
Chapter 7

Parallel Implementation of Morphological
Neural Networks for Hyperspectral Image
Analysis

Javier Plaza,
University of Extremadura, Spain

Rosa Pérez,
University of Extremadura, Spain

Antonio Plaza,
University of Extremadura, Spain

Pablo Martínez,
University of Extremadura, Spain

David Valencia,
University of Extremadura, Spain

Contents

7.1 Introduction . 132
7.2 Parallel Morphological Neural Network Algorithm . 134

7.2.1 Parallel Morphological Algorithm . 134
7.2.2 Parallel Neural Algorithm . 137

7.3 Experimental Results . 140
7.3.1 Performance Evaluation Framework . 140
7.3.2 Hyperspectral Data Sets . 142
7.3.3 Assessment of the Parallel Algorithm . 144

7.4 Conclusions and Future Research . 148
7.5 Acknowledgment . 149
References . 149

Improvement of spatial and spectral resolution in latest-generation Earth observa-
tion instruments is introducing extremely high computational requirements in many
remote sensing applications. While thematic classification applications have greatly
benefited from this increasing amount of information, new computational require-
ments have been introduced, in particular, for hyperspectral image data sets with

131

132 High-Performance Computing in Remote Sensing

hundreds of spectral channels and very fine spatial resolution. Low-cost parallel
computing architectures such as heterogeneous networks of computers have quickly
become a standard tool of choice for dealing with the massive amount of image
data sets. In this chapter, a new parallel classification algorithm for hyperspectral
imagery based on morphological neural networks is presented and discussed. The
parallel algorithm is mapped onto heterogeneous and homogeneous parallel plat-
forms using a hybrid partitioning scheme. In order to test the accuracy and parallel
performance of the proposed approach, we have used two networks of workstations
distributed among different locations, and also a massively parallel Beowulf cluster
at NASA’s Goddard Space Flight Center in Maryland. Experimental results are pro-
vided in the context of a real agriculture and farming application, using hyperspectral
data acquired by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRS),
operated by the NASA Jet Propulstion Laboratory, over the valley of Salinas in
California.

7.1 Introduction

Many international agencies and research organizations are currently devoted to the
analysis and interpretation of high-dimensional image data collected over the surface
of the Earth [1]. For instance, NASA is continuously gathering hyperspectral images
using the Jet Propulsion Laboratory’s Airborne Visible-Infrared Imaging Spectrom-
eter (AVIRIS) [2], which measures reflected radiation in the wavelength range from
0.4 to 2.5 μm using 224 spectral channels at a spectral resolution of 10 nm. The in-
corporation of hyperspectral instruments aboard satellite platforms is now producing
a near-continual stream of high-dimensional remotely sensed data, and cost-effective
techniques for information extraction and mining from massively large hyperspectral
data repositories are highly required [3]. In particular, although it is estimated that sev-
eral Terabytes of hyperspectral data are collected every day, about 70% of the collected
data is never processed, mainly due to the extremely high computational requirements.

Several challenges still remain open in the development of efficient data processing
techniques for hyperspectral image analysis [1]. For instance, previous research has
demonstrated that the high-dimensional data space spanned by hyperspectral data sets
is usually empty [4], indicating that the data structure involved exists primarily in a
subspace. A commonly used approach to reduce the dimensionality of the data is the
principal component transform (PCT) [5]. However, this approach is characterized by
its global nature and cannot preserve subtle spectral differences required to obtain a
good discrimination of classes [6]. Further, this approach relies on spectral properties
of the data alone, thus neglecting the information related to the spatial arrangement
of the pixels in the scene. As a result, there is a need for feature extraction tech-
niques able to integrate the spatial and spectral information available from the data
simultaneously [5].

Parallel Implementation of Morphological Neural Networks 133

While such integrated spatial/spectral developments hold great promise in the field
of remote sensing data analysis, they introduce new processing challenges [7, 8]. The
concept of Beowulf cluster was developed, in part, to address such challenges [9, 10].
The goal was to create parallel computing systems from commodity components to
satisfy specific requirements for the earth and space sciences community. Although
most dedicated parallel machines employed by NASA and other institutions during
the last decade have been chiefly homogeneous in nature, a current trend is to uti-
lize heterogeneous and distributed parallel computing platforms [11]. In particular,
computing on heterogeneous networks of computers (HNOCs) is an economical alter-
native that can benefit from local (user) computing resources while, at the same time,
achieving high communication speed at lower prices. The properties above have led
HNOCs to become a standard tool for high-performance computing in many ongoing
and planned remote sensing missions [3, 11].

To address the need for cost-effective and innovative algorithms in this emerging
new area, this chapter develops a new parallel algorithm for the classification of
hyperspectral imagery. The algorithm is inspired by previous work on morphological
neural networks, such as autoassociative morphological memories and morphological
perceptrons [12], although it is based on different concepts. Most importantly, it
can be tuned for very efficient execution on both HNOCs and massively parallel,
Beowulf-type commodity clusters. The remainder of the chapter is structured as
follows.

� Section 7.2 describes the proposed heterogeneous parallel algorithm, which
consists of two main processing steps: 1) a parallel morphological feature ex-
traction taking into account the spatial and spectral information, and 2) robust
classification using a parallel multi-layer neural network with back-propagation
learning.� Section 7.3 describes the algorithm’s accuracy and parallel performance. Clas-
sification accuracy is discussed in the context of a real application that makes
use of hyperspectral data collected by the AVIRIS sensor, operated by NASA’s
Jet Propulsion Laboratory, to assess agricultural fields in the valley of Salinas,
California. Parallel performance in the context of the above-mentioned applica-
tion is then assessed by comparing the efficiency achieved by an heterogeneous
parallel version of the proposed algorithm, executed on a fully heterogeneous
network, with the efficiency achieved by its equivalent homogeneous version,
executed on a fully homogeneous network with the same aggregate perfor-
mance as the heterogeneous one. For comparative purposes, performance data
on Thunderhead, a massively parallel Beowulf cluster at NASA’s Goddard
Space Flight Center, are also given.� Finally, Section 7.4 concludes with some remarks and hints at plausible fu-
ture research, including implementations of the proposed parallel algorithm on
specialized hardware architectures.

