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Abstract—This paper presents a novel band selection-based
feature characterization technique for a hyperspectral signature,
which is referred to as variable-number variable-band selection
(VNVBS). Since a hyperspectral signature can be uniquely char-
acterized by its spectral profile, its feature characterization can be
achieved by selecting appropriate bands from the original set of
spectral bands, and the number of bands to be selected is totally
determined by its original spectral shape. As a result, two hyper-
spectral signatures may require different sets of bands for spectral
feature characterization. Therefore, the proposed VNVBS allows
one to select a different number of variable bands in accordance
with the hyperspectral signature to be processed. In order for
the VNVBS to select an appropriate subset of bands for a hy-
perspectral signature, a new band prioritization criterion (BPC),
which is referred to as orthogonal subspace projector based BPC,
is derived. It assigns a different priority score to each spectral
band of a hyperspectral signature such that various features can
be captured by the VNVBS. Accordingly, the VNVBS can be inter-
preted as a spectral feature extraction technique for hyperspectral
signature characterization. Finally, experiments using two data
sets are conducted to demonstrate that the VNVBS can improve
the performance of the hyperspectral signature characterization.

Index Terms—Band prioritization (BP), hyperspectral-
signature characterization, orthogonal subspace projection based
BP criterion (OSP-BPC), variable-number variable-band selec-
tion (VNVBS).

I. INTRODUCTION

HYPERSPECTRAL data are collected by hundreds of
contiguous and highly correlated spectral bands. Conse-

quently, the same spectral bands that are used to acquire two
different hyperspectral signatures may not provide the same
level of signature information. Furthermore, recent advances in
sensor technology have made it possible for one single sensor
data to be acquired by more than hundreds or thousands of
spectral channels, e.g., ultraspectral data. Of particular interest
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is the chemical/biological (CB) defense for bioterrorism where
the CB data available for analysis are generally spectral data
rather than image data. However, it also comes at a price
that such wealthy spectral information is highly correlated.
Consequently, using all the hundreds or thousands of spectral
channels might not be a good choice in preserving the spectral
information since a significant and crucial piece of information
of interest may be only provided by a very narrow range of
spectral coverage which could be overwhelmed by other dom-
inating spectral channels. For example, the crucial information
of chemical data is provided by the thermal range, and the
biological data are determined by their distinct protein spectral
profiles which are usually very small and can be only captured
by very narrow diagnostic spectral channels. Therefore, the
information provided by their spectral profiles becomes vital,
and the band selection (BS)-based spectral signature analysis
and characterization seem to be the most effective means to
address this issue.

BS has been widely used in remote sensing image analysis
for various reasons [1]–[5]. To the authors’ best knowledge,
most of the existing BS techniques are developed for images
where the number of bands is fixed and the bands selected
for each image pixel are identical. Unfortunately, a direct
application of such image-based BS to the single spectral
signature analysis and characterization seems not to work due
to the following two reasons. One is that no sample spectral
information among pixels that has been used by image-based
BS is also available for a hyperspectral signature. The other is
that a different hyperspectral signature may require a different
number of bands as well as different spectral bands to charac-
terize its spectral profile. More specifically, in order to charac-
terize a spectral signature effectively, a variable band number
and variable bands should be used for the spectral signature
analysis. This paper takes up this challenging task and presents
a new concept, which is referred to as variable-number variable-
band selection (VNVBS) with its main focus placed on a single
hyperspectral signature rather than a hyperspectral image.

There are two major differences between our proposed
VNVBS and the existing BS techniques. First, the BS tech-
niques that are commonly used in remote sensing image
processing are generally image-based approaches. The BS is
developed by exploring the correlation among spectral images.
By contrast, the VNVBS only deals with the single hyper-
spectral signatures which may come from a database or a
spectral library, not an image. As a result, there is no corre-
lation among image pixels that can be used by the VNVBS.
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Instead, the only available information that can be used by
the VNVBS is the spectral band-to-band correlation within
a single hyperspectral signature. Therefore, compared to the
image-based BS which deals with a 3-D image cube, the
VNVBS actually operates on 1-D hyperspectral signatures,
and thus, it can be considered as 1-D signature-based BS.
Second, the band numbers and the bands selected for each
individual image-pixel vector by the conventional image-based
BS are always fixed and identical. On the contrary, the VNVBS
selects a variable band number and variable bands for each
of the hyperspectral signatures to be processed. In doing so,
two key issues must be addressed as follows: 1) “How many
bands are required for the VNVBS to select for a hyperspec-
tral signature?;” and 2) “what are these particularly selected
bands?” Both of these issues can be simultaneously addressed
by a new approach proposed in this paper, which is referred
to as orthogonal-subspace-projector-based band prioritization
criterion (OSP-BPC) along with the so-called reference sig-
nature. The OSP-BPC decomposes a hyperspectral signature s
to be processed into two OSP components with respect to the
reference signature from which a score for each particular band
can be derived for prioritization. By virtue of the OSP-BPC,
the original band set Ω of a hyperspectral signature can be
rearranged and divided into two disjoint sets, which are denoted
by Ω⊥

s and Ωs, in accordance with the OSP-BPC assigned
priority score for each band. Only those bands derived from Ω⊥

s

have higher priorities than those in Ωs. Since the bands from
Ω⊥

s vary with the hyperspectral signature s to be processed, two
different hyperspectral signatures may result in different sets
of Ω⊥

s because of the following: 1) the number of bands to be
selected is different; and 2) the selected bands are also different.

One interesting finding is noteworthy. The VNVBS can be
used as a feature selection method. Compared to other tradi-
tional spectral similarity measures such as Euclidean distance
(ED), Spectral Angle Mapper (SAM) [6], [7], and also spectral
information divergence (SID) [6], [7] which utilizes all the
full-band information, the VNVBS judiciously selects bands
that can best describe the spectral characterization in the sense
of OSP. As a consequence, it can remove redundant spectral
information while retaining vital and crucial information to
improve the performance in spectral signature analysis and
characterization.

