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Hyperspectral Image Classification and 
Dimensionality Reduction: An Orthogonal 

Subspace Projection Approach 
Joseph C. Harsanyi, Member, IEEE, and Chein-I Chang, Senior Member, IEEE 

Abstruct-Most applications of hyperspectral imagery re- 
quire processing techniques which achieve two fundamental 
goals: 1) detect and classify the constituent materials for each 
pixel in the scene; 2) reduce the data volumeldimensionality, 
without loss of critical information, so that it can be processed 
efficiently and assimilated by a human analyst. 

In this paper, we describe a technique which simultaneously 
reduces the data dimensionality, suppresses undesired or inter- 
fering spectral signatures, and detects the presence of a spec- 
tral signature of interest. The basic concept is to project each 
pixel vector onto a subspace which is orthogonal to the unde- 
sired signatures. This operation is an optimal interference 
suppression process in the least squares sense. Once the inter- 
fering signatures have been nulled, projecting the residual onto 
the signature of interest maximizes the signal-to-noise ratio and 
results in a single component image that represents a classifi- 
cation for the signature of interest. The orthogonal subspace 
projection (OSP) operator can be extended to k signatures of 
interest, thus reducing the dimensionality of k and classifying 
the hyperspectral image simultaneously. The approach is ap- 
plicable to both spectrally pure as well as mixed pixels. 

I. INTRODUCTION 
YPERSPECTRAL imaging spectrometer data pro- H vide a wealth of information which can be used to 

address a variety of earth remote sensing problems. A 
short list of applications includes environmental mapping, 
global change research, geological research, wetlands 
mapping, assessment of trafficability , plant and mineral 
identification and abundance estimation, crop analysis, 
and bathymetry. The common theme in all of these ap- 
plications is the requirement for classification of each 
pixel in the scene, and reduction of data volume to tract- 
able levels. 

Classification of a hyperspectral image sequence 
amounts to identifying which pixels contain various spec- 
trally distinct materials that have been specified by the 
user. Several techniques for classification of multilhyper- 
spectral pixels have been used from minimum distance 
and maximum likelihood classifiers [ 13 to correlation/ 
matched filter-based approaches such as spectral signature 
matching [2] and the spectral angle mapper [3]. The sta- 
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tistically based classifiers are limited since they do not 
account for the prevalent case of mixed pixels which are 
pixels that contain multiple spectral classes. Existing cor- 
relatiodmatched filter-based approaches suffer from the 
mixed pixel problem, as well as the limitation that the 
output of the matched filter is nonzero and quite often 
large for multiple classes since the spectral signatures of 
materials are not generally orthogonal vectors. 

To reduce the data volume, techniques for reducing the 
image dimensionality are often applied. Typically, the di- 
mensionality of a hyperspectral image cube is reduced by 
applying a linear transformation, such as a principal com- 
ponents transformation, and retaining only the significant 
components for further processing. The principal com- 
ponents transformation produces a new set of uncorre- 
lated images that are ordered in terms of decreasing in- 
formation or, equivalently, decreasing variance [4]. 
Although each hyperspectral pixel is a high (> 100) di- 
mensional vector, most of the information about the scene 
can be described by a few (generally less than ten) di- 
mensions. This reduced dimensionality is known as the 
intrinsic dimensionality [SI. A recent improvement to the 
principal components transformation is the noise-adjusted 
principal components transformation [6] .  This transfor- 
mation orders the new images in terms of signal-to-noise 
ratio, and thus deemphasizes noise in the resulting images 

Although these approaches are sufficient for reducing 
data volume, they do not emphasize individual spectral 
classes or signatures of interest. For example, the first 
principal component image contains the most infonna- 
tiodvariance, but it is generally a linear combination of 
information from several spectral classes. This is a direct 
consequence of the fact that most materials resident in 
hyperspectral scenes have spectral signatures that are cor- 
related, whereas the eigenvectors used to derive the prin- 
cipal component images are, of course, orthogonal. 

