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Abstract—The orthogonal subspace projection (OSP) approach
has received considerable interest in hyperspectral data exploita-
tion recently. It has been shown to be a versatile technique for a
wide range of applications. Unfortunately, insights into its design
rationale have not been investigated and have yet to be explored.
This paper conducts a comprehensive study and analysis on the
OSP from several signal processing perspectives and further dis-
cusses in depth how to effectively operate the OSP using different
levels of a priori target knowledge for target detection and clas-
sification. Additionally, it looks into various assumptions made in
the OSP and analyzes filters with different forms, some of which
turn out to be well-known and popular target detectors and classi-
fiers. It also shows how the OSP is related to the well-known least-
squares-based linear spectral mixture analysis and how the OSP
takes advantage of Gaussian noise to arrive at the Gaussian max-
imum-likelihood detector/estimator and likelihood ratio test. Ex-
tensive experiments are also included in this paper to simulate var-
ious scenarios to illustrate the utility of the OSP operating under
various assumptions and different degrees of target knowledge.

Index Terms—Classifier, constrained energy minimization
(CEM), (d U) model, linear discriminant analysis, orthogonal
subspace projection (OSP), OSP anomaly detector (OSPAD),
OSP model, RX detector (RXD), signal detection, signal param-
eter estimation, target-constrained interference-minimized filter
(TCIMF).

I. INTRODUCTION

HYPERSPECTRAL imagery provides additional benefits
over multispectral imagery in many applications, e.g.,

detection, discrimination, classification, quantification, identi-
fication, etc. In the early days, hyperspectral imagery has been
processed and analyzed by multispectral image processing
algorithms via a preprocessing such as feature extraction,
dimensionality reduction, and band selection. Such multispec-
tral-to-hyperspectral approaches have achieved some success
and may have led to a brief that hyperspectral imaging is nothing
more than a straightforward extension of multispectral image
processing. It seems to be not the case. When the spectral reso-
lution is low as multispectral images are, the image processing
techniques are generally developed to explore spatial informa-
tion such as in a geographical information system (GIS) [1]
for spatial domain analysis. Therefore, as spectral resolution is
increased significantly like hyperspectral imagery, such spatial
domain-based multispectral imaging techniques may be found
to be less effective in certain applications. In particular, if objects
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of interest only account for a small population, the techniques
based on spatial information can easily break down. In some
cases where the object size may be smaller than the pixel resolu-
tion, e.g., rare minerals in geology, special species in agriculture
and ecology, small vehicles in battlefields, etc., the data analysis
must rely solely on spectral information that can only be obtained
and provided by a single pixel and be processed at subpixel level.
In order to address this problem, linear unmixing has been
developed to exploit pixel-level spectral information for image
analysis. Its success in both multispectral and hyperspectral
image analysis has been demonstrated in many applications.

In order to further facilitate linear unmixing applications in
hyperspectral imagery, Harsanyi and Chang recently developed
a hyperspectral image classification technique, referred to as or-
thogonal subspace projection (OSP) from a viewpoint of hyper-
spectral imagery [2]. Their idea was based on two aspects: 1) how
to best utilize the target knowledge provided a priori and 2) how
to effectively make use of hundreds of available contiguous spec-
tral bands. As for case 1), the prior target knowledge is charac-
terized in accordance with target signatures of interest, referred
to as the desired target signature and undesired target signa-
ture matrix formed by those target signatures that are known
but not wanted in image analysis. The OSP was believed to be
the first approach proposed to separate the from the in a
signal detection model, then eliminate the undesired target sig-
natures in prior to detection of the so as to improve signal
detectability. As for case 2), the issue of how to effectively use
available spectral bands can be best explained by the well-known
pigeon-hole principle in discrete mathematics [3]. Suppose that
there are 13 pigeons flying into a dozen of pigeon holes (nests).
The principle says that there must exist at least one pigeon hole
that ought to accommodate at least two or more pigeons. Now,
if we interpret the target signatures of interest and the number of
spectral bands as the pigeons and the number of pigeon holes, re-
spectively, then we can use one spectral band to accommodate
a distinct target signature. In order to make sure that no more
than one target signature is accommodated in a single spectral
band, a spectral band must be disposed once it is used for target
signature accommodation. In doing so, the orthogonal subspace
projection is introduced as a mechanism to separate one spectral
band from another so that target signatures accommodated in two
separate spectral bands are orthogonal to each other. In this case,
one band will not share its target information with another band.
However, for this approach to be effective, the number of spec-
tral bands must be no less than the number of target signatures
of interest. For hyperspectral imagery, this requirement seems
to be met automatically, and the pigeon-hole principle is always
valid. Unfortunately, using spectral dimensionality as a means
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for target detection, classification and identification is generally
not applicable to multispectral imagery, which usually has fewer
spectral bands than the number of target signatures of interest [4].
For instance, SPOT image data have three spectral bands that can
be used for data analysis. If more than three target signatures need
to be analyzed, the idea of using spectral bands for target detec-
tion and classification may not work effectively [4]. To circum-
vent this difficulty, Ren and Chang recently developed a gener-
alized OSP that included a dimensionality expansion technique
to expand the number of spectral bands nonlinearly for the OSP
to have sufficient spectral dimensions to carry out orthogonal
projection [5], [6]. Its utility was further extended to magnetic
resonance image (MRI) classification [7].

Many OSP-based algorithms have been developed for various
applications [8] since the OSP was introduced in 1994 [2]. How-
ever, insights into the OSP have not been investigated and have
yet to be explored. For example, the noise assumption is not nec-
essarily Gaussian as commonly assumed. However, if the noise
is assumed to be Gaussian, it has been shown in [9]–[11] that the
OSP performed essentially the Gaussian maximum-likelihood
estimator [12]. Nevertheless, from a technical point of view, the
design concepts of these two techniques are different. The OSP
is derived from the signal-to-noise ratio (SNR) using a signal de-
tection approach compared to the parametric estimation-based
Gaussian maximum-likelihood estimator. Furthermore, the OSP
can be shown in this paper to perform as a least squares esti-
mator that is identical to the least-squares-based linear spectral
mixture analysis.