The remainder of this paper is organized as follows.
Section II derives an OSP-BPC, and Section III presents a
new technique, VNVBS is developed. Section IV conducts
experiments for the VNVBS in applications of hyperspectral-
signature characterization, such as classification, identification,
and discrimination. Section V provides some general guidelines
on the selection of reference signature, and Section VI con-
cludes some remarks.

II. ORTHOGONAL SUBSPACE PROJECTION-BASED

BAND PRIORITIZATION CRITERION

The OSP approach has been widely used for hyperspectral
target detection and classification [8]. It extends a standard
signal-detection model by dividing the signatures of interest
into two types, called desired target signature d, which is to

Fig. 1. Geometric interpretation of OSP.

be detected, and undesired target signatures, which are to be
eliminated. The performance in detecting d can be improved
by eliminating the undesired signatures prior to the detection of
d. This section extends the OSP concept to a BPC.

Assume that U is the undesired signature matrix formed
by placing all the undesired target signatures as its column
vectors. In order to eliminate all signatures in the U, a projector
developed in [8] can be used for this purpose, which is given by

P⊥
U = I − UU# (1)

where U# = (UTU)−1UT is the pseudo-inverse of U, and I
is an identity matrix. Applying P⊥

U to a hyperspectral signature
s leads to a new signature denoted by ŝ defined as follows:

ŝ = P⊥
Us = (I − UU#)s (2)

where the undesired signatures in U have been eliminated from
the original signature s, and s has been projected onto the
subspace P⊥

U, becoming ŝ. The geometric relationship between
s, P⊥

U and ŝ can be interpreted in Fig. 1.
By taking advantage of the concept of OSP outlined by

(1) and (2), a hyperspectral signature can be decomposed into
two orthogonal projection components. After this OSP, the
spectral bands of a hyperspectral signature can be ranked and
selected according to their priorities measured by an OSP-based
criterion, referred to as OSP-BPC, which is presented in detail
as follows.

Assume that s = (s1, s2, . . . sL)T is a hyperspectral signa-
ture to be processed and r = (r1, r2, . . . rL)T is the so-called
reference signature against which the s is compared, where L
denotes the total number of bands used to acquire the signature
s. Two orthogonal projectors based on the reference signature
r, Pr and P⊥

r can be further defined as follows [8]:

Pr = rr# (3)

P⊥
r = I − Pr (4)

where r# = (rTr)−1rT is the pseudo-inverse of r. By means
of (3) and (4), the hyperspectral signature s can be projected
onto two orthogonal subspaces P⊥

r and Pr and decomposed into
two orthogonal projection components s⊥r and sr, which are
defined by

s⊥r =P⊥
r s = (I − rr#)s

sr =Prs = (rr#)s. (5)
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In general, the reference signature r is selected in such a way
that it shares some information with the signature s to be
processed so that s⊥r will be nonempty when s is projected onto
P⊥

r and Pr via (5). However, it should be noted that, on some
occasions, the selected reference signature r may turn out to
be either parallel to the signature s which results in s⊥r = ∅ or
orthogonal to the signature s which results in sr = ∅.

Accordingly, a new OSP-based criterion referred to as
OSP-BPC can be derived as follows.

A. OSP-BPC Algorithm

1) Pre-process the signature s by expanding the s into
(L + 4)-dimensional column vector by adding two zeros
to both the head and the tail of s into the form of
(0, 0, s1,s2, . . .,sL, 0, 0).

2) Assume that the spectral value on the lth band of the sig-
nature s is sl, l = 1, 2, . . . , L. Group its four neighboring
bands sl−2, sl−1, sl+1, and sl+2 from [0, 0, s, 0, 0] to
form a vector centered at sl which is defined by

s5
l = (sl−2, sl−1, sl, sl+1, sl+2)T. (6)

Similarly, for the l-band of two orthogonal components
s⊥r and sr, which are denoted by s⊥rl

and srl
, we can also

define (s⊥r )5l and (sr)5l as follows:

(
s⊥r

)5

l
=

(
s⊥rl−2

, s⊥rl−1
, s⊥rl

, s⊥rl+1
, s⊥rl+2

)T

(sr)5l =
(
srl−2 , srl−1 , srl

, srl+1 , srl+2

)T
. (7)

3) Calculate the inner products between the vector s5
l and

the two vectors (s⊥r )5l and (sr)5l defined in (7) by〈
s5
l ,

(
s⊥r

)5

l

〉
=

(
s5
l

)T (
s⊥r

)5

l〈
s5
l , (sr)

5
l

〉
=

(
s5
l

)T (sr)5l . (8)

4) For the lth band sl, there is a pair of priority scores
associated with it, which is defined by(〈

s5
l ,

(
s⊥r

)5

l

〉
,
〈
s5
l , (sr)

5
l

〉)
. (9)

5) Based on (9), the original band set Ω = {1, 2, . . . , L} can
be divided into two disjoint subsets, denoted by Ω⊥

s and
Ωs, which are defined by

Ω⊥
s =

{
l :

〈
s5
l ,

(
s⊥r

)5

l

〉
>

〈
s5
l , (sr)

5
l

〉
, l = 1, 2, . . . L

}
Ωs =

{
l :

〈
s5
l ,

(
s⊥r

)5

l

〉
<

〈
s5
l , (sr)

5
l

〉
, l = 1, 2, . . . L

}
(10)

such that Ω⊥
s collects those bands that contain more

information in P⊥
r than in Pr in the sense of orthogonal

projection, while the set Ωs does oppositely.

The motivation of using four adjacent neighboring bands in
(6) comes from the image processing which uses four- and
eight-neighbor connectivities to account for interpixel spatial
correlation within a 3 × 3 window [9]. This idea is extended to

the spectral domain to capture the interband correlation within
a five-band 1 × 5 window. Of course, the same idea can also
be applied to seven-band, nine-band windows, etc. However,
based on our experiments, using the five-band 1 × 5 window
seems to be the best compromise because using a window of
a band number greater than five has little improvement on the
performance at the expense of computational complexity, while
using the five-band window, indeed, improves significantly over
using the three-band window.