In this paper, we describe a technique which simulta- 
neously reduces data dimensionality to a user-prescribed 
level and produces a new sequence of images which high- 
light the presence of each signature of interest. These new 
component images represent class maps for each of the 
signatures of interest. The technique is based on the con- 
cept of orthogonal subspace projection which is a result 
from the theory of least squares and has been further de- 
veloped in the sensor array processing community [8], [9]. 
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An equivalent result directed at image sequence process- 
ing has also been developed using the concept of simul- 
taneous diagonalization (SD) filtering [ 101. The technique 
presented here recasts the results from [8]-[lo] into an 
intuitive two-step development. First, we determine the 
matrix operator which eliminates undesired or interfering 
signatures and is an optimal interference rejection process 
in the least squares sense. Second, we develop a vector 
operator which maximizes the residual desired signature 
signal-to-noise ratio (SNR). A combination of these op- 
erators into an overall OSP classification operator reduces 
the non-Gaussian detection and classification problem 
presented by mixed pixels to the solved problem of de- 
tecting an unknown constant in white noise. 

The rest of the paper is organized as follows. Section 
I1 covers formulation of the problem. Section I11 intro- 
duces the concept of orthogonal subspace projection, and 
introduces the hyperspectral pixel classification operator. 
Results of simulations and application of the operator to 
AVIRIS data are presented in Sections IV and V, respec- 
tively, and concluding remarks are given in Section VI. 

11. PROBLEM FORMULATION 
A hyperspectral image cube is made up of hundreds of 

spatially registered images, taken contiguously over a 
large wavelength region, with high (< 10 nm) spectral 
resolution [ 111. Each pixel in a hyperspectral image cube 
is an observation vector which represents the reflected en- 
ergy spectrum of the materials within the spatial area cov- 
ered by the pixel. Existing hyperspectral sensors produce 
observation vectors that have several hundred elements. 
For example, each pixel from the NASAIJPL Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) con- 
tains 224 elements corresponding to 224 spectral wave- 
length bands ranging from 0.4 to 2.5 pm. Each spectral 
band has approximately a 10 nm bandwidth. 

Generally, the spatial coverage of each pixel may en- 
compass several different materials, each with a unique 
spectral signature. In this case, the observation vector is 
affected by the individual spectral signatures of each ma- 
terial, and the pixel is termed mixed [4], [5]. A mixed 
pixel containing p spectrally distinct materials, denoted 
by the 1 X 1 vector r (x ,  y), can be described by the linear 
model 

(1) 
where 1 is the number of spectral bands, (n, y) is the spa- 
tial position of the pixel, M = (ul - - - ui * * - up - d) 
is an 1 X p matrix with linearly independent columns and 
the 1 X 1 column vector ui is the spectral signature of the 
ith distinct material, a(x,  y) is a p X 1 vector where the 
ith element represents the fraction of the ith signature 
present in the pixel, and n(x, y) is an 1 x 1 vector repre- 
senting random noise which is assumed to be an inde- 
pendent, identically distributed (i.i.d.) Gaussian process 
with zero mean and covariance matrix a2Z. 

Without loss of generality, we assume that the last col- 
umn of M is the desired signature of interest which is de- 

r(x, Y) = Ma(& Y) + n(x, Y) 

noted by d .  The remaining columns are undesired signa- 
tures denoted by U = (uI - - ui - - - u p - , )  that are 
assumed to be linearly independent. An equivalent state- 
ment of (1) which separates the desired and undesired sig- 
natures is given by 

r = da, + Uy + It. (2) 
Here, we have suppressed the spatial position of the pixel 
for convenience, ap is the fraction of the desired signa- 
ture, and y is a vector which contains the first p - l ele- 
ments of a. 

We now develop an operator which eliminates the ef- 
fects of U and maximizes the remaining signal energy with 
respect to the noise. 