134 High-Performance Computing in Remote Sensing

7.2 Parallel Morphological Neural Network Algorithm

This section describes a new parallel algorithm for the analysis of remotely sensed
hyperspectral images. Before describing the two main steps of the algorithm, we first
formulate a general optimization problem in the context of HNOCs, composed of
different-speed processors that communicate through links at different capacities [11].
This type of platform can be modeled as a complete graph, G = (P, E), where each
node models a computing resource pi weighted by its relative cycle-time wi . Each
edge in the graph models a communication link weighted by its relative capacity,
where ci j denotes the maximum capacity of the slowest link in the path of physical
communication links from pi to p j . We also assume that the system has symmetric
costs, i.e., ci j = c ji . Under the above assumptions, processor pi will accomplish a
share of αi ×W of the total workload W , with αi ≥ 0 for 1 ≤ i ≤ P and

∑P
i=1 αi = 1.

With the above assumptions in mind, an abstract view of our problem can be simply
stated in the form of a client-server architecture, in which the server is responsible for
the efficient distribution of work among the P nodes, and the clients operate with the
spatial and spectral information contained in a local partition. The partitions are then
updated locally and the resulting calculations may also be exchanged between the
clients, or between the server and the clients. Below, we describe the two steps of our
parallel algorithm.

7.2.1 Parallel Morphological Algorithm

The proposed feature extraction method is based on mathematical morphology [13]
concepts. The goal is to impose an ordering relation (in terms of spectral purity) in
the set of pixel vectors lying within a spatial search window (called a structuring
element) designed by B [5]. This is done by defining a cumulative distance between
a pixel vector f (x, y) and all the pixel vectors in the spatial neighborhood given
by B (B-neighborhood) as follows: DB[f (x, y)] = ∑

i

∑
j SAD[f (x, y), f (i, j)],

where (x, y) refers to the spatial coordinates in the B-neighborhood and SAD is the
spectral angle distance [1]. From the above definitions, two standard morphological
operations called erosion and dilation can be respectively defined as follows:

(f ⊗ B)(x, y) = argmin(s,t)∈Z2(B)

∑
s

∑
t

SAD(f (x, y), f (x + s, y + t))

(7.1)

(f ⊕ B)(x, y) = argmax(s,t)∈Z2(B)

∑
s

∑
t

SAD(f (x, y), f (x − s, y − t))

(7.2)

Using the above operations, the opening filter is defined as (f ◦ B)(x, y) =
[(f ⊗ C) ⊕ B](x, y) (erosion followed by dilation), while the closing filter is de-
fined as (f • B)(x, y) = [(f ⊕ C) ⊗ B](x, y) (dilation followed by erosion). The
composition of the opening and closing operations is called a spatial/spectral profile,

Parallel Implementation of Morphological Neural Networks 135

which is defined as a vector that stores the relative spectral variation for every step of
an increasing series. Let us denote by {(f ◦ B)λ(x, y)}, λ = {0, 1, ..., k}, the opening
series at f (x, y), meaning that several consecutive opening filters are applied using
the same window B. Similarly, let us denote by {(f • B)λ(x, y)}, λ = {0, 1, ..., k},
the closing series at f (x, y). Then, the spatial/spectral profile at f (x, y) is given by
the following vector:

p(x, y) = {SAD((f ◦ B)λ(x, y), (f ◦ B)λ−1(x, y))}
∪ {SAD((f • B)λ(x, y), (f • B)λ−1(x, y))} (7.3)

Here, the step of the opening/closing series iteration at which the spatial/spectral
profile provides a maximum value gives an intuitive idea of both the spectral and
spatial distributions in the B-neighborhood [5]. As a result, the profile can be used
as a feature vector on which the classification is performed using a spatial/spectral
criterion.

In order to implement the algorithm above in parallel, two types of partitioning can
be exploited:

� Spectral-domain partitioning subdivides the volume into small cells or sub-
volumes made up of contiguous spectral bands, and assigns one or more sub-
volumes to each processor. With this model, each pixel vector is split amongst
several processors, which breaks the spectral identity of the data because the
calculations for each pixel vector (e.g., for the SAD calculation) need to origi-
nate from several different processing units.� Spatial-domain partitioning provides data chunks in which the same pixel vector
is never partitioned among several processors. With this model, each pixel
vector is always retained in the same processor and is never split.

In this work, we adopt a spatial-domain partitioning approach for several reasons:

� A first major reason is that the application of spatial-domain partitioning is a nat-
ural approach for morphological image processing, as many operations require
the same function to be applied to a small set of elements around each data ele-
ment present in the image data structure, as indicated in the previous subsection.� A second reason has to do with the cost of inter-processor communication.
In spectral-domain partitioning, the window-based calculations made for each
hyperspectral pixel need to originate from several processing elements, in par-
ticular, when such elements are located at the border of the local data partitions
(see Figure 7.1), thus requiring intensive inter-processor communication.