III. VARIABLE-NUMBER VARIABLE-BAND SELECTION

The pair of 〈s5
l , (s

⊥
r )5l 〉 and 〈s5

l , (sr)
5
l 〉 defined in (8), associ-

ated with the lth band sl, is considered as the two correlated
prioritization scores of the lth band, which are essentially
two pieces of information contained in the two orthogonal
subspaces P⊥

r and Pr. Due to the principle of orthogonality
[10], the information in P⊥

r generally provides innovative in-
formation about the signature s with respect to the reference
signature r. Therefore, only the 〈s5

l , (s
⊥
r )5l 〉 in (8) is used to

rank the bands in Ω according to the decreasing order of its
magnitude. The resulting 〈s5

l , (s
⊥
r )5l 〉-priority-ranked band set

can be further broken up into two disjoint sets Ω⊥
s and Ωs,

which are determined by (10). By realigning Ω⊥
s and Ωs, a new

priority-ranked band set will be generated for further BS, which
is denoted by Ω∗

s

Ω∗
s =

(
Ω⊥

s ,Ωs

)
. (11)

In what follows, the VNVBS is developed by only selecting
those bands coming from the set Ω⊥

s , based on the pair of
priority scores defined by (9). Since the size of the set Ω⊥

s

varies with the signature s to be prioritized, the number of
bands to be selected for various hyperspectral signatures is not
fixed a priori but rather determined by the comparison between
〈s5

l , (s
⊥
r )5l 〉 and 〈s5

l , (sr)
5
l 〉 via (10).

In the hyperspectral-signature characterization, a frequently
encountered application is signature discrimination, which in-
volves two different signatures, which are denoted by s1 and s2,
respectively. In this case, the VNVBS is implemented through
the following steps, referred to as VNVBS-based hyperspectral
signature discrimination (VNVBS-HSD).

A. VNVBS-Based Hyperspectral Signature Discrimination

1) Given two signatures to be discriminated s1 and s2, select
a reference signature r on which both s1 and s2 are
orthogonally projected. The issue of how to select the r
will be discussed in detail at the end of Section IV.

2) Obtain the priority-ranked band sets produced by the s1

and s2, respectively, based on (3)–(10), with the results
denoted by Ω∗

s1
= (Ω⊥

s1
,Ωs1) and Ω∗

s2
= (Ω⊥

s2
,Ωs2), re-

spectively. A geometric interpretation of the relation-
ship between Ω∗

s1
= (Ω⊥

s1
,Ωs1) and Ω∗

s2
= (Ω⊥

s2
,Ωs2) is

shown in Fig. 2.
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Fig. 2. Geometric interpretation of the relationship between Ω∗
s1

= (Ω⊥
s1

, Ωs1 ) and Ω∗
s2

= (Ω⊥
s2

, Ωs2 ).

3) Find a new band set, denoted by Ω⊥(s1, s2), which is
generated by Ω⊥

s1
and Ω⊥

s2
as follows:

Ω⊥(s1, s2) =
{

Ω⊥
s1

∩ Ω⊥
s2

if Ω⊥
s1

∩ Ω⊥
s2


= ∅

Ω⊥
s1

∪ Ω⊥
s2

if Ω⊥
s1

∩ Ω⊥
s2

= ∅.
(12)

In other words, Ω⊥(s1, s2) is considered as those bands
used for discrimination between the signatures s1 and
s2 so that Ω⊥(s1, s2) can best preserve the information
required by s1 and s2 for the signature discrimination.

4) Generate two new signatures s∗1 and s∗2 for both signatures
s1 and s2 based on the bands selected by (12).

5) Use a spectral similarity measure such as spectral angle
SAM, SID, or ED to perform the signature discrimination
on the signatures s∗1 and s∗2 obtained in step 4).

A note on the criterion specified by (12) is worthwhile.

1) For the case of nonempty intersection, i.e., Ω⊥
s1

∩ Ω⊥
s2


=
∅, Ω⊥

s1
∩ Ω⊥

s2
is chosen due to the fact that it carries more

critical spectral information than Ω⊥
s1

∪ Ω⊥
s2

in discrim-
ination between s1 and s2 based on the following two
reasons.
a) Since Ω⊥

s1
and Ω⊥

s2
retain more crucial local spectral

information of s1 and s2 in P⊥
r than that in Pr in

terms of discriminating spectral signatures s1 and s2

via orthogonal projection, the bands in Ω⊥
s1

∩ Ω⊥
s2

are
the smallest band set that can achieve the best possible
spectral discrimination between s1 and s2.

b) On the other hand, if Ω⊥
s1

∪ Ω⊥
s2

is chosen instead of
Ω⊥

s1
∩ Ω⊥

s2
, the bands in ([Ω⊥

s1
∪ Ω⊥

s2
] − [Ω⊥

s1
∩ Ω⊥

s2
])

may potentially reduce the discrimination power be-
tween s1 and s2 due to the fact that the bands in Ω⊥

s1
−

(Ω⊥
s1

∩ Ω⊥
s2

) and Ω⊥
s2

− (Ω⊥
s1

∩ Ω⊥
s2

) are spectrally
representative for either s1 or s2, but not for both.
For example, using the bands from Ω⊥

s1
− (Ω⊥

s1
∩ Ω⊥

s2
)

may be effective in better differentiating s1 from s2,
but not necessarily the other way around because
the bands in Ω⊥

s1
− (Ω⊥

s1
∩ Ω⊥

s2
) are not part of Ω⊥

s2
and cannot effectively discriminate s2 from s1 as
those bands in Ω⊥

s2
do. Similarly, it is also true for

the bands in Ω⊥
s2

− (Ω⊥
s1

∩ Ω⊥
s2

) which have better
discrimination of s2 from s1, but do not necessarily
have better discrimination of s1 from s2. Therefore,
if bands in both band sets Ω⊥