111. HYPERSPECTRAL PIXEL CLASSIFICATION 
A. Interference Rejection by Orthogonal Subspace 
Projection 

The first step in deriving a classification operator for 
the signature of interest d is to eliminate the effects of 
interfering signatures which are represented by the col- 
umns of U. The approach is to form an operator that pro- 
jects r onto a subspace that is orthogonal to the columns 
of U. The vector resulting from such an operation will 
only contain energy associated with the desired signature 
d and random noise. The least squares optimal interfer- 
ence rejection operator is given by the 1 x 1 matrix 

P = ( I  - UUU) (3) 

where U# = (UTU)- 'UT is the pseudoinverse of U. This 
operator has the same structure as the orthogonal comple- 
ment projector from the theory of least squares [9] and the 
signal blocking matrix which has been used in the sensor 
array processing community [SI. In the case at hand, how- 
ever, the operator minimizes energy associated with the 
signatures not of interest as opposed to minimizing the 
total least squares error. Operating on (2), we have 

(4) Pr = Pda, + Pn. 
It is clear that this approach is an optimal interference 
rejection process in the least squares sense since P re- 
duces the contribution of U to zero. Additional informa- 
tion regarding orthogonal subspace projection operators 
and their properties can be found in [8]-[lo], [123, and 
1131. 

B. Signal-to-Noise Ratio (SNR) Maximization 
The second step in deriving the pixel classification op- 

erator is to find the 1 X I operator x T  which maximizes 
the SNR. Operating on (4), we have 

which is a scalar. The signal-to-noise-energy ratio is given 
xTPr = xTPdap + xTPn ( 5 )  

by 
xTPda;dTPTx a; xTp&TpTx 

xTPE{nnT}PTx o2 xTppTx (6) - _  - A =  

where E{ * } denotes the expected value. 
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Maximization of this quotient is the generalized eigen- 
vector problem 

PddTPTx = XPPTx (7) 

where X = X(a2/ap).  The value of x T  which maximizes 
can be determined in general using techniques outlined 

in [lo] and the idempotent (P2  = P) and symmetric (PT 
= P) properties of the interference rejection operator. The 
result is 

x T  = KdT (8) 

where K is an arbitrary scalar. 

C. Orthogonal Subspace Projection (OSP) 
Classijication Operator 

Substituting the result in (8) into (3, we see that the 
overall classification operator for a desired hyperspectral 
signature in the presence of multiple undesired signatures 
and white noise is given by the 1 x I vector 

qT = dTP. (9) 

This is an intuitively pleasing result since it first nulls the 
interfering signatures, and then uses a matched filter for 
the desired signature to maximize the SNR. The operator 
is similar to a result from the sensor array processing 
community which is used for higher rank spectrum esti- 
mation or, equivalently, estimation of the SNR for a can- 
didate multiemitter matched filter [9]. It is also one of the 
limiting special cases that is derived in [lo] for the si- 
multaneous diagonalization (SD) filter with noise vari- 
ance equal to zero. Finally, the operator can be shown to 
provide least squares optimal fraction images [ 121 that are 
equivalent to those produced by linear mixture modeling 
techniques [4], [5], [14]-[18]. 

An interesting consequence of the two-step develop- 
ment approach that we have used to arrive at this result is 
to show that the equivalent SD filter for the zero noise 
variance case is also the least squares optimal interference 
rejectiodmax SNR filter for the case when white noise is 
present with variance u2. This is important from an au- 
tomatic detection perspective since this operator reduces 
the non-Gaussian mixed pixel classification problem to the 
problem of detecting the unknown constant d TPdop in the 
presence of white noise. 