However, if redundant information such as an overlap border is added to each of
the adjacent partitions to avoid access from outside the image domain, then boundary
data to be communicated between neighboring processors can be greatly minimized.
Such an overlapping scatter would obviously introduce redundant computations, since
the intersection between partitions would be non-empty. Our implementation makes

136 High-Performance Computing in Remote Sensing

Figure 7.1 Communication framework for the morphological feature extraction
algorithm.

use of a constant structuring element B (with size of 3 × 3 pixels) that is repeatedly
iterated to increase the spatial context, and the total amount of redundant information
is minimized. To do so, we have implemented a special ‘overlapping scatter’ operation
that also sends out the overlap border data as part of the scatter operation itself (i.e.,
redundant computations replace communications).

To implement the algorithm, we made use of MPI derived datatypes to directly scat-
ter hyperspectral data structures, which may be stored non-contiguously in memory,
in a single communication step. A comparison between the associative costs of re-
dundant computations in overlap with the overlapping scatter approach, versus the
communications costs of accessing neighboring cell elements outside of the image
domain, has been presented and discussed in previous work [7].

A pseudo-code of the proposed HeteroMORPH parallel algorithm, specifically
tuned for HNOCs, is given below:

Inputs: N-dimensional cube f , structuring element B.

Output: Set of morphological profiles for each pixel.

1. Obtain information about the heterogeneous system, including the number of
processors, P; each processor’s identification number, {pi }P

i=1; and processor
cycle-times, {wi }P

i=1.

Parallel Implementation of Morphological Neural Networks 137

2. Using B and the information obtained in step 1, determine the total volume of
information, R, that needs to be replicated from the original data volume, V ,
according to the data communication strategies outlined above, and let the total
workload W to be handled by the algorithm be given by W = V + R.

3. Set αi = 	 (P/wi)∑P
i=1(1/wi)

 for all i ∈ {1, ..., P}.
4. For m = ∑P

i=1 αi to (V + R), find k ∈ {1, .., P} so that wk · (αk + 1) =
min{wi · (αi + 1)}P

i=1 and set αk = αk + 1.

5. Use the resulting {αi }P
i=1 to obtain a set of P spatial-domain heterogeneous

partitions (with overlap borders) of W , and send each partition to processor pi ,
along with B.

6. Calculate the morphological profiles p(x, y) for the pixels in the local data
partitions (in parallel) at each heterogeneous processor.

7. Collect all the individual results and merge them together to produce the final
output.

A homogeneous version of the HeteroMORPH algorithm above can be simply
obtained by replacing step 4 with αi = P/wi for all i ∈ {1, ..., P}, where wi is the
communication speed between processor pairs in the network, which is assumed to
be homogeneous.

7.2.2 Parallel Neural Algorithm

In this section, we describe a supervised parallel classifier based on a multi-layer
perceptron (MLP) neural network with back-propagation learning. This approach has
been shown in previous work to be very robust for the classification of hyperspectral
imagery [14]. However, the considered neural architecture and back-propagation-type
learning algorithm introduce additional considerations for parallel implementations
on HNOCs.

The architecture adopted for the proposed MLP-based neural network classifier
is shown in Figure 7.2. As shown in the figure, the number of input neurons equals
the number of spectral bands acquired by the sensor. In the case of PCT-based pre-
processing or morphological feature extraction commonly adopted in hyperspectral
analysis, the number of neurons at the input layer equals the dimensionality of feature
vectors used for classification. The second layer is the hidden layer, where the number
of nodes, M , is usually estimated empirically. Finally, the number of neurons at the
output layer, C , equals the number of distinct classes to be identified in the input
data. With the above architecture in mind, the standard back-propagation learning
algorithm can be outlined by the following steps:

1. Forward phase. Let the individual components of an input pattern be denoted
by f j (x, y), with j = 1, 2, ..., N . The output of the neurons at the hidden layer
is obtained as: Hi = ϕ(

∑N
j=1 ωi j · f j (x, y)) with i = 1, 2, ..., M , where ϕ(·)

is the activation function and ωi j is the weight associated to the connection
between the i-th input node and the j-th hidden node. The outputs of the MLP

138 High-Performance Computing in Remote Sensing

Hidden LayerInput Layer

F
ea

tu
re

 V
ec

to
r

N
M

N–1

3

2

1

1

1

C

2

Output Layer

• •
•
•

•
•

•
•
• •

•

Figure 7.2 MLP neural network topology.

are obtained using Ok = ϕ(
∑M

i=1 ωki · Hi), with k = 1, 2, ..., C . Here, ωki is
the weight associated to the connection between the i-th hidden node and the
k-th output node.

2. Error back-propagation. In this stage, the differences between the desired and
obtained network outputs are calculated and back-propagated. The delta terms
for every node in the output layer are calculated using δo

k = (Ok − dk) · ϕ
′
(·),

with i = 1, 2, ..., C . Here, ϕ
′
(·) is the first derivative of the activation function.

Similarly, delta terms for the hidden nodes are obtained using δh
i = ∑C

k=1(ωki ·
δo

i) · ϕ(·)), with i = 1, 2, ..., M .

3. Weight update. After the back-propagation step, all the weights of the net-
work need to be updated according to the delta terms and to η, a learn-
ing rate parameter. This is done using ωi j = ωi j + η · δh

i · f j (x, y) and
ωki = ωki +η·δo

k ·Hi . Once this stage is accomplished, another training pattern is
presented to the network and the procedure is repeated for all incoming training
patterns.

Once the back-propagation learning algorithm is finalized, a classification stage fol-
lows, in which each input pixel vector is classified using the weights obtained by the
network during the training stage [14].