s1
− (Ω⊥

s1
∩ Ω⊥

s2
) and

Ω⊥
s2

− (Ω⊥
s1

∩ Ω⊥
s2

) are selected, these bands may be
able to discriminate one from another but may be also
very likely to deteriorate the discrimination between
s2 and s1. In other words, an improvement upon the
discrimination of s1 from s2 using the bands from
Ω⊥

s1
− (Ω⊥

s1
∩ Ω⊥

s2
) may impair the discrimination of

s2 from s1 and vice versa. We have conducted a
comprehensive study on comparison between using
Ω⊥

s1
∪ Ω⊥

s2
and Ω⊥

s1
∩ Ω⊥

s2
which demonstrated that

selecting bands from Ω⊥
s1

∩ Ω⊥
s2

outperformed those
selected from Ω⊥

s1
∪ Ω⊥

s2
in discrimination between s1

and s2 in both ways, i.e., discrimination of s1 from s2

as well as the discrimination of s2 from s1.
2) For the empty-intersection case, i.e., Ω⊥

s1
∩ Ω⊥

s2
, since

no bands are in common, the best way to achieve both
discrimination of s1 from s2 and discrimination of s2

from s1 is to select all the bands in Ω⊥
s1

∪ Ω⊥
s2

for
Ω⊥(s1, s2), which turns out to be the smallest band set
in discrimination between s1 and s2.

In order to have a better discrimination between s1 and s2, it
must achieve both better discrimination of s2 from s1 and better
discrimination of s2 from s1. Taking the intersection Ω⊥

s1
∩ Ω⊥

s2
is the only way to accomplish our task while retaining the
smallest possible band set.

Another note is also worth being mentioned. Despite the fact
that the VNVBS-HSD is developed to discriminate one signa-
ture from another, its functionality is certainly not limited to the
signature discrimination. For example, if a signature is known
to be detected, the VNVBS-HSD turns out to be a detector
for that particular signature. On the other hand, if a group of
signatures of interest is available for classification, then the
VNVBS can be used as a signature classifier. Furthermore, if
there is a database to be used for signature identification, then
the VNVBS can become a signature identifier.

Finally, we summarize the differences of the proposed
VNVBS from the commonly used image-based BS techniques
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[1]–[4] which are generally performed via various criteria
such as variance, signal-to-noise ratio (SNR), and information
divergence.

1) The VNVBS only involves the spectral correlation among
individual bands within a hyperspectral signature as op-
posed to the conventional image-based BS techniques
[1]–[4], which consider each individual band image as
a whole. Therefore, the VNVBS must rely only on the
interband spectral correlation to select bands comparing
to the conventional image-based BS techniques which
make use of the spectra correlation among image pixels
to select bands. As a result, the number of bands to
be selected by the VNVBS varies with the signature to
be processed, while the number of bands chosen by the
conventional image-based BS techniques is fixed for all
image pixels.

2) The BPC used in the VNVBS is OSP-BPC, which is
easy and simple to implement. It also deviates from the
commonly used BS criteria such as variance, SNR, and
information divergence [1]–[4].

3) The VNVBS can be performed on the hyperspectral
signatures with different numbers of bands. In doing
so, two approaches are suggested and demonstrated in
Section IV-B3 for the CB data whose band numbers are
different. One is to take their common bands to yield the
same number of bands. The other is to take all bands
together while performing zero interpolation if the bands
in one signature are missing in the other signature. As
a result, the two hyperspectral signatures acquired by
different numbers of spectral bands can be prioritized by
the OSP-BPC and characterized by the VNVBS in terms
of their spectral features. Although these two strategies
can also be applied to any spectral similarity measure,
there is no follow-up prioritization for further spectral
feature characterization as what the OSP-BPC does. This
benefit cannot be gained by any band-selection technique
developed for images.

IV. EXPERIMENTS

In order to demonstrate the utility of the proposed VN-
VBS in hyperspectral signature characterization, two com-
pletely different data sets were used for experiments, and
two particular applications, which are signature discrimination
and signature classification/identification, were of interest and
further considered for comparative analysis with the SAM
and the SID that are used as spectral similarity measures.
Nevertheless, other applications can also be explored for the
VNVBS. Due to the limited space, they are not included in
this paper.

A. Hyperspectral Data

The first data set is coming from the five Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) reflectances, which
are blackbrush, creosote leaves, dry grass, red soil, and sage-
brush with their spectra shown in Fig. 3.

Fig. 3. Reflectances of creosote leaves, blackbrush, sagebrush, drygrass, and
red soil.

TABLE I
Ω⊥

s AND Ωs FOR BLACKBRUSH, CREOSOTE LEAVES, AND SAGEBRUSH

Each of these five spectral signatures has 158 bands af-
ter water bands were removed and can be considered as a
158-D hyperspectral signature where each signature component
is specified by a particular spectral wavelength. Based on Fig. 3,
the spectral profiles of blackbrush, creosote leaves, and sage-
brush are close among each other. In particular, the creosote
leaves and sagebrush even have very close spectral values. A
detailed quantitative analysis among these three signatures can
be found in [5]. In this section, these five signatures constitute
a spectral library or database to be used to evaluate the perfor-
mance of the VNVBS in two different applications, which are
the signature discrimination the classification/identification.

1) Signature Discrimination: In this case, three similar sig-
natures, blackbrush, creosote leaves, and sagebrush, were used
for discrimination, and the reference r, as specified by (3)
and (4), was chosen to be a signature obtained by aver-
aging these three signatures (blackbrush + creosote leaves +
sagebrush)/3. Table I lists the bands that are prioritized by
the VNVBS based on (9), where the original set of bands was
divided into two subsets of bands Ω⊥

s and Ωs via (10).
As noted in Table I, the Ω⊥

s obtained for creosote leaves
from the VNVBS via orthogonal-subspace decomposition
was empty. This case occurred when either 〈s5

l , (s
⊥
r )5l 〉 >

〈s5
l , (sr)

5
l 〉 for all l ∈ {1, 2, . . . , L} or 〈s5

l , (s
⊥
r )5l 〉 < 〈s5

l , (sr)
5
l 〉

for all l ∈ {1, 2, . . . , L}. However, it should be noted that
whether or not a particular band is removed or preserved is
completely determined by how a reference signature is selected
and how the local spectral correlation described by (10) is
involved among its four neighboring bands.