When the OSP was first developed, it required the full knowl-
edge of image endmembers present in the image data. Such
complete a priori information may be difficult to obtain in re-
ality, if not impossible. Two approaches have been developed
to mitigate this dilemma. One is to develop unsupervised al-
gorithms to obtain the necessary information directly from the
data required for processing [8], [13]. This type of information
generated by an unsupervised means is referred to as a posteriori
information as opposed to a priori information provided prior
to data processing. Since the accuracy of the a posteriori infor-
mation is closely related to the unsupervised method that is used
to generate the a posteriori information, it may not be always
reliable. To avoid this problem, a second approach is to suppress
unknown information with no need of a posteriori information.
One way to do so is the constrained energy minimization (CEM)
developed by Harsanyi in his dissertation [14], which only needs
the knowledge of the desired signal source. Other than that, there
is no knowledge required. This approach is particularly useful
and attractive in the case that the image background is unknown
and complicated or very difficult to characterize. The CEM was
later extended to the target-constrained interference-minimized
filter (TCIMF) in [15], which characterized signal sources into
three separate information sources, desired, undesired, and
interference. Using this three-source model, the TCIMF could
detect multiple desired signal sources, annihilate undesired
signal sources while suppressing interference caused by other
signal sources at the same time. Comparing to the OSP that only
deals with desired and undesired signal sources and the CEM
that only considers the desired signal source and interference
without taking into account the undesired signal sources, the

TCIMF combines both the OSP and the CEM into one filter
operation and includes them as its special cases. Interestingly, as
will be shown, the CEM and the TCIMF can be also interpreted
as various versions of the OSP operating different degrees of
target knowledge. In other words, the OSP can be considered
as a spectral correlation-whitened version of the TCIMF, while
the TCIMF can be thought of as the OSP version of the CEM.
Specifically, when the sample spectral correlation matrix in the
TCIMF is whitened (i.e., decorrelated), the TCIMF performs as
if it was the OSP. On the other hand, when the CEM operates
in the same way that the OSP eliminates the undesired target
signatures, the CEM becomes the TCIMF. In either case, both the
CEM and the TCIMF can be considered to be derived from the
OSP and regarded as variants of the OSP based on the knowledge
to be used in their filter design. Various relationships among
these approaches have been documented in [8], [16], and [17].

With all things considered above, this paper investigates two
intriguing issues, “to what extent can the OSP be used?” and
“how does the OSP operate the knowledge available to users?”
The first issue will be addressed by deriving the OSP from three
signal processing perspectives, signal detection, linear discrimi-
nant analysis and parameter estimation which provide evidence
that the OSP is indeed a versatile technique for a variety of ap-
plications. In doing so, we introduce two new signal models,
called model and OSP model. The former separates a
desired signal source from undesired signal sources in
based on knowledge provided a priori so that these two dif-
ferent types of signal sources can be taken care of separately.
The latter annihilates the undesired signal sources in from
the model via an OSP operator to reduce the interference
caused by the so as to improve and enhance the detectability
of the . The second issue will be investigated by looking into
how the target information is used in the OSP. Of particular in-
terest is an issue of “how does CEM perform compared to the
OSP, provided that the undesired signal sources are known a
priori and further annihilated before the CEM is implemented?”
More specifically, “how does the CEM perform compared to
the OSP if the OSP model is used?” In addressing this issue,
many interesting results can be obtained based on such OSP
model. Interestingly, under this circumstance, the commonly
used least-squares-based linear spectral mixture analysis turns
out to be the OSP. Additionally, we will also show how the OSP
can be implemented without prior knowledge where the OSP
takes advantage of the sample spectral correlation to approx-
imate the information that is supposed to be provided by prior
knowledge but is not available at the time of data processing. As
a result, the OSP operates the same form of the RX algorithm de-
veloped by Reed and Yu [18]. Furthermore, the low probability
detector developed in [14] can be, therefore, also interpreted as
a variant of the OSP from this aspect.

This paper is organized as follows. Section II describes three
different signal processing perspectives to derive the OSP, which
are signal detection, linear discriminant analysis and parameter
estimation. In order to accomplish this task, two signal models,
the model and the OSP model are also introduced. Sec-
tion III investigates the role of Gaussian noise in the OSP and
also provides experiments for demonstration. Section IV shows
that the CEM can be viewed as another version of the OSP im-
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plemented with partial knowledge. Examples are included to il-
lustrate their relationship. Section V further extends the OSP to
the OSP with no prior knowledge which can be considered as
anomaly detection. Section VI concludes some remarks.

II. THREE PERSPECTIVES TO DERIVE OSP

Suppose that is the number of spectral bands and
is an -dimensional image pixel vector. Assume that there
are targets, present in an image scene. Let

denote their corresponding target signatures,
which are generally referred to as digital numbers (DN). A
linear mixture model of models the spectral signature of

as a linear combination of with appro-
priate abundance fractions specified by . More
precisely, is an column vector, and is an
target spectral signature matrix, denoted by ,
where is an column vector represented by the spectral
signature of the th target resident in the pixel vector . Let

be a abundance column vector
associated with where denotes the fraction of the th
target signature present in the pixel vector . A classical
approach to solving a mixed pixel classification problem is
linear unmixing which assumes that the spectral signature of
the pixel vector is linearly mixed by , the
spectral signatures of the targets, as follows:

(1)

where is noise or can be interpreted as a measurement or
model error.

Equation (1) represents a standard signal detection model
where is a desired signal vector to be detected and is a
corrupted noise. Since we are interested in detecting one target
at a time, we can divide the set of the targets,
into a desired target, say and a class of undesired targets,

. In this case, a logical approach is to eliminate
the effects caused by the undesired targets that
are considered as interferers to before the detection of takes
place. With annihilation of the undesired target signatures the
detectability of can be therefore enhanced. In doing so, we first
separate from in and rewrite (1) as

(2)

where is the desired spectral signature of and
is the undesired target spectral sig-

nature matrix made up of which are the
spectral signatures of the remaining undesired targets,

. Here, without loss of generality we assume
that the desired target is a single target and refer (2) to the

model thereafter.

A. Signal Detection Perspective Derived From the
Model and OSP Model

Using the model specified by (2), we can design an
orthogonal subspace projector to annihilate from the pixel
vector prior to detection of . One such desired orthogonal
subspace projector was derived in [2] and given by

# (3)

where # is the pseudo-inverse of . The
notation in indicates that the projector maps the ob-
served pixel vector into the orthogonal complement of ,
denoted by .

Applying to the model results in a new signal
detection model

(4)

where the undesired signatures in have been annihilated and
the original noise has been also suppressed to .
The model specified by (4) will be referred to as the OSP model
afterwards in this paper.