Two different schemes can be adopted for the partitioning of the multi-layer per-
ceptron classifier:

� The exemplar partitioning scheme, also called training example parallelism,
explores data level parallelism and can be easily obtained by simply partitioning
the training pattern data set. Each process determines the weight changes for a
disjoint subset of the training population, and then changes are combined and
applied to the neural network at the end of each epoch. This scheme requires
a suitable large number of training patterns to take advantage of it, which is

Parallel Implementation of Morphological Neural Networks 139

not a very common situation in most remote sensing applications, as long as it
is a very hard task to get ground-truth information for regions of interest in a
hyperspectral scene.� The hybrid partition scheme, on the other hand, relies on a combination of
neuronal level as well as synaptic level parallelism [15], which allows one
to reduce the processors’ intercommunications at each iteration. In the case of
neuronal parallelism (also called vertical partitioning), all the incoming weights
to the neurons local to the processor are computed by a single processor. In
synaptic level parallelism, each workstation will compute only the outgoing
weight connections of the nodes (neurons) local to the processor. In the hybrid
scheme, the hidden layer is partitioned using neuronal parallelism while weight
connections adopt the synaptic scheme.

The parallel classifier presented in this section is based on a hybrid partitioning
scheme, where the hidden layer is partitioned using neuronal level parallelism and
weight connections are partitioned on the basis of synaptic level parallelism [16]. As
a result, the input and output neurons are common to all processors, while the hidden
layer is partitioned so that each heterogeneous processor receives a number of hidden
neurons, which depends on its relative speed. Each processor stores the weight connec-
tions between the neurons local to the processor. Since the fully connected MLP net-
work is partitioned into P partitions and then mapped onto P heterogeneous proces-
sors using the above framework, each processor is required to communicate with every
other processor to simulate the complete network. For this purpose, each of the proces-
sors in the network executes the three phases of the back-propagation learning algo-
rithm described above. The HeteroNEURAL algorithm can be summarized as follows:

Inputs: N -dimensional cube f , training patterns f j (x, y).

Output: Set of classification labels for each image pixel.

1. Use steps 1–4 of the HeteroMORPH algorithm to obtain a set of values (αi)P
i=1,

which will determine the share of the workload to be accomplished by each
heterogeneous processor.

2. Use the resulting (αi)P
i=1 to obtain a set of P heterogeneous partitions of the hid-

den layer and map the resulting partitions among the P heterogeneous proces-
sors (which also store the full input and output layers along with all connections
involving local neurons).

3. Parallel training. For each considered training pattern, the following three
parallel steps are executed:

(a) Parallel forward phase. In this phase, the activation value of the hidden
neurons local to the processors are calculated. For each input pattern,
the activation value for the hidden neurons is calculated using H P

i =
ϕ(

∑N
j=1 ωi j · f j (x, y)). Here, the activation values and weight connections

of neurons present in other processors are required to calculate the acti-
vation values of output neurons according to O P

k = ϕ(
∑M/P

i=1 ωP
ki · H P

i),

140 High-Performance Computing in Remote Sensing

with k = 1, 2, ..., C . In our implementation, broadcasting the weights
and activation values is circumvented by calculating the partial sum of
the activation values of the output neurons.

(b) Parallel error back-propagation. In this phase, each processor calculates
the error terms for the local hidden neurons. To do so, delta terms for the
output neurons are first calculated using (δo

k)P = (Ok − dk)P · ϕ ′
(·), with

i = 1, 2, ..., C . Then, error terms for the hidden layer are computed using
(δh

i)P = ∑P
k=1(ωP

ki · (δo
k)P) · ϕ

′
(·), with i = 1, 2, ..., N .

(c) Parallel weight update. In this phase, the weight connections between the
input and hidden layers are updated by ωi j = ωi j + ηP · (δh

i)P · f j (x, y).
Similarly, the weight connections between the hidden and output layers
are updated using the expression ωP

ki = ωP
ki + ηP · (δo

k)P · H P
i .

4. Classification. For each pixel vector in the input data cube f , calculate (in
parallel)

∑P
j=1 O j

k , with k = 1, 2, ..., C . A classification label for each pixel
can be obtained using the winner-take-all criterion commonly used in neural
networks by finding the cumulative sum with maximum value, say

∑P
j=1 O j

k∗ ,

with k∗ = arg{max1≤k≤C
∑P

j=1 O j
k }.

7.3 Experimental Results

This section provides an assessment of the effectiveness of the parallel algorithms
described in the previous section. The section is organized as follows. First, we
describe a framework for the assessment of heterogeneous algorithms and provide
an overview of the heterogeneous and homogeneous networks used in this work for
evaluation purposes. Second, we briefly describe the hyperspectral data set used in
the experiments. Performance data are given in the last subsection.

7.3.1 Performance Evaluation Framework

Following a recent study [17], we assess the proposed heterogeneous algorithms using
the basic postulate that they cannot be executed on a heterogeneous network faster
than its homogeneous prototype on an equivalent homogeneous cluster network. Let
us assume that a heterogeneous network consists of {pi }P

i heterogeneous worksta-
tions with different cycle-times wi , which span m communication segments {s j }m

j=1,
where c(j) denotes the communication speed of segment s j . Similarly, let p(j) be the
number of processors that belong to s j , and let w

(j)
t be the speed of the t-th processor

connected to s j , where t = 1, ..., p(j). Finally, let c(j,k) be the speed of the commu-
nication link between segments s j and sk , with j, k = 1, ..., m. According to [17],
the above network can be considered equivalent to a homogeneous one made up of
{qi }P

i=1 processors with a constant cycle-time and interconnected through a homoge-
neous communication network with speed c if, and only if, the following expressions

Parallel Implementation of Morphological Neural Networks 141

are satisfied:

c =
∑m

j=1 c(j) · [p(j)(p(j)−1)
2] + ∑m

j=1

∑m
k= j+1 p(j) · p(k) · c(j,k)