It is interesting to note that the VNVBS groups four band
neighbors of a spectral band to generate a five-band vector
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TABLE II
DISCRIMINATION AMONG BLACKBRUSH, CREOSOTE LEAVES,

AND SAGEBRUSH USING (12) AND TABLE I

TABLE III
RESCALED DISCRIMINATION AMONG BLACKBRUSH, CREOSOTE

LEAVES, AND SAGEBRUSH USING TABLE II

to capture its local spectral shape features rather than the
spectral global tendency of a hyperspectral signature across the
entire wavelengths. If we carefully compare the flat regions
and edges of blackbrush, creosote leave, and sagebrush, the
local spectral shapes captured by flat wavelengths of these three
signatures are very close to each other, while the edges are
much more different from each other. This finding explains why
the VNVBS favored local edges rather than global flat regions.
According to the OSP-BPC criterion, the global flat regions
seem to contain redundant information which has no benefit
to discrimination compared to the local edges which contain
spectral characteristics that generally improve distance among
the three signatures in terms of spectral similarity.

Table II tabulates the values of the SAM and the SID applied
to the three VNVBS-generated new signatures of blackbrush,
creosote leaves, and sagebrush by (12), where the upper and
lower values were obtained by the original full band set and
VNVBS, respectively, and the least discrimination results are
shaded.

It is worth noting that the discriminatory power of a spectral
measure is not determined by the magnitude of its spectral-
similarity value but rather by the relative magnitude of one
spectral value to another value. Therefore, even though the
values of SAM and SID obtained by full bands were slightly
larger than those obtained by the VNVBS, the ratio of one
SAM (or SID) value to another SAM (or SID) value using the
VNVBS was greatly increased compared to that using the full
bands. In order to see this more clearly, we normalize the least
discrimination results, which are the SAM or the SID values
between blackbrush and sagebrush, to 1, then a new table can
be generated in Table III from Table II, where it clearly shows
that the relative discrimination between the two signatures was
greatly improved by the VNVBS.

The aforementioned simple experiment demonstrated that
the relative discrimination between these three signatures can
be significantly increased if the VNVBS was used. This insight
provides evidence that, in order to measure the effectiveness
of the VNVBS relative to full bands, a direct comparison
using Table II may not be appropriate. To address this issue,
a measure suggested in [6] and [7], which is called the relative

TABLE IV
RSDPW OF SAM AND SID WITH AND WITHOUT VNVBS

spectral discriminatory power (RSDPW), seems to fit our need
and can be used for performance evaluation.

Assume that m is any given hyperspectral measure and s1,
s2 are a pair of two spectral signatures to be measured. Let
β be a third arbitrary signature with respect to which the two
signatures s1, s2 are compared against. The RSDPW of m,
which is denoted by RSDPWm(s1, s2;β) is defined in [6]
and [7] by

RSDPWm(s1s2;β)

= max {m(s1,β)/m(s2,β),m(s2,β)/m(s1,β)} (13)

which measures the discriminatory power of the mea-
sure m by finding the maximum of two ratios, ratio of
m(s1,β) to m(s2,β) and ratio of m(s2,β) to m(s1,β). The
RSDPWm(s1, s2;β) defined by (13) provides a quantitative
index of spectral discrimination capability of a specific hyper-
spectral measure m between the two spectral signatures s1 and
s2 with respect to a third signature β. Therefore, the higher
the RSDPWm(s1, s2;β), the better the discriminatory power of
m. In addition, RSDPWm(s1, s2;β) is symmetric and bounded
below by one which is achieved by equality if and only if
s1 = s2. It should be noted that the reference signature r used
in the OSP-BPC for VNVBS is similar to the concept of using
the third signature β in the RSDPW.

Using (13), Table IV tabulates the RSDPW obtained by
full bands and the VNVBS using the SAM and the SID
as the measures m in (13) with the signature β chosen to
be the reference signature r which is the averaged signature
over blackbrush, creosote leave, and sagebrush, denoted by
(blackbrush + creosote leaves + sagebrush)/3.

The experimental results in Table IV demonstrated that the
relative discriminatory powers were significantly increased by
using the VNVBS in the sense that the higher their RSDPW,
the better the discrimination between the two signatures.
On the other hand, the smaller their RSDPW, the more difficult
the discrimination between the two signatures.

In order to have a better visual assessment, Figs. 4 and 5
also show the graphical representations of Table IV, where
the RSDPW was graphically plotted as y-axis against a pair
of signatures (s1, s2) along the x-axis with β specified by
the reference signature r. For example, 1:(b, c) in Fig. 4
represents RSDPWSAM(s1, s2;β) of the SAM comparing s1 =
‘blackbrush’ against s2 = ‘creosote leaves’ with β =
r = (blackbrush + creosote leaves + sagebrush)/3.

Based on Figs. 4 and 5, a tremendous improvement of the
RSDPW that is produced by VNVBS over the full bands was
visually apparent because the RSDPW between the blackbrush
(b) and the sagebrush (s) was reduced, and the other two pairs
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Fig. 4. Comparison between RSDPW of VNVBS and full bands using SAM.

Fig. 5. Comparison between RSDPW of VNVBS and full bands using SID.