When the operator in (9) is applied to all of the pixels 
in a hyperspectral scene, each 1 x 1 pixel is reduced to a 
scalar which is a measure of the presence of the signature 
of interest. The ultimate result is to reduce the I images 
comprising the hyperspectral image cube into a single im- 
age where pixels with high intensity indicate the presence 
of the desired signature. This represents a significant re- 
duction in data volume since 1 is >200 for current and 
planned airborne hyperspectral sensors. Since the classi- 
fication operator reduces each pixel to an unknown con- 
stant in white noise, the resultant image can be sensibly 
thresholded and an automatic binary classification deci- 
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sion can be made based on the Neyman-Pearson detection 
criterion [12], [19]. This criterion maximizes the proba- 
bility of detecting the presence of the signature of interest 
subject to a user designated false alarm rate. 

The extension of this vector operator for a single sig- 
nature to a matrix operator for k signatures of interest is 
straightforward. The k X 1 matrix operator is given by 

Q = ( q l * - * q i - - *  qdT (10) 

where each of the qr = d'P, is formed with the appro- 
priate desired and undesired signature vectors. In this 
case, the hyperspectral image cube is reduced to k images 
which classify each of the signatures of interest. 

IV. SIMULATION RESULTS 
In this section, we present an application of the orthog- 

onal subspace projection (OSP) technique to linearly 
mixed reflectance spectra. In the first case, 100 hyper- 
spectral pixels were simulated using the red soil and dry 
grass reflectance spectra shown in Fig. 1. These spectra 
were first convolved to 10 nm spectral bands to simulate 
the capability of current airborne hyperspectral sensors. 
The abundance of each material varied from pixel to pixel, 
and white Gaussian noise was added to each pixel to 
achieve a 25 : 1 signal-to-noise ratio. The signal-to-noise 
ratio is defined here as 50% reflectance divided by the 
standard deviation of the noise. This should not be con- 
fused with the signal-to-noise-energy ratio which is max- 
imized in (6) to develop the optimal classification opera- 
tor. Pixels 20, 40, 60, and 80 also contain the creosote 
leaves reflectance spectrum, shown in Fig. 1, at 20, 15, 
10, and 5% abundance, respectively. To illustrate the se- 
verity of the detection/classification problem, pixels 
18-22 are shown in Fig. 2. Pixel 20, which contains the 
creosote leaves spectrum at 20% abundance, is not distin- 
guishable from the neighboring pixels. The missing por- 
tions of the spectra are where the 1.4 and 1.9 pm water 
bands have been removed. 

An OSP classification operator was formed using (9) 
where d is the creosote leaves spectrum and the two col- 
umns of U are the red soil and dry grass spectra. The 
result of applying the operator to each pixel is shown in 
Fig. 3. The pixels containing the creosote leaves spec- 
trum are evident. 

A second simulation was run using the reflectance spec- 
tra in Fig. 4. Again, 1 0 0  mixed pixels were simulated, 
and in this case, we form an operator to detect sage brush 
in the presence of both creosote leaves and black brush. 
As before, pixels 20, 40, 60, and 80 contain the target 
reflectance spectrum, sage brush, at 20, 15, 10, and 5 %  
abundance, respectively. In this case, white Gaussian 
noise was added to each pixel to achieve a 50: 1 signal- 
to-noise ratio referenced to 50% reflectance. The result of 
applying the operator to each pixel is shown in Fig. 5 .  
This is clearly a more difficult classification problem than 
the first simulation, but the presence of the sage brush 
spectrum is detectable in all but the 5 %  abundance case. 

, 
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Fig. 1. Reflectance spectra: simulation 1. 
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Fig. 2. Mixed spectra. This figure shows simulated pixels 18-22. Pixel 
20, which contains the creosote leaves spectrum, is not distinguishable. 
Discontinuities in the spectra are where atmospheric water bands have been 
removed. 
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Fig. 3. OSP operator output: simulation 1. The result of operating on each 
pixel vector is a scalar. The relative output power for each pixel is shown 
as a function of pixel number. The presence of the creosote leaves spectrum 
is detectable to approximately 5 %  abundance in this case. 
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Fig. 4. Reflectance spectra: simulation 2 
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Fig. 5 .  OSP operator output: simulation 2. This result demonstrates the 
difficult problem of discmination between spectrally similar vegetation. In 
this case, the sage brush spectrum is detectable in all but the 5% abundance 
case. 