P(P−1)
2

(7.4)

and

w =
∑m

j=1

∑p(j)

t=1 w
(j)
t

P
(7.5)

where the first expression states that the average speed of point-to-point communi-
cations between processors {pi }P

i=1 in the heterogeneous network should be equal to
the speed of point-to-point communications between processors {qi }P

i=1 in the ho-
mogeneous network, with both networks having the same number of processors. On
the other hand, the second expression simply states that the aggregate performance
of processors {pi }P

i=1 should be equal to the aggregate performance of processors
{qi }P

i=1.
We have configured two networks of workstations to serve as sample networks

for testing the performance of the proposed heterogeneous hyperspectral imaging
algorithm. The networks are considered approximately equivalent under the above
framework. Their description follows:

� Fully heterogeneous network. This network, already described and used in
Chapter 2 of the present volume, consists of 16 different workstations and 4
communication segments, where processors {pi }4

i=1 are attached to commu-
nication segment s1, processors {pi }8

i=5 communicate through s2, processors
{pi }10

i=9 are interconnected via s3, and processors {pi }16
i=11 share the communi-

cation segment s4. The communication links between the different segments
{s j }4

j=1 only support serial communication. The communication network of
the fully heterogeneous network consists of four relatively fast homogeneous
communication segments, interconnected by three slower communication links
with capacities c(1,2) = 29.05, c(2,3) = 48.31, c(3,4) = 58.14 in milliseconds,
respectively. Although this is a simple architecture, it is also a quite typical and
realistic one as well.� Fully homogeneous network. Consists of 16 identical Linux workstations
{qi }16

i=1 with a processor cycle-time of w = 0.0131 seconds per megaflop,
interconnected via a homogeneous communication network where the capac-
ity of links is c = 26.64 milliseconds.

Finally, in order to test the proposed algorithm on a large-scale parallel platform,
we have also experimented with Thunderhead, a massively parallel Beowulf cluster at
NASA’s Goddard Space Flight Center. The system is composed of 256 dual 2.4 GHz
Intel Xeon nodes, each with 1 GB of memory and 80 GB of main memory. The total
peak performance of the system is 2457.6 GFlops. Along with the 512-processor
computer core, Thunderhead has several nodes attached to the core with 2 Ghz optical
fibre Myrinet. In all considered platforms, the operating system used at the time of the

142 High-Performance Computing in Remote Sensing

experiments was Linux Fedora Core, and MPICH was the message-passing library
used (see http://www-unix.mcs.anl.gov/mpi/mpich).

7.3.2 Hyperspectral Data Sets

Before empirically investigating the performance of the proposed parallel hyperspec-
tral imaging algorithms in the five considered platforms, we first describe the hyper-
spectral image scene that will be used in the experiments. The scene was collected by
the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by
high spatial resolution (3.7-meter pixels). The relatively large area covered (512 lines
by 217 samples) results in a total image size of more than 1 GB. Figure 7.3(a) shows
the spectral band at 587 nm wavelength and a sub-scene (called hereinafter Salinas
A), which comprises 83 × 86 pixels and is dominated by directional features. Figure
7.3(b) shows the ground-truth map, in the form of a class assignment for each labeled
pixel with 15 mutually exclusive ground-truth classes. As shown by Figure 7.3(b),
ground truth is available for nearly half of the Salinas scene. The data set above
represents a very challenging classification problem (due to the spectral similarity of
most classes, discriminating among them is very difficult). This fact has made the
scene a universal and widely used benchmark to validate the classification accuracy
of hyperspectral algorithms [5].

Broccoli_green_weeds_1

Broccoli_green_weeds_2

Fallow

Fallow_rough_plow

Fallow_smooth

Stubble

Celery

Grapes_untrained

Soil_vineyard_develop

Corn_senesced_green_weeds

Lettuce_romaine_4_weeks

Lettuce_romaine_5_weeks

Lettuce_romaine_6_weeks

Lettuce_romaine_7_weeks

Vineyard_untrained

(a) (b)

Figure 7.3 AVIRIS scene of Salinas Valley, California (a), and land-cover ground
classes (b).

Parallel Implementation of Morphological Neural Networks 143

TABLE 7.1 Classification Accuracies (in Percentage) Achieved by The
Parallel Neural Classifier for the AVIRIS Salinas Scene Using Morphological
Features, PCT-Based Features, and the Original Spectral Information (Processing
Times in a Single Thunderhead Node are Given in the Parentheses)

AVIRIS Salinas Spectral PCT-Based Morphological
Class Label Information (2981) Features (3256) Features (3679)

Fallow rough plow 96.51 91.90 96.78
Fallow smooth 93.72 93.21 97.63
Stubble 94.71 95.43 98.96
Celery 89.34 94.28 98.03
Grapes untrained 88.02 86.38 95.34
Soil vineyard develop 88.55 84.21 90.45
Corn senesced green weeds 82.46 75.33 87.54
Lettuce romaine 4 weeks 78.86 76.34 83.21
Lettuce romaine 5 weeks 82.14 77.80 91.35
Lettuce romaine 6 weeks 84.53 78.03 88.56
Lettuce romaine 7 weeks 84.85 81.54 86.57
Vineyard untrained 87.14 84.63 92.93
Overall accuracy 87.25 86.21 95.08

In order to test the accuracy of the proposed parallel morphological/neural classifier,
a random sample of less than 2% of the pixels was chosen from the known ground-truth
of the Salinas scene described above. Morphological profiles were then constructed
in parallel for the selected training samples using 10 iterations, which resulted in
feature vectors with dimensionality of 20 (i.e., 10 structuring element iterations for
the opening series and 10 iterations for the closing series). The resulting features
were then used to train the parallel back-propagation neural network classifier with
one hidden layer, where the number of hidden neurons was selected empirically
as the square root of the product of the number of input features and information
classes (several configurations of the hidden layer were tested and the one that gave
the highest overall accuracies was reported). The trained classifier was then applied
to the remaining 98% of the labeled pixels in the scene, yielding the classification
accuracies shown in Table 7.1.