TABLE V
Ω⊥

s AND Ωs FOR BLACKBRUSH, CREOSOTE LEAVES, AND SAGEBRUSH

(b, c) and (c, s) were greatly increased. More specifically, the
contrast between similarity and dissimilarity of two signatures
in terms of the RSDPW has been significantly enhanced and
increased by using the VNVBS. Furthermore, comparing Fig. 4
to Fig. 5, the SID was also shown to outperform the SAM in
the discrimination between the blackbrush, the creosote leave,
and the sagebrush because the RSDPW of the SID was much
higher than that of the SAM in terms of the contrast between
the signature similarity and the signature dissimilarity. Because
of that, only the SID would be used for study and analysis in
the following experiments.

2) Signature Classification/Identification: In this section,
we further assume that there is a class of signatures, blackbrush
(b), creosote leaves (c), dry grass (d), and sagebrush (s), of
interest for classification. We then simulated a mixed signature
tmix by uniformly mixing 1/4 b, 1/4 c, 1/4 d, and 1/4 s as
follows:

tmix = 0.25 · b + 0.25 · c + 0.25 · d + 0.25 · s. (14)

According to the results in [6] and [7], the spectral signature
of the blackbrush is more close to the signature of sagebrush

TABLE VI
SID, RESCALED SID, AND RSDPW BETWEEN tmix AND EACH

COMPONENT USING THE BANDS OBTAINED BY (12) AND TABLE V

Fig. 6. RSDPW curves corresponding to the five different selections of
reference signatures in using the VNVBS with a similarity measured by SID.

TABLE VII
SID VALUES BETWEEN t̃mix AND EACH OF ITS COMPONENTS

b, c, d, AND s WITH THREE SNRs 10, 20, AND 30 dB

TABLE VIII
RSDPW VALUES BETWEEN t̃mix AND EACH OF ITS COMPONENTS

b, c, d, AND s WITH THREE SNRs 10, 20, AND 30 dB

than to the signature of creosote leaves. Similarly, the spectral
signature of the creosote leaves is more close to the signature of
sagebrush than to the signature of blackbrush. Therefore, both
blackbrush and creosote leaves can be considered as mutated
signatures of the sagebrush. In this case, the total amount of
abundance fractions that is contributed by blackbrush, cre-
osote leaves, and sagebrush was 75% compared to only 25%
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Fig. 7. Reflectances of the nine agent signatures from the data set ∆. (a) s1. (b) s2. (c) s3. (d) s4. (e) s5. (f) s6. (g) s7. (h) s8. (i) s9.

contributed by drygrass. As a result, it is natural to conclude
that the mixture signature tmix in (14) should be classified as
sagebrush because the sagebrush contributes more to the mixed

pixel than any other three signatures. This interesting scenario
sheds some light on the impact of BS on signature analysis. In
this case, the reference signature r for VNVBS is simply chosen
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to be the tmix; Table V lists the bands prioritized by the VNVBS
based on (9), where the original set of bands was divided into
two subsets of bands Ω⊥

s and Ωs via (10).
Like Table I, Ω⊥

s was empty for tmix. This is very obvious
because the reference signature r specified by (3) and (4) is
equal to the signature s, both of which are tmix. Table VI
tabulates the spectral-similarity values measured by the SID
between the VNVBS-generated new signatures of tmix and
each of its components b, c, d, and s according to the bands
selected by Table V, where the upper and lower values in
Table VI were obtained using the full band set and the priority-
ranked band set Ω⊥

s , respectively. In particular, the smallest SID
value across a row is shaded for classification. The rescaled
SID values, as well as the corresponding RSDPW values with
β specified by tmix, are also shown in Table VI for direct
comparisons.

The results in Table VI demonstrated that the SID, using
the VNVBS, greatly improved the performance for the mixed
signature classification over the SID using full bands because
the former could correctly classify the mixed signature into
sagebrush while the latter could not. In addition, the contrast
between different discrimination powers provided by the SID
was also increased by using the VNVBS compared to that by
using the full bands as shown by the rescaled SID in the second
row of Table VI. For example, the maximum ratio between
these two pairs using full bands is only 12.71 as opposed to
3900 using the VNVBS.

In order to further investigate the impact of the reference
signature used by the VNVBS, experiments with different
choices of reference signatures r were conducted where five
choices were made for the reference signature r, which are
tmix, blackbrush, creosote leaves, sagebrush, and drygrass,
respectively. As a result, five RSDPWSID(t,x;β) plots were
generated, each of which is produced by one particular choice
of reference signature r, as shown in Fig. 6, with the SID used
as a spectral similarity measure, where “t” is tmix, and “x” can
be any one of the four signatures “b,” “c,” “s,” and “d,” which
represent blackbrush, creosote leaves, sagebrush, and drygrass,
respectively, with β = tmix. In addition, the interpretation of
the RSDPW between the two signatures in Fig. 6 is the same as
that made in Figs. 4 and 5.

As shown in Fig. 6, using tmix as the reference signature
seemed to outperform any other selected reference signature.

The aforementioned experiments can also be used for the
mixed signature identification if a class of signatures to be
classified is replaced by a database or spectral library. In this
case, the mixed signature tmix would be identified as the
sagebrush via the assumed database ∆ = {b, c,d, s}.

3) Noise Effect on Performance of VNVBS: Finally, this
section concludes with an investigation of noise effects on the
performance of the VNVBS.

Adding a Gaussian noise n to (14) yields a noisy mixed
signature as follows:

t̃mix = 0.25 · b + 0.25 · c + 0.25 · d + 0.25 · s + n. (15)

Since it was shown in Section IV-A2 that tmix was a better
option for the reference signature, t̃mix was also selected as

TABLE IX
Ω⊥

s AND Ωs FOR EIGHT AGENTS {si}9
i=2

the reference signature r. Table VII tabulates the SID-measured
spectral-similarity values between t̃mix and each component
b, c, d, and s, respectively, where a Gaussian noise was
used to produce three different SNRs 10, 20, and 30 dB, as
defined in [8]. The upper and lower rows in Table VII are the
SID values obtained by using the VNVBS and the full bands,
respectively, where the smallest SID value is shaded to indicate
the classification of t̃mix.