At this point, it is noteworthy to comment on distinction
among the three models specified by (1), (2), and (4). The model
in (1) is a general signal detection-in-noise model which only
separates a signal source from noise. The model is a
signal model derived from the general signal detection-in-noise
model by breaking up the considered signal source into two
types of signal sources and provided by prior knowledge.
It is a two signal sources model where the two signal
sources can be processed separately. The OSP model is a one
signal source model derived from the model with
the in the model annihilated by . Therefore, the
OSP model can be considered as a custom-designed signal
detection-in-nose model from (1) where the signal source in (1)
has been preprocessed by for signal enhancement.

If we operate a linear filter specified by a weight vector
on the OSP model, the filter output is given by

. One of most commonly used optimal
criteria in communications and signal processing is to maximize
the filter output SNR over the weight vector defined by

SNR (5)

If we further assume that is additive and zero-mean
white noise with variance , (5) is reduced to SNR

where the linear optimal
filter can be realized by a matched filter, defined by

(6)

for some nonzero constant with the matched signal . Ap-
plying the matched filter to the OSP model results in

(7)

which produced the maximum SNR given by .
By means of (4) and (7) we can design a linear optimal signal

detector for the model, denoted by by an un-
desired target signature rejector followed by a matched filter

with the matched signal as follows:

(8)

which is exactly the one derived in [2] with , called or-
thogonal subspace projection (OSP) classifier.

B. Linear Discriminant Analysis Perspective From the
OSP Model

The OSP model described by (4) can be also interpreted as a
two-class classification problem, signal and noise

, respectively. Let and be the mean vector
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and covariance matrix of , and and be the
mean vector and covariance matrix of . Let a linear
discriminant function be denoted by a linear form specified
by . Then, Fisher’s criterion, called Fisher’s ratio,
is given by [19], [20]

(9)

where and are called between-
class and within-class scatter matrices, respectively. Since (9)
can be interpreted as the SNR defined by (5), finding the Fisher
linear discriminant function with the spec-
ified weight vector is equivalent to maximizing SNR
over the . As a result, Fisher’s discriminant function for (9)
denoted by can be derived as [19], [20]

with

(10)

The approach to arriving at the Fisher’s discriminant function
in (10) was the one actually used by Harsanyi and Chang in [2]
to derive the OSP classifier, given by

with
(11)

C. Parameter Estimation Perspective From the OSP Model

In signal detection, the primary task is to detect the desired
target in noise using (1). As shown above, using the OSP
model specified by (4) could eventually improve and increase
signal detectability of using (1). In pattern classification, the de-
sired target signal was discriminated from noise using a be-
tween-class scatter matrix/within-class scatter matrix criterion
specified by (9). Both of these approaches do not intend to esti-
mate its desired signature abundance fraction . In this subsec-
tion, we look into a least squares (LS) approach to estimating the
abundance fraction of the desired target signature . Using
the OSP model and least squares error (LSE) as the criterion for
optimality, the LS estimate of that minimizes

(12)

is also the least squares solution to the linear spectral mixture
analysis.

Differentiating (12) with respect to and setting it to zero
results in

(13)

which yields the solution to (12)

(14)

Comparing to , there is a constant
appearing in , but absent in . In

other words, (11) and (14) are related by

(15)

The constant in (14) is the consequence of the LSE
resulting from the estimation problem using the OSP model in

(12). It is included to account for estimation accuracy, not a
normalization constant as commonly assumed.

It should be noted that the approach presented above to derive
is different from that developed in [8]–[11], which used

the oblique subspace projection [21].

D. Relationship Between and Least Squares Linear
Spectral Mixture Analysis

In order to see how is related to the commonly used
least squares linear spectral mixture analysis (LSMA), we min-
imize the least squares error resulting from (1) as follows:

(16)

The least squares solution to (16), denoted by , is given
by [22]

(17)

The major difference between and is that the
former is the scalar parameter estimate of , whereas the latter
is a vector parameter estimate of the abundance vector . It has
been shown in [9] that can be decomposed as

with

# # #
#

# # # #
#

# #
(18)

where is the least squares estimated abundance vector
of and . Combining (15)
and (18) results in

(19)

where is the th component of in (18) and
also the least squares estimate of in (15). The same ar-
gument can be carried out for all other abundance fractions,

.
Let and

, then

(20)

where for .
If we further introduce a th component projection function
defined by

(21)

then we can rewrite (21) as

for (22)

with a particular case given by (19), .
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In light of (18)–(22), if operates on every individual
signature with being one of signatures in , it becomes the
commonly used linear unmixing solution, . Compared
to which solves for all abundance fractions as a vector,
the advantage of using over is conceptually
easy to understand and mathematically simple to implement. In
other words, if we are interested in detection or estimation of
a particular target signature, all we have to do is, (1) to desig-
nate the desired target signature as , (2) to annihilate all un-
interesting signatures in by , (3) to extract the using a
matched filter with the matched signature specified by . This
is equivalent to using the OSP model to estimate the abundance
fraction of the desired target after the undesired target signa-
tures have been annihilated by rather than using to
directly estimate the entire abundance fractions
via (17). More specifically, if the least squares estimation is per-
formed for (17) using the OSP model, then (17) is reduced to

for
(23)

where is the least squares estimate of based on
the model in (2) with replaced with and

. As a consequence, (23) is
exactly identical to (22). Both (22) and (23) suggest two different
ways to estimate the abundance fraction for .
Equation (23) first projects the data to the space that is orthogonal
to the space linearly spanned by the undesired target signatures
in using , then estimates the abundance fraction of the
desired target signature in the least squares sense. This is actually
the approach taken by the OSP in (11). By contrast, (17) is the
commonly used least squares LSMA which performs a vector
parameter estimation, then uses a projection function defined
by (21) to yield the abundance fraction of a particular desired
target signature. The relationship between these two equations
is delivered by (21) and (22), which have been overlooked in the
past. It is very important because many subspace-based vector
parameter estimation methods can be interpreted by the OSP
via (18)–(23). A diagram to illustrate the least squares OSP and
the least squares LSMA is depicted in Fig. 1.

As a concluding remark, it is worth noting that the idea of
using the OSP model to rederive the OSP provides new insights
into the OSP, particularly, for the approaches to linear discrimi-
nant analysis and parameter estimation, and the relationship be-
tween the OSP and the least squares LSMA via the OSP model.