For comparative purposes, the accuracies obtained using the full spectral informa-
tion and PCT-reduced features as input to the neural classifier are also reported in
Table 7.1. As shown in the table, morphological input features substantially improve
individual and overall classification accuracies with regard to PCT-based features
and the full spectral information (e.g., for the directional ‘lettuce’ classes contained
in the Salinas A subscene). This is not surprising since morphological operations use
both spatial and spectral information as opposed to the other methods, which rely on
spectral information alone. For illustrative purposes, Table 7.1 also includes (in the
parentheses) the algorithm processing times in seconds for the different approaches
tested, measured on a single processor in the Thunderhead system. Experiments were
performed using the GNU-C/C++ compiler in its 4.0 version. As shown in table,

144 High-Performance Computing in Remote Sensing

TABLE 7.2 Execution Times (in Seconds) and Performance
Ratios Reported for the Homogeneous Algorithms Versus The
Heterogeneous Ones on the Two Considered Networks

Homogeneus Network Heterogeneus Network

Algorithm Time Homo/Hetero Time Homo/Hetero

HeteroMORPH 221 1.11 206 10.98
HomoMORPH 198 2261
HeteroCOM 289 1.12 242 11.86
HomoCOM 258 2871
HeteroNEURAL 141 1.12 130 9.70
HomoNEURAL 125 1261

the computational cost was slightly higher when morphological feature extraction
was used.

7.3.3 Assessment of the Parallel Algorithm

To investigate the properties of the parallel morphological/neural classification al-
gorithm developed in this work, the performance of its two main modules (Hetero-
MORPH and HeteroNEURAL) was first tested by timing the program using the het-
erogeneous network and its equivalent homogeneous one. For illustrative purposes, an
alternative implementation of HeteroMORPH without ‘overlapping scatter’ was also
tested; i.e., in this implementation the overlap border data are not replicated between
adjacent processors but communicated instead. This approach is denoted as Hetero-
COM, with its correspondent homogeneous version designated by HomoCOM.

As expected, the execution times reported in Table 7.2 for the three considered
heterogeneous algorithms and their respective homogeneous versions indicate that the
heterogeneous implementations were able to adapt much better to the heterogeneous
computing environment than the homogeneous ones, which were only able to perform
satisfactorily on the homogeneous network. For the sake of comparison, Table 7.2
also shows the performance ratios between the heterogeneous algorithms and their
respective homogeneous versions (referred to as Homo/Hetero ratio in the table and
simply calculated as the execution time of the homogeneous algorithm divided by the
execution time of the heterogeneous algorithm).

From Table 7.2, one can also see that the heterogeneous algorithms were always sev-
eral times faster than their homogeneous counterparts in the heterogeneous network,
while the homogeneous algorithms only slightly outperformed their heterogeneous
counterparts in the homogeneous network. The Homo/Hetero ratios reported in the
table for the homogeneous algorithms executed on the homogeneous network were
indeed very close to 1, a fact that reveals that the performance of heterogeneous al-
gorithms was almost the same as that evidenced by homogeneous algorithms when
they were run in the same homogeneous environment. The above results demonstrate

Parallel Implementation of Morphological Neural Networks 145

TABLE 7.3 Communication (COM), Sequential Computation
(SEQ), and Parallel Computation (PAR) Times for the Homogeneous
Algorithms Versus the Heterogeneous Ones on the Two Considered
Networks After Processing the AVIRIS Salinas Hyperspectral Image

Homogeneous Network Heterogeneous Network

COM SEQ PAR COM SEQ PAR
HeteroMORPH 7 19 202 11 16 190
HomoMORPH 14 18 180 6 16 2245
HeteroCOM 57 16 193 52 15 182
HomoCOM 64 15 171 69 13 2194
HeteroNEURAL 4 27 114 7 24 106
HomoNEURAL 9 27 98 3 24 1237

the flexibility of the proposed heterogeneous algorithms, which were able to adapt
efficiently to the two considered networks.

Interestingly, Table 7.2 also reveals that the performance of the heterogeneous
algorithms on the heterogeneous network was almost the same as that evidenced
by the equivalent homogeneous algorithms on the homogeneous network (i.e., the
algorithms achieved essentially the same speed, but each on its network). This seems to
indicate that the heterogeneous algorithms are very close to the optimal heterogeneous
modification of the basic homogeneous ones. Finally, although the Homo/Hetero ra-
tios achieved by HeteroMORPH and HeteroCOM are similar, the processing times in
Table 7.2 seem to indicate that the data replication strategy adopted by HeteroMORPH
is more efficient than the data communication strategy adopted by HeteroCOM in our
considered application.

To further explore the above observations in more detail, an in-depth analysis of
computation and communication times achieved by the different methods is also
highly desirable. For that purpose, Table 7.3 shows the total time spent by the tested
algorithms in communications (labeled as COM in the table) and computations in
the two considered networks, where two types of computation times were analyzed,
namely, sequential (those performed by the root node with no other parallel tasks active
in the system, labeled as SEQ in the table) and parallel (the rest of the computations,
i.e., those performed by the root node and/or the workers in parallel, labeled as PAR
in the table). The latter includes the times in which the workers remain idle. It is
important to note that our parallel implementations have been carefully designed to
allow overlapping of communications and computations when no data dependencies
are involved.

