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Summary. Neural networks represent a widely used alternative to deal with remotely
sensed image data. The improvement of spatial and spectral resolution in latest-
generation Earth observation instruments is expected to introduce extremely high
computational requirements in neural network-based algorithms for classification of
high-dimensional data sets such as hyperspectral images, with hundreds of spectral
channels and very fine spatial resolution. A significant advantage of neural networks
versus other types of processing algorithms for hyperspectral imaging is that they are
inherently amenable for parallel implementation. As a result, they can benefit from ad-
vances in low-cost parallel computing architectures such as heterogeneous networks of
computers, which have soon become a standard tool of choice for dealing with the mas-
sive amount of image data sets. In this chapter, several techniques for classification of
hyperspectral imagery using neural networks are presented and discussed. Experimen-
tal results are provided from the viewpoint of both classification accuracy and parallel
performance on a variety of parallel computing platforms, including two networks of
workstations at University of Maryland and a massively parallel Beowulf cluster at
NASA’s Goddard Space Flight Center in Maryland. Two different application areas
are addressed for demonstration: land-cover classification using hyperspectral data col-
lected by NASA over the valley of Salinas, California, and urban city classification
using data collected by the German Aerospace Agency (DLR) over the city of Pavia,
Italy.

8.1 Introduction

Many international agencies and research organizations are currently devoted to
the analysis and interpretation of high-dimensional image data collected over the
surface of the Earth [1]. For instance, NASA is continuously gathering hyperspec-
tral images (at different wavelength channels) using Jet Propulsion Laboratory’s
Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) [2].

The incorporation of hyperspectral instruments aboard satellite platforms
is now producing a near-continual stream of high-dimensional remotely sensed
data, and computationally efficient data processing techniques are required in a
variety of time-critical applications, including wildland fire monitoring, detection
of chemical and biological agents in waters and atmosphere, or target detection
for military purposes.
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Fig. 8.1. Neural network-based hyperspectral data classification

Neural networks have been widely used in previous work to analyze hyperspec-
tral images [3]. In particular, neural architectures have demonstrated great poten-
tial to model mixed pixels, which result from limited spatial resolution in certain
application domains and also from the mixed nature of the interaction between
photons and particles of observed land-cover surfaces. Since this process is inher-
ently nonlinear, neural networks are an appropriate tool for mixed pixel classifi-
cation due to their capacity to approximate complex nonlinear functions [4].

The standard classification approach adopted for neural networks is illustrated
in Fig. 8.1, in which the original input data is first reduced in its dimensional-
ity to avoid the Hughes effect. Previous research has demonstrated that the high-
dimensional data space spanned by hyperspectral data sets is usually empty [5],
indicating that the data structure involved exists primarily in a subspace. Com-
monly used techniques to reduce the dimensionality of the data have been the prin-
cipal component transform (PCT) or the minimum noise fraction (MNF) [6]. The
discrete wavelet transform (DWT) or independent component analysis (ICA) have
also been proposed for this task [7]. However, these approaches rely on spectral
properties of the data alone, thus neglecting the information related to the spa-
tial arrangement of the pixels in the scene. Usually, we need to manage very high-
dimensional data volumes in which spatial correlation between spectral responses
of neighboring pixels can be potentially high [8]. As a result, there is a need for fea-
ture extraction techniques able to integrate the spatial and spectral information
available from the data simultaneously [7]. Once a set of relevant features have
been extracted from the input data, artificial neural network-based classification
usually follows a supervised strategy, in which a few randomly selected training
samples are selected from available labeled data and used to train the neural clas-
sifier. The trained classifier is then tested using the remaining samples.
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Although many neural network architectures have been explored in the liter-
ature, feedforward networks of various layers, such as the multi-layer perceptron
(MLP), have been widely used in hyperspectral imaging applications [9]. The
MLP is typically trained using the error back-propagation algorithm, a super-
vised technique of training with three phases. In the first one, an initial vector
is presented to the network, which leads to the activation of the network as a
whole. The second phase computes an error between the output vector and a
vector of desired values for each output unit, and propagates it successively back
through the network. The last phase computes the changes for the connection
weights, which are randomly generated at the beginning of the process. It has
been shown in the literature that MLP-based neural models, when trained ac-
cordingly, generally outperform other nonlinear models such as regression trees
or fuzzy classifiers [9].

Despite the success of neural network models for classification of remotely
sensed hyperspectral images, several challenges still remain open in order to
incorporate such models to real applications. An important limitation of these
models is the fact that their computational complexity can be quite high [10], in
particular, when they are used to analyze large hyperspectral data sets (or data
repositories) comprising hundreds of spectral channels per scene [4].