III. GAUSSIAN NOISE IN OSP

The noise assumed in (1) is nothing more than additive, zero-
mean and white. More precisely, the noise is assumed to be un-
correlated with target signatures in and also a zero-mean
decorrelated (i.e., the noise covariance matrix is an identity ma-
trix) random process. These two assumptions are not crucial
and can be relaxed by data preprocessing. The assumption of
additivity can be achieved by an estimation technique such as
least squares methods in [8], [11], and [22] to remove corre-
lation between target signal subspace and noise subspace. The
assumption of zero-mean white noise can be accomplished by
a prewhitening process, a widely used technique in commu-
nications and signal processing community in [23]. Since the

Fig. 1. Diagram to illustrate the relationship between least squares OSP and
least squares linear spectral mixture analysis.

signal-to-noise ratio is generally very high in hyperspectral im-
agery, the correlation of the noise subspace with the target signa-
ture subspace is significantly reduced compared to that in mul-
tispectral imagery. This may be one of major reasons that the
OSP has been successful even though it violates the additivity
assumption and white noise, and the consequence does not cause
much performance deterioration. Nevertheless, by taking ad-
vantage of the Gaussian assumption many research efforts have
produced satisfactory results [8]–[11], [24].

In this section, we investigate the role of Gaussian noise as-
sumption in the OSP. Specifically, when the OSP model is cast
as a two-hypotheses (signal and noise) problem, the OSP be-
comes a Gaussian maximum-likelihood detector. Moreover, if
the OSP is used as a signal estimator, it can be further shown to
be equivalent to the Gaussian maximum-likelihood estimator,
which includes the two-class Gaussian discriminant function as
a special case.

A. Signal Detector in Gaussian Noise Using the OSP Model

In what follows, we assume that the noise in (1) is zero-mean
Gaussian with the covariance matrix given by . In this case,
the probability distribution of in (1) is a Gaussian distribution

with the mean vector and covariance
matrix given by and , respectively. Similarly, we can ob-
tain the probability distribution for in the OSP model spec-
ified by (4), which is with

. Using the OSP model as a signal detec-
tion model, a standard signal detection problem can be formed
by the following binary hypothesis test

versus

(24)

where and . Following a standard derivation
in [23], a likelihood ratio test (LRT), resulting from (24)
can be obtained by

(25)

However, any color Gaussian noise can be further simplified
by a whitening process [23, pp. 58–60] and reduced to a white
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Gaussian noise with . In this case, the LRT in
(24) becomes which is
essentially specified by (8) and specified by
(11) subject to a scale constant.

B. Gaussian Maximum-Likelihood Classifier Using the
OSP Model

Once again, the OSP model is used and . Let
and represent two classes corresponding to noise and signal,
respectively. The discriminant functions associated with and

are specified by their corresponding a posteriori probability
distributions given by for . In other
words, z is assigned to class , i.e., if

, and , otherwise, i.e.,

(26)

where and , and
and are prior probabilities of and , respectively.
Equation (26) becomes the LRT in (25) with the threshold
given by . If we further assume that the prior
probabilities and are equally likely, (26) is re-
duced to the maximum-likelihood detector given by

(27)

With the Gaussian noise assumption, (27) can be calculated and
expressed as follows:

(28)

(29)

Equation (29) makes sense, since we assume that the noise is
zero-mean and the prior probabilities of the noise class and
the signal class are equally likely. Substitute for z in
(29) yields

(30)

where the left-hand side of (30) is exactly given by
(15). In this case, (30) can be considered as Gaussian discrimi-
nant function for the model.

C. Gaussian Maximum-Likelihood Estimator

With the Gaussian noise assumed in the OSP model, we can
obtain the maximum-likelihood estimate of the abundance frac-
tion by

(31)

Fig. 2. Spectra of five AVIRIS signatures.

where , and
as defined in (24). Solving (31) is equivalent

to minimizing the following Mahalanobis distance [25].

(32)

with the solution given by

(33)

Substituting and using we obtain

(34)

If the Gaussian noise is further whitened, i.e., , (34)
is reduced to

(35)

which is exactly the one derived in [8]–[11]. The abun-
dance fraction of the desired target signature estimated by

was directly obtained from the Gaussian max-
imum-likelihood estimator
which is identical to (17). The preprocessing of using to
annihilate the undesired target signatures is not necessary for

because it has been taken care of in the least squares
estimator shown in (18) (see [8]–[11]). Once again, (35) in-
cludes a constant that represents the least square
estimation error and was absent in given by (11).

D. Examples

In what follows, we conduct experiments to examine the
noise assumption used in the OSP. Two scenarios will be
simulated, white Gaussian noise versus white uniform noise
and color Gaussian noise versus white Gaussian noise.

Example 1 (White Gaussian Noise Versus White Uniform
Noise): This example demonstrates that the Gaussian noise is
an unnecessary assumption for the OSP. The set of reflectance
spectra considered in [2] was used for illustration and contained
five reflectance spectra, dry grass, red soil, creosote leaves,
blackbrush, and sagebrush. These spectra have 158 bands after
water bands were removed, as shown in Fig. 2. A signature
matrix was formed by the dry grass, red soil and creosote
leaves signatures, with their associated
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TABLE I
DETECTED ABUNDANCE FRACTIONS OF “CREOSOTE LEAVES” AT 198–202 PIXELS BY � (r) AND � (r)

TABLE II
DETECTED ABUNDANCE FRACTIONS OF “CREOSOTE LEAVES” AT 198–202 PIXELS BY � (r) AND � (r)

abundance fractions denoted by . The
simulation consisted of 401 mixed pixel vectors. We started
the first pixel vector with 100% red soil and 0% dry grass,
then began to increase 0.25% dry grass and decrease 0.25%
red soil every pixel vector until the 401st pixel vector which
contained 100% dry grass. We then added creosote leaves to
pixel vector numbers 198–202 at abundance fractions 10%
while reducing the abundance of red soil and dry grass by
multiplying their abundance fractions by 90%. For example,
after addition of creosote leaves, the resulting pixel vector 200
contained 10% creosote leaves, 45% red soil and 45% dry
grass. Two types of noise were simulated, white zero-mean
Gaussian noise with variance and white zero-mean uniform
noise with its probability density function defined on
and variance . They were added to each band to
achieve the SNR defined in [2] as 50% reflectance divided
by the standard deviation of the noise. Table I also tabulates
the abundance fractions produced by and
in detecting creosote leaves where only small least squares
errors (LSEs) between white Gaussian and white uniform noise

were observed. Nevertheless, the abundance fractions detected
by and estimated by were quite different.
Clearly, produced much more accurate estimates of
abundance fractions than did . This was because the
scale constant in was included to
effectively account for estimation error.