It can be seen from Table 7.3 that the COM scores were very low when compared
to the PAR scores in both HeteroMORPH and HeteroNEURAL. This is mainly due
to the fact that these algorithms involve only a few inter-processor communications,
which leads to almost complete overlapping between computations and communica-
tions in most cases. In the case of HeteroMORPH, it can be observed that the SEQ
and PAR scores are slightly increased with regard to those obtained for HeteroCOM

146 High-Performance Computing in Remote Sensing

TABLE 7.4 Load-Balancing Rates for the Parallel Algorithms
on the Homogeneous and Heterogeneous Network

Homogeneus Network Heterogeneus Network

Algorithm DAll DMinus DAll DMinus

HeteroMORPH 1.03 1.02 1.05 1.01
HomoMORPH 1.05 1.01 1.59 1.21

HeteroCOM 1.06 1.04 1.09 1.03
HomoCOM 1.07 1.03 1.94 1.52

HeteroNEURAL 1.02 1.01 1.03 1.01
HomoNEURAL 1.03 1.01 1.39 1.19

as a result of the the data replication strategy introduced by the former algorithm.
However, Table 7.3 also reveals that the COM scores measured for HeteroCOM were
much higher than those reported for HeteroMORPH, and could not be completely
overlapped with computations due to the high message traffic resulting from commu-
nication of full hyperspectral pixel vectors across the heterogeneous network. This is
the main reason why the execution times measured for HeteroCOM were the highest
in both networks, as already reported by Table 7.2. Finally, the fact that the PAR scores
produced by the homogeneous algorithms executed on the heterogeneous network are
so high is likely due to a less efficient workload distribution among the heterogeneous
workers. Therefore, a study of load balance is highly required to fully substantiate
the parallel properties of the considered algorithms.

In order to measure load balance, Table 7.4 shows the imbalance scores achieved
by the parallel algorithms on the two considered networks. The imbalance is defined
as D = Rmax/Rmin , where Rmax and Rmin are the maxima and minima processor run-
times, respectively. Therefore, perfect balance is achieved when D = 1. In the table,
we display the imbalance considering all processors, DAll , and also considering all
processors but the root, DMinus . As we can see from Table 7.4, both the HeteroMORPH
and HeteroNEURAL algorithms were able to provide values of DAll close to 1 in
the two considered networks, which indicates that the proposed heterogeneous data
partitioning algorithm is effective. Further, the above algorithms provided almost
the same results for both DAll and DMinus while, for the homogeneous versions,
load balance was much better when the root processor was not included. While the
homogeneous algorithms executed on the heterogeneous network provided the highest
values of DAll and DMinus (and hence the highest imbalance), the heterogeneous
algorithms executed on the homogeneous network resulted in values of DMinus that
were close to optimal.

Despite the fact that conventional feature extraction algorithms (such as those
based on PCT) do not take into account the spatial information explicitly into the
computations—a fact that has traditionally been perceived as an advantage for the
development of parallel implementations—and taking into account that both Het-
eroMORPH and HeteroNEURAL introduce redundant information expected to slow

Parallel Implementation of Morphological Neural Networks 147

25622419216012896

Number of CPUs

64320
0

32

64

96

128

S
p

ee
d

u
p 160

192 Linear

HeteroCOM HomoCOM

HeteroMORPH HomoMORPH
224

256

Figure 7.4 Scalability of parallel morphological feature extraction algorithms on
Thunderhead.

down the computation a priori, the results in Table 7.4 indicate that the two het-
erogeneous algorithms are effective in finding an appropriate workload distribu-
tion among the heterogeneous processors. On the other hand, the higher imbalance
scores measured for HeteroCOM (and its homogeneous version) are likely due to the
impact of inter-processor communications. In this case, further research is required to
adequately incorporate the properties of the heterogeneous communication network
into the design of the heterogeneous algorithm.

Taking into account the results presented above, and with the ultimate goal of ex-
ploring issues of scalability (considered to be a highly desirable property in the design
of heterogeneous parallel algorithms), we have also compared the performance of the
heterogeneous algorithms and their homogeneous versions on the Thunderhead Be-
owulf cluster. Figure 7.4 plots the speedups achieved by multi-processor runs of the
heterogeneous parallel implementations of the morphological feature extraction algo-
rithm over the corresponding single-processor runs of each considered algorithm on
Thunderhead. For the sake of comparison, Figure 7.4 also plots the speedups achieved
by multi-processor runs of the homogeneous versions on Thunderhead. On the other
hand, Figure 7.5 shows similar results for the parallel neural network classifier. As
Figure 7.4 and 7.5 show, the scalability of heterogeneous algorithms was essentially
the same as that evidenced by their homogeneous versions, with both HeteroNEURAL
and HeteroMORPH showing scalability results close to linear in spite of the fact that
the two algorithms introduce redundant computations expected to slow down the
computation a priori. Quite opposite, Figure 7.4 shows that the speedup plot achieved
by HeteroCOM flattens out significantly for a high number of processors, indicating
that the ratio of communications to computations is progressively more significant as
the number of processors is increased, and parallel performance is significantly de-
graded. The above results clearly indicate that the proposed data replication strategy
is more appropriate than the tested data communication strategy in the design of a

148 High-Performance Computing in Remote Sensing

25622419216012896

Number of CPUs

64320
0

32

64

96

128

S
p

ee
d

u
p 160

192
Linear

HeteroNEURAL HomoNEURAL
224

256

Figure 7.5 Scalability of parallel neural classifier on Thunderhead.

parallel version of morphological feature extraction in the context of remote sensing
applications.