To address the computational needs introduced by neural network-based algo-
rithms in hyperspectral imaging applications, several efforts have been recently
directed towards the incorporation of parallel computing models in remote sens-
ing, specially with the advent of relatively cheap Beoulf clusters [11], [12]. The
goal is to create parallel computing systems from commodity components to
satisfy specific requirements for the Earth and space sciences community [13].
Although most dedicated parallel machines employed by NASA and other in-
stitutions during the last decade have been chiefly homogeneous in nature [14],
a current trend is to utilize heterogeneous and distributed parallel computing
platforms [15]. In particular, computing on heterogeneous networks of comput-
ers (HNOCs) is an economical alternative which can benefit from local (user)
computing resources while, at the same time, achieve high communication speed
at lower prices. These properties have led HNOCs to become a standard tool
for high-performance computing in many ongoing and planned remote sensing
missions [16], [17], thus taking advantage of from the considerable amount of
work done in dynamic, resource-aware static and dynamic task scheduling and
load balancing in distributed platforms, including distributed systems and Grid
computing environments.

Despite the increasing importance of HNOCs in remote sensing data interpre-
tation, there is a lack of consolidated neural network-based algorithms specifi-
cally developed for heterogeneous computing platforms. To address the need for
cost-effective and innovative parallel neural network classification algorithms,
this chapter develops a new morphological/neural parallel algorithm for classifi-
cation of hyperspectral imagery. The algorithm is inspired by previous work on
morphological neural networks, such as autoassociative morphological memories
and morphological perceptrons [18], although it is based on different concepts.
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Most importantly, the algorithm can be tuned for very efficient execution on
both HNOCs and massively parallel, Beowulf-type commodity clusters.

The remainder of the chapter is structured as follows. Section 8.2 describes the
proposed heterogeneous parallel algorithm, which consists of two main processing
steps: 1) parallel morphological feature extraction taking into account the spatial
and spectral information, and 2) robust classification using a parallel multi-layer
neural network with back-propagation learning. Section 8.3 describes the algo-
rithm’s accuracy and parallel performance. Classification accuracy is discussed
in the context of a real applications, including land-cover classification of agri-
cultural fields in the valley of Salinas, California and urban classification using
hyperspectral data collected over the city of Pavia, Italy. Parallel performance
in the context of the above-mentioned application is also provided by comparing
the efficiency achieved by an heterogeneous parallel version of the proposed al-
gorithm, executed on a fully heterogeneous network, with the efficiency achieved
by its equivalent homogeneous version, executed on a fully homogeneous network
with the same aggregate performance as the heterogeneous one. For compara-
tive purposes, performance data on Thunderhead, a massively parallel Beowulf
cluster at NASA’s Goddard Space Flight Center, are also given. Finally, Section
8.4 concludes with some remarks and hints at plausible future research.

8.2 Parallel Morphological/Neural Classification
Algorithm

In this section we present a new parallel approach for neural network-based
classification of hyperspectral data, which has been specifically tuned for effi-
cient execution in heterogeneous parallel platforms. The section is structured
as follows. First, we formulate a general optimization problem in the context of
HNOCs. Then, we separately describe the two main steps of the proposed par-
allel neural algorithm. The first stage (morphological feature extraction) relies
on a feature selection stage performed by using extended morphological oper-
ations specifically tuned to deal with hyperspectral images. The second stage
(neural network classification) is a supervised technique in which the extracted
features are fed to a MLP-based neural architecture and used to classify the data
according to a gradient descent algorithm.

8.2.1 Optimization Problem

Heterogeneous networks are composed of different-speed processors that com-
municate through links at different capacities [15]. This type of platform can be
simply modeled as a complete graph G = (P, E) where each node models a com-
puting resource pi weighted by its relative cycle-time wi . Each edge in the graph
models a communication link weighted by its relative capacity, where cij denotes
the maximum capacity of the slowest link in the path of physical communica-
tion links from pi to pj . We also assume that the system has symmetric costs,
i.e., cij = cji. Under the above assumptions, processor pi will accomplish a share
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of αi ×W of the total workload W , with αi ≥ 0 for 1 ≤ i ≤ P and
∑P

i=1 αi = 1.
With the above assumptions in mind, an abstract view of our problem can be
simply stated in the form of a client-server architecture, in which the server is
responsible for the efficient distribution of work among the P nodes, and the
clients operate with the spatial and spectral information contained in a local
partition. The partitions are then updated locally and the resulting calculations
may also be exchanged between the clients, or between the server and the clients.
Below, we describe the two main steps of our parallel algorithm.