Example 2 (Gaussian–Markov Noise): According to the
model specified by (1) and the model, the noise is as-
sumed to be zero-mean and white. Interestingly, to the author’s
best knowledge, most of OSP-based techniques do not include
a whitening process, but still successfully achieve their goals
including Harsanyi and Chang’s OSP in [2]. The reason for
this is that due to high spectral resolution the SNR is generally
very high in hyperspectral imagery. In this case, the noise
has little impact on the OSP performance. Whether or not the
noise is white becomes immaterial. This evidence is shown in
the following experiments where the whitening process does
improve the performance, but the gain is very small.

According to the OSP model, the whitening is only per-
formed on interband spectral correlation at pixel level. In this
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(a) (b)

(c) (d)

Fig. 3. Results of � (r) and � (r) where the GMN with CC = 0:8 was/was not whitened. (a) GMN was whitened. (b) GMN was not whitened.

case, a first-order zero-mean Gaussian Markov noise with
the between-band correlation coefficient (CC) specified by

was added to each pixel vector simulated in Example 1 to
achieve various levels of SNRs. The covariance matrix of such
Gaussian–Markov noise has the form given by ,
i.e.,

...
. . .

(36)

Table II tabulates abundance fractions produced by
and along with their respective LSEs in detecting
the creosote leaves. Comparing Table II to Table I,
and performed slightly better in white nose than they

did in color noise, but the improvements were very limited.
Table II also demonstrated that the performance of
and was deteriorated as the CC was increased.
Furthermore, in order to see the effect of noise whitening,
Fig. 3 shows the results of and where the
Gaussian–Markov noise with CC was not whiten and
also whitened by using the square root matrix of
analytically [23, p. 60]. As shown, the whitening has slight
impact on the performance of and in the
sense that the abundance fractions of creosote leaves and
background signatures were detected more accurately. This is
particularly visible for . These simple experiments also
demonstrated that the OSP performance could be improved
by a whitening process, but might not be significant. So, the
payoff may not be great given that a reliable estimation of noise
covariance may be difficult to obtain.
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IV. OSP IMPLEMENTED WITH PARTIAL KNOWLEDGE

In Sections II and III, the OSP assumed the complete knowl-
edge of target signatures, . In many practical
applications, obtaining such full knowledge is generally very
difficult, if not impossible. It is particularly true when the image
background is not known. In this section, we investigate the
issue of how to implement the OSP when there is no full knowl-
edge available, specifically, for the case that we are only inter-
ested in specific targets, not image background or other natural
sources.

In order to circumvent this dilemma, Harsanyi relaxed the re-
quirement of complete knowledge for the OSP by developing an
approach, called constrained energy minimization (CEM) in his
dissertation [14]. The idea is to constrain the desired target sig-
nature while minimizing interfering effects caused by unknown
as well as undesired signal sources. Since the undesired target
signatures in are assumed to be unknown in the CEM, these
signatures cannot be annihilated by a specific operator such as

. Instead, they are suppressed along with noise in terms of
their energies. Despite the fact that the relationship between the
OSP and CEM was reported in [8], [16], and [17], intriguing re-
sults can be obtained by showing that if the CEM is given by the
same target knowledge that is provided for the OSP, the CEM
actually performs exactly as does the .

A. CEM

Let be a collection of image pixel vectors
in an remotely sensed image where for

is an -dimensional pixel vector, is the total
number of pixels in the image, and is the total number of
spectral channels. The goal is to design a finite-impulse response
(FIR) linear filter with filter coefficients ,
denoted by an -dimensional vector
that minimizes the filter output energy subject to the constraint

.
More specifically, let denote the output of the designed FIR

filter resulting from the input . Then, can be expressed by

(37)

The average energy of the filter output is then given by

(38)

where is the autocorrelation
sample matrix of the image. The CEM was developed to solve
the following linearly constrained optimization problem [26]

subject to (39)

The optimal solution to (39) can be derived in [14] and [26] by

(40)

With the optimal weight vector specified by (40) the
CEM filter, derived in [14] can be obtained by

(41)

Four special cases are of interest and described as follows.
1) (i.e., Is Orthogonal to ) and (i.e., Noise

Whitened): In this case, the noise in the image data to be pro-
cessed is whitened and assumed to be zero-mean and uncorre-
lated. So, the sample spectral correlation matrix is reduced
to the identity matrix and . As a result,
the CEM becomes a normalized spectral matched filter, that is,

. On the other hand, if the desired
target signature is further assumed to be orthogonal to , i.e.,

, then .
This implies that CEM is identical to OSP subject to a constant

. Thus, both OSP and CEM can be considered
as the same detector and reduced to a commonly used matched
filter with the designated matched signature specified by .

2) Alternative Approach to Implementing CEM: Comparing
in (41) to in (8), in (11), and
in (15), we will discover that there is a very close

relationship between and . Since the knowledge of the
undesired target signature matrix that is assumed to be known
in in , and is not available in

must estimate directly from the image
data. One way of doing so is to approximate the “ ” in the
sense of minimum LSE by that can be obtained directly
from the image data. More specifically, makes use of
the a posteriori information, to approximate the a priori
information to accomplish what , and

are able to do. The only difference is the constant .
Since both and are used only for abundance
detection, has been set to 1. To the contrary, is
an abundance estimator and the constant
is included to account for estimation error [8]–[11]. In this
case, if we replace in specified by (15) with

becomes . This suggests that
can be considered as partial knowledge version of
with the only knowledge provided by the desired signature .
In this case, the sample spectral information provided by
is used to replace the unknown signature matrix .