As a comparison, the RSDPW values between t̃mix and
each component with three SNRs are shown in Table VIII as
well. Similarly, the upper and lower rows in Table VIII are
the RSDPW values obtained by using the VNVBS and the full
bands, respectively.

An interesting finding can be observed from Tables VII
and VIII. The higher the SNR value, the lower the noise
level relative to the signal and vice versa. Therefore, based
on Tables VII and VIII, when SNR = 10 dB, which means
that the noise level is high and the signal is overwhelmed by
noise, the SID values obtained by both the VNVBS and the
full bands classified the t̃mix as blackbrush instead of sage-
brush, as the noise-free case did in Table VI in Section IV-A2,
since the spectral shape, particularly the local spectral profile,
has experienced significant distortion due to the noise effects.
However, when SNR = 20 dB or 30 dB, it implies that the
signal begins to show its dominance compared to the case of
SNR = 10 dB. As a result, the SID values using the VNVBS
correctly classify t̃mix as sagebrush compared to the SID values
using full bands which still classified t̃mix as blackbrush. This
experiment further showed the advantage of using the VNVBS
over using the full bands.

B. CB Data

In this section, the data set ∆ to be used for experiments
was the same as that considered in [11] and is available at
the National Institute of Standard Technology’s website [12].
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TABLE X
DISCRIMINATION AMONG THE EIGHT AGENT SIGNATURES USING (12) AND TABLE IX WITH SID AND

RSDPW USED AS SIMILARITY MEASURES ON THE UPPER AND LOWER TRIANGLES

It contains nine agent signatures {si}9
i=1, eight of them {si}9

i=2

are composed of 880 bands, and only one of them s1 consists
of 825 bands. Fig. 7 shows the signature waveforms of the nine
agents in data set ∆.

1) Signature Discrimination for Agents s2–s9: In this sec-
tion, the eight agent signatures {si}9

i=2, with the same number
of bands, were used as signatures to be discriminated. The agent
s1 was removed from consideration because it has a different
number of bands from those used in other eight signatures. As
a result, the reference signature r for the OSP-BPC was chosen
to be the averaged signature over s2, s3, s4, s5, s6, s7, s8, and
s9. Table IX lists the bands prioritized by the OSP-BPC based
on (9), where the original set of bands Ω was divided into two
subsets of bands Ω⊥

s and Ωs via (10).
Table X tabulates the spectral-similarity values of the SID

that are produced by the VNVBS and the full bands in dis-
criminating among the eight different agent signatures from s2

to s9, where the VNVBS was implemented via (12) and the
bands were tabulated in Table IX. Since Table X is symmetric,
the SID and RSDPW values are tabulated in the upper and
lower triangles of Table X, respectively. As shown in Table X,
the signature-discrimination performance was improved signif-
icantly by the VNVBS over that produced by using the full
bands. In order to have a better visual assessment, Fig. 8 shows
the graphical representation of Table X, where the RSDPW
was graphically plotted as y-axis against the pairs of signatures
along the x-axis on the order of (s2, s3), (s2, s4), . . . , (s2, s9),
(s3, s4), . . . , (s3, s9), . . . , (s8, s9) with β specified by the ref-
erence signature r. For example, (sj , sk) in Fig. 8 represents
RSDPWSID(sj , sk;β) of the SID comparing sj against sk with
the β set to the reference signature r, which was the averaged
signature over s2 to s9. As shown in Fig. 8, the SID using
VNVBS clearly outperformed the SID using full bands.

2) Signature Classification/Identification Agents s2–s9:
Following the same arguments made in Section IV-A2, we also

Fig. 8. Comparison between RSDPW of VNVBS and full bands using the
SID for signature discrimination among eight agents.

simulated a mixed signature tmix by uniformly mixing eight
different agent signatures from s2 to s9, namely,

tmix = 0.125 · s2 + 0.125 · s3 + 0.125 · s4 + 0.125 · s5

+0.125 · s6+0.125 · s7+0.125 · s8+0.125 · s9 (16)

with the reference signature r, which was chosen to be the same
as that used in Section IV-B1. As a result, in this particular case,
the reference signature r turns out to be the same signature to be
classified tmix. Table XI tabulates the spectral-similarity values
that are produced by the SID between tmix and each of the eight
agents {si}9

i=2 using the full bands and the VNVBS, where the
upper and lower values in each entry of Table XI were obtained
by the VNVBS and all the full 880 bands, respectively, and the
smallest value is shaded for classification.

Like the AVIRIS experiments, the signature-discrimination
performance was significantly improved by using the VNVBS
compared to that produced by using the full bands. Fig. 9 also
shows the graphical representation of the RSDPW obtained
from Table XI, where the RSDPW was graphically plotted
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TABLE XI
SID, RESCALED SID, AND RSDPW BETWEEN MIXED SIGNATURE AND EACH COMPONENT

WITH AND WITHOUT VNVBS USING THE BANDS OBTAINED BY (12)

Fig. 9. Comparison between RSDPW of VNVBS and full bands using the
SID for mixed signature classification.

as y-axis against the pairs of signatures (tmix, sk) with k =
2, 3, . . . , 9 along the x-axis with β specified by the refer-
ence signature r. For example, (t, sj) in Fig. 9 represents
the RSDPWSID(tmix, sj ;β) produced by the SID comparing
tmix against sj with the β set to the reference signature r,
which was the averaged signature over s2 to s9. Once again,
as shown in Fig. 9, the VNVBS demonstrated its superior
performance to that produced by using the full bands in terms
of the rescaled values of SID, as shown in the second row of
Table XI. For example, the maximum SID ratio using the full
bands between eight pairs of (tmix, si) with i = 2, 3, . . . , 9 is
only 6.69 compared to 3930 using the VNVBS.

