
fin

stic
a
ar

rat-
of

sted
an

the
e
rate
es in
e
s
ge,

ows

ing
on

-
be-
s

Chang, Sun, and Althouse: Unsupervised interference rejection approach . . .
small and kept at a constant value, which implies that
improvement can be made by including more interferen
signatures. While this is true, more interference signatu
used for annihilation may even degrade performance as
ticed in the third column of Fig. 6 with 20 interferenc
signatures being used. This can be explained as follo
Since the spectrum of the object is very distinct, only a f
interference signatures such as natural background are
nificant and must be nulled prior to classification. The
signatures are generally strong interferers and are dist
from the target signatures. If more interference signatu
are generated than are needed, we are then forced to
some interference signatures whose spectral characteri
may be similar to that of the target to be classified. As
result, eliminating these signatures may also eliminate p

Fig. 5 Rank curves produced by OSPUIR in (a) the treaded vehicle,
(b) the wheeled vehicle, and (c) the object classification using from 1
to 20 interference signatures.
-

.

-

t

d
s

t

of the spectral characteristics of the target, thus deterio
ing the performance. The results justify that the selection
the number of interference signatures as already sugge
is indeed a good rule despite the fact that it may be not
optimal one.

Unlike the OSPUIR, which usesh as a criterion for
determination of number of interference signatures,
OBSP used the trace(EMS

T EMS) as a measure to determin
how many interference signatures one needs to gene
since the eigenvalues represent the energies of signatur
M and the trace(EMS

T EMS) is the sum of eigenvalues of th
interference rejecterEMS . The more interference signature
that are nulled, the less energy is contained in the ima
and thus the smaller the trace(EMS

T EMS). This does not im-
ply that the rank curve of trace(EMS

T EMS) is monotonically
decreasing as the number of interference signatures gr
due to the same reason given above forh5dTPU

'd. Figure
7 shows the rank curve produced by the OBSPUIR us
from 1 to 20 interference signatures. It is plotted based
the value of trace(EMS

T EMS) versus the number of interfer
ence signatures. Note that there is only one rank curve
cause the trace(EMS

T EMS) used for the OBSPUIR depend

Fig. 6 Images in the first column for the treaded vehicle classifica-
tion, images in the second column for the wheeled vehicle classifi-
cation, and images in the third column for the object classification
using 5, 10, 15, and 20 interference signatures.
741Optical Engineering, Vol. 37 No. 3, March 1998
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Fig. 7 Rank curve produced by OBSPUIR using from 1 to 20 inter-
ference signatures.

Fig. 8 First, second, and third columns are for the treaded vehicle
classification, the wheeled vehicle classification, and the object clas-
sification, respectively, with using 5, 10, 15, and 20 interference
signatures.
742 Optical Engineering, Vol. 37 No. 3, March 1998
only on the target signature matrixM and the interference
matrix S, but not the specific targets. The curve dro
sharply at 3, increases a little bit at 4, drops again at 5, t
gradually decreases until 10, where the curve becomes
In this case, we may choose 10 to be the desired numbe
interference signatures. Figure 8 shows OBSPUIR gen
ated images for each target with 5, 10, 15, and 20 inter
ence signatures. As shown in these images, there is no
ible difference between images using more than
interference signatures. The results seem to confirm tha
proposed eigenvalue criterion successfully predicts an
equate number of interference signatures required for g
classification. Since the object has distinctive spectral ch
acteristics different from the treaded and wheeled vehic
it did not require as many interference signatures as did
vehicles. The same observation made for the object cla
fication using the OSPUIR holds true for the OBSPUI
This further justifies that the number of interference sign
tures for target detection and classification depends on
spectral characteristics of the target to be classified.

7 Conclusion

In this paper, a UIR approach was presented to improve
performance of an OSP method,3 which has been success
fully applied to AVIRIS and HYDICE data. The idea be
hind the UIR is to reformulate the commonly used line
spectral mixture model as a linear spectral signatu
interference mixture model where the interference is se
rated from the signature matrix and noise, and treated
third source. Two UIR-based approaches were prese
for this purpose, the OSPUIR and the OBSPUIR. The
perimental results show that the OSPUIR and the O
SPUIR significantly improve the OSP-based metho
which use the traditional linear mixture model and disca
the interference.
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