As noted above, the a posteriori information used in
is intended to approximate the a priori information

used in . However, the excludes the information
provided by the desired target signature which is included
in . This observation suggests that a more accurate data
sample correlation matrix used by should be the one
that removes all the pixel vectors specified by from . If we
let be such a matrix which excludes all desired target pixel
vectors specified by and be defined by

(42)

where the superscript “ ” runs through all target pixel vectors
whose signatures are specified by and indicates their re-
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spective abundance fractions contained in pixel vector . Equa-
tion (42) allows us to rewrite in (38) as

(43)

In addition, the second term at the right-hand side of (43),
can be shown to be

independent of because . Solving (39)
is equivalent to solving the following optimization problem

subject to (44)

with the optimal solution given by

(45)

where the can be obtained by simply replacing in
specified by (40) with . Therefore, technically

speaking, (45) should be a more appropriate form for the CEM
which is also demonstrated in [8, pp. 63–67]. Nevertheless,
the CEM solution outlined by (39)–(41) is still desirable for
two reasons. One is that if the number of target pixel vectors
specified by the desired signature is small, the impact of
without removing these pixel vectors will not be significant.
Another is that in many practical applications, finding all pixel
vectors that are specified by the desired signature may not be
realistic, particularly, if the is a mixed pixel signature.

3) CEM Implemented in Conjunction With : More inter-
estingly, when the is actually known, the CEM should be able
to take advantage of such knowledge to annihilate the undesired
signatures via instead of suppressing these signatures. In
this case, the in (37) will be replaced be preprocessed image
pixel, and the desired target signature is also projected
to . Consequently, the constraint and the object
function in (39) must be replaced with
and , respectively, which result in

(46)

where and the cross-
term vanishes if is zero-mean. As a consequence,
(39) becomes

subject to (47)

In order to see the relationship between the OSP and the
CEM, we use (5) to obtain the filter output SNR as follows:

(48)

So, solving (47) is equivalent to finding the solution to the fol-
lowing constrained optimization problem

subject to (49)

The solution to (49) can be easily obtained by

(50)

The CEM specified by (50) is denoted by and
called CEM implemented in conjunction with .

4) CEM Implemented in Conjunction With in White
Noise: If we further assume that the noise in (49) is white and
given by , (49) is reduced to

subject to (51)

and (50) becomes

(52)

Let the filter specified by (52) be denoted by
where the CEM assumes that noise is white and the knowledge
of the is provided a priori. Coupled with the undesired sig-
nature projector , the becomes the least
squares estimator given by (15) and the Gaussian
maximum-likelihood estimator given by (35),
respectively. This implies that if the noise is zero-mean and
white and the undesired target signatures are annihilated by

, then performs as if it is an abundance
fraction estimator.

B. TCIMF

The CEM was originally designed to detect a single target sig-
nature. If there are multiple target signatures, it must be carried
out one target signature at a time. In order to extend the CEM
to a multiple-target detection technique, a target-constrained in-
terference-minimized filter was recently developed by Ren and
Chang [15], which can be viewed as a generalization of the OSP
and CEM.

Let denote the desired target signa-
ture matrix and be the undesired target
signature matrix where and are the number of the de-
sired target signatures and the number of the undesired target
signatures, respectively. Now, we can develop an FIR filter that
passes the desired target signatures in using an unity
constraint vector while annihilating the

undesired target signatures in using an zero constraint
vector . In doing so, the constraint in

(39) is replaced by

(53)

and the optimization problem in (39) becomes the following
linearly constrained optimization problem:

subject to (54)



512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 3, MARCH 2005

TABLE III
COMPARISON OF DETECTED ABUNDANCE FRACTIONS BETWEEN � (r) AND � (r) WITH P ANNIHILATION

(a) (b)

Fig. 4. Detection results of � (r) and � (r) with dry grass, red soil, and sagebrush annihilated by P . (a) � (r). (b) � (r).

The filter solving (54) is called target-constrained interference-
minimized filter in [15] and given by

(55)

with the optimal weight vector given by

(56)

A discussion on the relationship between the OSP and the
CEM via the TCIMF can be found in [8] and [16]. In what fol-
lows, we describe more details about this relationship by con-
sidering three special cases of .

1) With and
With : In this

case, performs like . However, there
is a difference in the sense of algorithm implementation. The
former performs extraction of the desired signature and
annihilation of the undesired signatures
simultaneously, whereas the latter performs the undesired
signature annihilation using followed by the CEM,

in sequence. Therefore, despite the fact that both
filters may produce the same results, they should be considered
as separate filters. In particular, can be carried out
in real time as noted in [8] and [27].

2) With and
With : In this

case, performs like , but in the mean time, it
also suppresses all signatures other than desired and undesired
target signatures, an operation that the OSP does not do. Let

the weight vector in this case be denoted by and
its corresponding TCIMF be denoted by . As
derived in [8] and [16], the can be shown to be
equivalent to or as follows:

(57)

where , and

(58)

It should be noted that the extra constant in (58) was a result
of interference/noise suppression from the TCIMF that the OSP
does not perform.

3) and (i.e., Only the Desired Signature
Is Available): In this case, the TCIMF is further reduced to the
CEM given by

(59)

So, according to the three cases discussed above, on one hand,
the OSP and the CEM can be considered as special cases of the
TCIMF by virtue of (58) and (59). On the other hand, the OSP
can be also interpreted as a data correlation-whitened version
of the TCIMF with interference/noise suppression (58) and the
CEM is an undesired target signature-suppressed version of the
TCIMF (59). Nevertheless, there is a subtle and substantial dis-
tinction between the TCIMF and other filters such as OSP and
CEM. The TCIMF can be implemented to detect and classify
multiple targets, annihilate undesired targets and suppress un-
known signal sources in one-shot operation in real time [27],
whereas and can be only used for detec-
tion of a single target at a time.
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C. Examples

In this subsection, we conduct a comparative analysis be-
tween the OSP and the CEM with the undesired signatures an-
nihilated as they are in the OSP.

Example 3 (Comparative Study Between the Model
and the OSP Model): This example assumes that the com-
plete knowledge of target signatures is available. We study
how the undesired signatures in affect the performance of

. The same 401 simulated pixels used in Example
1 were also used in this example with added SNR 30 : 1 white
Gaussian noise so that the results of and
derived in Example 1 can be used for comparison. Two sce-
narios were studied. One is the made up of dry grass and
red soil. Table III tabulates the detection results of
and with dry grass and red soil annihilated by
along with their respective averaged LSEs. As we can see from
Table III, with the dry grass and red soil annihi-
lated performed slightly better than which suppressed
only the dry grass and red soil. However, if we further included
the sagebrush in the as another undesired signature even
if it was absent in the 401 simulated pixel vectors to repeat
the same experiment. Fig. 4 shows the results of and

with dry grass and red soil along with sagebrush
annihilated. As we can see clearly from Fig. 4,
with the annihilation of performed poorly compared to
its counterpart . This is because the signature of the
sagebrush was so close to that of creosote leaves as shown in [8]
and [28] that the annihilation of sagebrush also eliminated the
most part of the signature of creosote leaves, which resulted in
significant deterioration of signal detectability of .
This example demonstrated a significant difference between
annihilation of undesired signatures and suppression of unde-
sired signatures.