3) Signature Discrimination Between Two Signatures With
Different Numbers of Bands: One of the strengths of the
VNVBS is its ability to discriminate two signatures with dif-
ferent numbers of bands that was not found in the AVIRIS
experiments. In order to demonstrate this advantage, the agent
s1 with 825 bands was used for this purpose to be compared
against the other eight agents s2–s9 with 880 bands. In doing
so, two approaches are considered. One is to extract bands from
the signature with a larger number of bands to match the same
number of bands that are used by the signature with a smaller
number of bands. As an opposite to the first approach, a second
approach is to expand the signature with a smaller number of
bands to match the same number of bands that are used by
the signature with a larger number of bands by zero-padding
in the missing bands. These two approaches are considered in
the following experiments.

Approach 1—Extracting 825 bands from the original 880
bands for s2–s9 with the same wavelength coverage as s1:
In this case, the reference signature r for the VNVBS was
chosen by averaging from s1 to s∗9, where s∗j(j = 2, 3, . . . , 9)

TABLE XII
Ω⊥

s AND Ωs GENERATED BY APPROACH 1 FROM s1 TO s9

denotes the signature with 825 bands extracted from the jth
signature with the original 880 bands. In this case, the r has only
825 bands.

Table XII lists the bands that are prioritized by the VNVBS
based on (9), where the original set of bands was divided into
two subsets of bands Ω⊥

s and Ωs via (10).
Table XIII tabulates the SID-generated spectral-similarity

values that are obtained by the VNVBS and the full bands,
respectively, for comparison, where the VNVBS also outper-
formed the use of full bands. Similar to Table X, the SID and
RSDPW values are tabulated in the upper and lower triangles
of Table XIII, respectively.

Approach 2—Expanding the original 825 bands to 880 bands
through zero-padding: In this case, s∧1 denotes the signature s1

after interpolating the original 825 bands to 880 bands by zero-
padding. Similarly, Table XIV lists the bands that are prioritized
by the VNVBS based on (9), where the original set of bands was
divided into two subsets of bands Ω⊥

s and Ωs via (10).
Table XV tabulates the SID-generated spectral-similarity

values with the VNVBS and the full bands, respectively, for
comparison. Like Table XIII, the SID and RSDPW values are
tabulated in the upper and lower triangles of Table XV, respec-
tively, where the VNVBS also demonstrated its advantage by
selecting bands compared to the full bands.
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TABLE XIII
DISCRIMINATION AMONG THE NINE AGENT SIGNATURES FROM s1 TO s∗9 OBTAINED BY VNVBS AND FULL BANDS

TABLE XIV
Ω⊥

s AND Ωs GENERATED BY APPROACH 2 FROM s1 to s9

Based on Tables XIII and V, the two approaches did not have
very much impact on the SID when full bands were used, but
their discriminatory powers calculated for the rescaled SID and
RSDPW values were significantly improved when the VNVBS
was used for the SID.

One final comment is noteworthy. The two approaches pro-
posed for the VNVBS in Section IV-B3 are specifically de-
signed for signatures, not images, and are not applicable to
the standard BS techniques [1]–[4] because we cannot process
a hyperspectral image whose image pixels vary with different
number of bands. The OSP-BPC proposed in this paper allows
the users to implement the VNVBS for spectral characteri-

zation. To the authors’ best knowledge, there are no existing
standard BS techniques that can be used to select bands from
a single hyperspectral signature, as what the VNVBS does.
Such benefit derived from the VNVBS cannot be gained by any
image-based BS [1]–[4].

By concluding this section, it is worth noting that there are
significant differences between the two data sets, which are
the CB data and the AVIRIS data. Of course, the VNVBS
performed quite differently. The Ω⊥

s obtained for the CB data
tended to capture the peaks, while the Ω⊥

s obtained for the
hyperspectral AVIRIS data attempted to capture the edges of
the spectral signatures. This is because the peaks in the CB
data and edges in the AVIRIS data are their most distinct
spectral features in their local spectral profiles. The VNVBS
is particularly designed to characterize the local properties of a
signature.

V. SELECTION OF REFERENCE SIGNATURES

As noted, the selection of the reference signature r has a
significant impact on the performance. In order to address
this issue, two general guidelines of how to select the refer-
ence signature r based on our extensive experiments may be
helpful.

1) Since the signature r is used as a reference signature
between the two signatures s1 and s2, it should have
some degree of correlation associated with both signa-
tures. Keeping this in mind, when the spectral feature
characterization is performed, such as signature discrim-
ination via a database/spectral library, the best reference
signature to be selected is the average of all signatures
in the database/spectral library so that any pair of the
two signatures drawn from the database/spectral library
to be characterized can have some correlation with the
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TABLE XV
DISCRIMINATION AMONG THE NINE AGENT SIGNATURES FROM s∧1 TO s9 OBTAINED BY VNVBS AND FULL BANDS

averaged signature. On the other hand, if a reference
signature is selected from the database/spectral library,
the performance will be determined by how close a
signature is related to the other signature coming from
the same database, which is to be compared against.
As a consequence, the performance may yield complete
different results. Such evidence was demonstrated in
Section IV.

2) By contrast, if a mixed signature is to be classified/
identified through a database/spectral library which is
composed of each mixing component, then the best can-
didate for the reference signature r is the mixed signature
itself. This is because the mixed signature itself already
provides the desired correlation for the classification/
identification between this mixed signature and each of
its mixing components. Using the average of signatures
may only smear the spectral characteristics. This was also
confirmed by the experiments in Section IV-A2.

VI. CONCLUSION

This paper presents a new approach to BS for a single hy-
perspectral signature, which is called VNVBS. Unlike most BS
techniques, which are designed for images, the proposed VN-
VBS is designed for the characterization of a single hyperspec-
tral signature without a need of an image sample correlation.
In order to select the appropriate bands, an OSP-BPC is also
developed, which decomposes the original spectral signature
into two orthogonal components that can be used for spectral
characterization. The experimental results demonstrate that the
proposed VNVBS is more effective in preserving information
for the hyperspectral-signature characterization than that using
the full-band information in the hyperspectral-signature charac-
terization and analysis.
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