Overall, experimental results in our study reveal that the proposed heterogeneous
parallel algorithms offer a relatively platform-independent and highly scalable solu-
tion in the context of realistic hyperspectral image analysis applications. Contrary
to common perception that spatial/spectral feature extraction and back-propagation
learning algorithms are too computationally demanding for practical use and/or (near)
real-time exploitation in hyperspectral imaging, the results in this chapter demonstrate
that such approaches are indeed appealing for parallel implementation, not only be-
cause of the regularity of the computations involved in such algorithms, but also
because they can greatly benefit from the incorporation of redundant information
to reduce sequential computations at the master node and involve minimal commu-
nication between the parallel tasks, namely, at the beginning and ending of such
tasks.

7.4 Conclusions and Future Research

In this chapter, we have presented an innovative parallel algorithm for hyperspectral
image analysis based on morphological neural networks, and implemented several
variations of the algorithm on both heterogeneous and homogeneous networks and
clusters. The parallel performance evaluation strategy conducted in this work was
based on experimentally assessing the heterogeneous algorithm by comparing its ef-
ficiency on a fully heterogeneous network (made up of processing units with different
speeds and highly heterogeneous communication links) with the efficiency achieved
by its equivalent homogeneous version on an equally powerful homogeneous net-
work. Scalability results on a massively parallel commodity cluster are also provided.

Parallel Implementation of Morphological Neural Networks 149

Experimental results in this work anticipate that the (readily available) computational
power offered by heterogeneous architectures offers an excellent alternative for the
efficient implementation of hyperspectral image classification algorithms based on
morphological neural networks, which can successfully integrate the spatial and spec-
tral information in the data in simultaneous fashion. In future research, we are planning
on implementing the proposed parallel neural algorithm using hardware architectures
taking advantage of the efficient systolic array design already conducted by the mor-
phological and neural stages of the algorithm [18].

7.5 Acknowledgment

The authors, thank J. Dorband, J. C. Tilton, and J. A. Gualtieri for their support
with experiments on NASA’s Thunderhead system. They also acknowledge their
appreciation for Profs. M. Valero and F. Tirado.

References

[1] C.-I. Chang. Hyperspectral imaging: Techniques for spectral detection and
classification. Kluwer: New York, 2003.

[2] R. O. Green. Imaging spectroscopy and the airborne visible/infrared imaging
spectrometer (AVIRIS). Remote Sensing of Environment, vol. 65, pp. 227–248,
1998.

[3] G. Aloisio and M. Cafaro. A dynamic earth observation system. Parallel Com-
puting, vol. 29, pp. 1357–1362, 2003.

[4] D. A. Landgrebe. Signal theory methods in multispectral remote sensing. Wiley:
Hoboken, 2003.

[5] A. Plaza, P. Martinez, J. Plaza, and R. M. Perez. Dimensionality reduction
and classification of hyperspectral image data using sequences of extended
morphological transformations. IEEE Transactions on Geoscience and Remote
Sensing, vol. 43, pp. 466–479, 2005.

[6] T. El-Ghazawi, S. Kaewpijit, and J. L. Moigne. Parallel and adaptive reduc-
tion of hyperspectral data to intrinsic dimensionality. Proceedings of the IEEE
International Conference on Cluster Computing, pp. 102–110, 2001.

[7] A. Plaza, D. Valencia, J. Plaza, and P. Martinez. Commodity cluster-based par-
allel processing of hyperspectral imagery. Journal of Parallel and Distributed
Computing, vol. 66, pp. 345–358, 2006.

150 High-Performance Computing in Remote Sensing

[8] P. Wang, K. Y. Liu, T. Cwik, and R. O. Green. MODTRAN on supercomputers
and parallel computers. Parallel Computing, vol. 28, pp. 53–64, 2002.

[9] T. Sterling. Cluster computing. Encyclopedia of Physical Science and Technol-
ogy, vol. 3, 2002.

[10] J. Dorband, J. Palencia, and U. Ranawake. Commodity clusters at Goddard
Space Flight Center. Journal of Space Communication, vol. 3, pp. 227–248,
2003.

[11] A. Lastovetsky. Parallel computing on heterogeneous networks. Wiley-
Interscience: Hoboken, NJ, 2003.

[12] G. X. Ritter, P. Sussner, and J. L. Diaz. Morphological associative memories.
IEEE Transactions on Neural Networks, vol. 9, pp. 281–293, 2004.

[13] P. Soille. Morphological image analysis: Principles and applications. Springer:
Berlin, 2003.

[14] J. Plaza, A. Plaza, R. M. Perez, and P. Martinez. Automated generation of
semi-labeled training samples for nonlinear neural network-based abundance
estimation in hyperspectral data. Proceedings of the IEEE International Geo-
science and Remote Sensing Symposium, pp. 345–350, 2005.

[15] S. Suresh, S. N. Omkar, and V. Mani. Parallel implementation of back-
propagation algorithm in networks of workstations. IEEE Transactions on Par-
allel and Distributed Systems, vol. 16, pp. 24–34, 2005.

[16] J. Plaza, R. M. Perez, A. Plaza, P. Martinez and D. Valencia. Parallel morpholog-
ical/neural classification of remote sensing images using fully heterogeneous
and homogeneous commodity clusters. Proceedings of the IEEE International
Conference on Cluster Computing, pp. 328–337, 2006.

[17] A. Lastovetsky and R. Reddy. On performance analysis of heterogeneous par-
allel algorithms. Parallel Computing, vol. 30, pp. 1195–1216, 2004.

[18] D. Zhang and S. K. Pal. Neural Networks and Systolic Array Design. World
Scientific: Singapore, 2002.