Example 4 (Partial Knowledge): The same 401 simulated
pixel vectors used in Example 1 were once again used for the
following experiments except that the blackbrush and sagebrush
were added to pixel vector numbers 98–102 and pixel numbers
298–302, respectively, at abundance fractions 10%, while
reducing the abundance of red soil and dry grass by multiplying
their abundance fractions by 90%. In this case, there were three
target signatures of interest, blackbrush, creosote leaves and
sagebrush with two background signatures, red soil, and dry
grass. In this example, the complete knowledge of targets of
interest, blackbrush, creosote leaves, and sagebrush was also
assumed to be available and the background signatures, soil
and dry grass were unknown and considered to be interferers
as interference. We also let be the desired target signa-
ture, the consist of the other two known target signatures.
Like Example 3, the CEM was implemented in conjunction
with/without and , respectively.
Fig. 5 shows the results of , and

where figures labeled by (a), (b), and (c) were
detection results of blackbrush, creosote leaves, and sagebrush,
respectively, with the formed by the other two signatures
which served as undesired signatures. As shown in [8] and
[28], the three target signatures, blackbrush, creosote leaves,

and sagebrush were very similar. As a consequence, annihi-
lating any two of these three signatures would certainly have
tremendous impacts on the detection performance of the third
signature. The results of Fig. 5 confirmed what we expected.
That is, detecting one signature would also detect the other
two signatures. Additionally, it also significantly deteriorated
the ability of in estimating abundance fractions as
shown in Fig. 5 where the estimated abundance fractions of
each of the three signatures were far more being accurate
as tabulated in Table IV. Surprisingly, the detection of cre-
osote leaves was quite different from that of blackbrush and
sagebrush, as and were implemented. The
detection of creosote leaves also detected significant amounts
of blackbrush and sagebrush signatures by suppressing the
background signatures even if it was not supposed to do so.
The detection of blackbrush and sagebrush showed very similar
results and also detected visible amounts of the three signatures
except that different amounts of abundance fractions of the
background signatures, dry grass and red soil were detected.
Similar phenomena were also observed from the detection
results of and where detection of one
signature also picked up the other signatures. Because the
spectra of these three signatures were very similar, the used
in also annihilated part of the desired signature
before the detection of the desired signature. Consequently,

performed poorly compared to .
Since the soil and dry grass were used as interference, the

TCIMF was implemented in two scenarios. One was with
a single desired target signature and dry grass red soil ,
and the other was with blackbrush creosote leaves
sagebrush and dry grass red soil . Fig. 6 shows their
detection results of , where Fig. 6(a)–(c) was de-
tection results of blackbrush, creosote leaves, and sagebrush,
respectively, and Fig. 6(d) was the simultaneous detection
result of the three signatures blackbrush, creosote leaves, and
sagebrush with blackbrush creosote leaves sagebrush .
As indicated previously, when the TCIMF was implemented
with a single target signature designated as the desired sig-
nature , it would perform like . This was
verified by comparing the results of in Figs. 5 to
6(a)–(c). Interestingly, it was not true as shown in Fig. 6(d)
when was implemented with blackbrush
creosote leaves sagebrush and dry grass redsoil where
it performed significantly better than .

V. OSP IMPLEMENTED WITHOUT KNOWLEDGE

As the OSP was originally developed in [2], it required com-
plete knowledge about the image endmembers present in the
image data. Unfortunately, such requirement is seldom satisfied
in reality. In order to resolve this issue, two approaches were de-
veloped previously. One is to generate desired complete knowl-
edge directly from the image data in an unsupervised manner
so that the obtained unsupervised knowledge can be used as if
it was provided a priori [8], [13] to make the model ap-
plicable where the undesired target signature projector can
be constructed from the generated . Due to the fact that such
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Fig. 5. Detection results of � (r); � (r); � (r), and � (r).

TABLE IV
COMPARISON OF DETECTED ABUNDANCE FRACTIONS BY � (r); � (r); � (r), AND � (r) WITH P ANNIHILATION

generated unsupervised knowledge may not be accurate, an al-
ternative approach is to implement the OSP without appealing
for unsupervised knowledge. One such approach is the CEM
described in Section IV-A where only the desired target knowl-
edge, was required. Instead of trying to find unknown signa-
tures in for annihilation, the CEM suppresses all signatures

other than the signature of interest. In order to accomplish that,
the CEM makes use of the inverse of the sample correlation ma-
trix, to approximate the complete knowledge provided by

in the OSP. As a result, the OSP and the CEM can be re-
lated by (58) and (59) using the TCIMF as a bridge. Another
approach is to implement the OSP without prior knowledge. As
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(a) (b)

(c) (d)

Fig. 6. Detection results of � (r). (a) d = blackbrush, (b) d =
creosote leaves, (c) d = sagebrush, (d) D = [blackbrush; creosote; leaves;
sagebrush].

noted, the model requires the knowledge of the desired
target signature and the undesired target signature matrix, .
When both the and the are not available, the OSP must
be implemented whatever it can obtain directly from the data.
According to (58) and (59), when the knowledge about the
is not available, the inverse of the sample spectral correlation
matrix, can be used to approximate . Moreover, if the
knowledge of the is further not provided, the only available
information that can be used for the OSP is the image pixel .
In this case, the matched signatures used in the OSP must be
replaced by the . So, substituting and for and in
(11), respectively, results in a new filter, which can be used for
anomaly detection. Such a filter is referred to as OSP anomaly
detector (OSPAD), denoted by and given by

(60)

It should be noted that if we replace the in the CEM in (41)
with the image pixel , the resulting form would be the constant
1 for all the image pixel , i.e., . This
is because the CEM performs as an estimator rather than a de-
tector as the OSP does. Since no desired signature needs to
be estimated, the quantity of that is included in
the CEM is to account for the estimation accuracy varies with
the image pixel . Therefore, the CEM cannot be used to derive
for anomaly detection as we did for the OSP in (60). That also
explains why the OSP has better generalized properties than the
CEM, and the CEM can be considered as partial-knowledge ver-
sion of the OSP.