V. EXPERIMENTAL RESULTS USING AVIRIS DATA 
The OSP technique was also applied to a subsection of 

an AVIRIS scene of the Lunar Crater Volcanic Field 
(LCVF) which is located in Northern Nye County, NV. 
Extensive field work has been done in this area, and the 
AVIRIS scene covering it has been previously modeled 
using spectral mixture analysis [20], [2 13. A single band 
image from the AVIRIS data is shown in Fig. 6. Atmo- 
spheric water bands and low SNR bands have been re- 
moved from the data, reducing the image cube from 224 
to 158 bands. 

The signatures used to develop the OSP classification 
operator are the same image endmembers that were used 
to model the scene with spectral unmixing techniques in 
[20]. These endmembers, which are extracted directly 
from the image, are the radiance spectra of red oxidized 
basaltic cinders, rhyolite, playa, vegetation, and shade 
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Fig. 6. AVIRIS image of the Lunar Crater Volcanic Field (0.752 pm 
channel). 

(e) 
Fig. 7. OSP operator output: LCVF subsection. Operating on a 200 X 200 pixel subsection from the upper left comer of the 
LCVF, scene (a) yields component images for each of the chosen material image endmembers. The component image in (b) 
indicates the presence of red oxidized basaltic cinders, (c) clearly shows the dry playa lakebed, (d) indicates exposures of 
rhyolite, (e) shows vegetation, and (f) represents shade which accounts for variable lighting and topography. The data reduction 
provided by the operator in this case is from a 158 band hyperspectral image cube to five component images which provide 
information of interest regarding the chosen image endmembers. 

which accounts for topographic shadowing and variable 
lighting geometries within the scene. It is important to 
note that it is not necessary to calibrate the AVIRIS data 
to reflectance before applying the orthogonal subspace ap- 
proach. In this case, we develop an operator based on ra- 
diance spectra, and operate directly on the measured ra- 
diance for each pixel in the scene. 

For this experiment, we develop the classification op- 

erator for each of the image endmembers as in (10). Ap- 
plying the overall operator to the image results in a di- 
mensionality reduction in this case of 158 to 5 .  The 
resultant component images for each of the endmembers 
are shown in Fig. 7. These component images represent 
class maps of the various endmembers, and are consistent 
with known attributes of the scene which have been de- 
termined by field observations and mapping [20], [22]. 
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VI. CONCLUSION 
An approach for simultaneously reducing hyperspectral 

data dimensionality and detecting hyperspectral signa- 
tures of interest in the presence of undesired or interfering 
signatures has been developed and demonstrated. The 
technique can be viewed as a combination of two linear 
operators into a single classification operator. The first 
operator is an optimal interference rejection process in the 
least squares sense, and the second is an optimal detector 
in the maximum SNR sense. The approach is applicable 
to both mixed pixels as well as spectrally pure pixels, and 
does not suffer from the limitations of standard statistical 
classifiers and matched filtering/spectral signature match- 
ing techniques which are suboptimal in the presence of 
multiple correlated interferers. 

Application of the technique to simulated hyperspectral 
mixed pixels shows that representative signatures of in- 
terest can be detected at abundance levels as low as a few 
percent at signal-to-noise ratios ( 5 50 : 1) and spectral 
resolution (10 nm) which are easily attainable with exist- 
ing airborne hyperspectral sensors. Performance will, of 
course, vary depending on the particular scenario, but this 
technique can be used as an analysis tool to examine the 
sensor capabilities required to solve a particular detection 
and classification problem. 

The technique has also been applied to data collected 
with the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) from the Lunar Crater Volcanic Field (LCVF) 
in Nevada. The technique produces component images 
which represent class maps of the various materials of in- 
terest within the scene. Component images generated for 
the LCVF scene are reasonable when compared to pub- 
lished geologic maps of the area [23] and corroborating 
field observations [20]. 
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