Interestingly, if we replace and in the with
and where and are the sample mean and the

sample covariance matrix, the resulting filter turns
out to be the well-known anomaly detector, referred to as RX
detector and also known as Mahalanobis distance [25]

(61)

that was developed by Reed and Yu [18]. If we once again
replace the matched signature in (60) and (61) with the

-dimensional unity vector

becomes so-called low probability detection (LPD),
in [14] and [29] given by

(62)

which was developed in Harsanyi’s dissertation [14] and uni-
form target detector

(63)

which was derived in [8]. More details about and
can be found in [8] and [30].

As discussed in Section IV, we may sometimes have par-
tial knowledge about target signatures that are not wanted, such
as background. In this case, we may think that removing this
knowledge prior to anomaly detection could improve anomaly
detectability. As will be explained later, this is not necessarily
true.

Following a similar treatment in Section IV, suppose that
the knowledge about is provided. We can implement the

in conjunction with undesired signature annihilator
in the same way that it is implemented in the to re-

move the undesired target signatures before anomaly detection.
The resulting detector is called the -OSP anomaly detector
( -OSPAD), defined by

(64)

Similarly, the RXD can be also implemented in conjunction with
, called -RXD and denoted by as follows:

(65)

Surprisingly, according to the conducted experiments, the
, and the will be shown to perform very

closely regardless of whether or not is included in detection.
This is because anomaly detectors are generally designed to ex-
tract pixels whose signatures spectrally distinct its surroundings
rather than suppress signatures. Another reason is that can
be viewed as an approximation of . Therefore, an additional
inclusion of does not improve the performance of the

and the , both of which already perform
a similar task to that is carried out by in (64)–(65).
So, in this paper, only experiments for the and the

will be presented.
Example 5 (Anomaly Detection): In this example, several

experiments were conducted to evaluate the spec-
ified by (60) and the specified by (61). The same 401
simulated pixel vectors with added SNR 30 : 1 white Gaussian
noise in Example 1 were used to detect the creosote leaves as
an anomalous target. Table V tabulates the abundance fractions
produced by the , and the in detection of
creosote leaves when the pixels of the creosote leaves with abun-
dance 10% were expanded from one pixel (pixel number 200),
three pixels (pixel numbers 199, 200, 201), 5 pixels (pixel num-
bers, 198–202) to 11 pixels (pixel numbers 195–205). As we
can see from Table V, the performed slightly better
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TABLE V
ABUNDANCE FRACTIONS DETECTED BY OSPAD AND RXD IN FIG. 12

Fig. 7. Detection results of creosote leaves at pixel number 200 by � (r)
and � (r) with various SNRs. (a) SNR 10 : 1. (b) SNR 20 : 1. (c) SNR 30 : 1.

than the . As a matter of fact, according to our experi-
ments, in order for the creosote leaves to qualify for an anoma-
lous target, the number of pixels should not exceed 3. Figs. 7 and
8, also show how SNR (10 : 1, 20 : 1, 30 : 1) and abundance frac-
tions (10%, 20%, 30%) affected the performance of anomaly de-
tection for the and the , respectively, where
the higher the SNR, the better the anomaly detection, and the
more the abundance fractions of anomaly, the better the anomaly
detection. From Table V and Figs. 7 and 8, both the
and the performed comparably in terms of detected
abundance fractions.

Fig. 8. Detection results of creosote leaves at pixel number 200 by the
� (r) and the � (r) with various abundance fractions. (a) Abundance
fraction 10%. (b) Abundance fraction 20%. (c) Abundance fraction 30%.

The next experiment was designed to see how many anom-
alies could be detected as distinct targets by the
and the if the same 401 simulated pixels with added
SNR 30 : 1 white Gaussian noise in Example 1 were also used.
Table VI tabulates the detection results of the and the

where two of three target signatures, blackbrush, cre-
osote leaves, and sagebrush were selected with same abundance
10% at pixel number 100 and pixel number 300. As we can see
from Table VI, the results were not good, but the pixel number
300 was always detected. Interestingly, if the three target signa-
tures blackbrush, creosote leaves, and sagebrush were present at
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TABLE VI
ABUNDANCE FRACTIONS OF TWO SIGNATURES DETECTED BY

� (r) AND � (r)

TABLE VII
ABUNDANCE FRACTIONS OF THREE SIGNATURES DETECTED BY

� (r) AND � (r)

pixel numbers 100, 200, and 300 with the same abundance 10%,
Table VII, tabulates the detection results of the and
the where both detectors failed to detect these three
targets. This implied that among the 401 simulated pixels, the

and the could only detect two types of dis-
tinct anomalies, but no more than two. The investigation of the
issue of anomaly detection on the size and signatures of anom-
alies is beyond the scope of this paper. This experiment only
provides evidence that anomaly detection cannot be blindly im-
plemented, and some extra care must be taken. However, a de-
tailed study and performance analysis on this issue can be found
in [31] and [32].

VI. CONCLUSION

The OSP has become a standard hyperspectral imaging
technique [33] that can be used in many versatile applications.
Despite the fact that various relationships among the OSP, the
CEM, and the RXD have been studied in [8], [16], and [17], this
paper is accomplished as a consequence of many interesting
results derived from the OSP that were not explored in [8], [16],
and [17]. It revisits the OSP from several signal processing
perspectives and offer many insights into its design rationale
that have not been investigated previously. In particular, it
shows that the OSP can be derived from various view points
of signal detection, linear discriminant analysis, and parameter
estimation where the least squares OSP is essentially equivalent
to the least squares linear spectral mixture analysis via the
proposed OSP model. It further studies effects of the Gaussian
noise and white noise assumptions on the performance of the
OSP. Finally, it derives various forms of the OSP when the
OSP is provided by different levels of information, where some
well-known and popular filters such as the CEM, the TCIMF,
and the RX anomaly detector can be considered as members of
the OSP family. As a concluding remark, in order to investigate
various assumptions, only computer simulations have been used
to substantiate the results. Since many experiments conducted
based on real hyperspectral images using various forms of the

OSP have been reported in the literature and can be also found
in [8], image experiments are not included in this paper.
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