8.2.2 Parallel Morphological Feature Extraction

This section develops a parallel morphological feature extraction algorithm for
hyperspectral image analysis. First, we describe the morphological algorithm and
its principles, then we study several possibilities for its parallel implementation
for HNOCs.

Morphological feature extraction algorithm

The feature extraction algorithm presented in this section is based on concepts
from mathematical morphology theory [19], which provides a remarkable frame-
work to achieve the desired integration of the complementary nature of spatial
and spectral information in simultaneous fashion, thus alleviating the problems
related to each of them taken separately. In order to extend classical morpholog-
ical operations from gray-scale image analysis to hyperspectral image scenarios,
the main goal is to impose an ordering relation (in terms of spectral purity) in the
set of pixel vectors lying within a spatial search window (called structuring ele-
ment) designed by B [7]. This is done by defining a cumulative distance between a
pixel vector f(x, y) and all the pixel vectors in the spatial neighborhood given by
B (B -neighborhood) as follows: DB[f(x, y)] =

∑
i

∑
j SAD[f(x, y), f(i, j)], where

(x, y) refers to the spatial coordinates in the B -neighborhood and SAD is the
spectral angle distance, given by the following expression:

SAD(f(x, y), f(i, j)) = arccos
(

f(x, y) · f(i, j)
‖f(x, y)‖ · ‖f(i, j)‖

)

. (8.1)

From the above definitions, two standard morphological operations called ex-
tended erosion and dilation can be respectively defined as follows:

(f ⊗ B)(x, y) = argmin(s,t)∈Z2(B)

∑

s

∑

t

SAD(f(x, y), f(x + s, y + t)), (8.2)

(f ⊕ B)(x, y) = argmax(s,t)∈Z2(B)

∑

s

∑

t

SAD(f(x, y), f(x − s, y − t)). (8.3)

Using the above operations, the opening filter is defined as (f◦B)(x, y) = [(f⊗
B) ⊕ B](x, y) (erosion followed by dilation), while the closing filter is defined as
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(f•B)(x, y) = [(f⊕B)⊗B](x, y) (dilation followed by erosion). The composition
of opening and closing operations is called a spatial/spectral profile, which is
defined as a vector which stores the relative spectral variation for every step
of an increasing series. Let us denote by {(f ◦ B)λ(x, y)}, withλ = {0, 1, ..., k},
the opening series at f(x, y), meaning that several consecutive opening filters are
applied using the same window B. Similarly, let us denote by {(f•B)λ(x, y)}, λ =
{0, 1, ..., k}, the closing series at f(x, y). Then, the spatial/spectral profile at
f(x, y) is given by the following vector:

p(x, y) = {SAM((f ◦ B)λ(x, y), (f ◦ B)λ−1(x, y))} ∪ · · ·
· · · ∪ {SAM((f • B)λ(x, y), (f • B)λ−1(x, y))}. (8.4)

Here, the step of the opening/closing series iteration at which the spatial/spectral
profile provides a maximum value gives an intuitive idea of both the spectral and
spatial distribution in the B -neighborhood [7]. As a result, the morphological
profile can be used as a feature vector on which the classification is performed
using a spatial/spectral criterion.

Parallel implementations

Two types of data partitioning can be exploited in the parallelization of spa-
tial/spectral algorithms such as the one addressed above [14]:

1. Spectral-domain partitioning. Subdivides the volume into small cells or
sub-volumes made up of contiguous spectral bands, and assigns one or more
sub-volumes to each processor. With this model, each pixel vector is split
amongst several processors, which breaks the spectral identity of the data
because the calculations for each pixel vector (e.g., for the SAD calculation)
need to originate from several different processing units.

2. Spatial-domain partitioning. Provides data chunks in which the same
pixel vector is never partitioned among several processors. As a result, each
pixel vector is always entirely stored in the same processing unit, thus entirely
preserving the full spectral signature associated to the pixel at the same
processor.

In this chapter, we adopt a spatial-domain partitioning approach due to sev-
eral reasons. First and foremost, the application of spatial-domain partitioning
is a natural approach for morphological image processing, as many operations
require the same function to be applied to a small set of elements around each
data element present in the image data structure, as indicated in the previous
subsection.

A second reason has to do with the cost of inter-processor communication.
For instance, in spectral-domain partitioning, the structuring element-based cal-
culations made for each hyperspectral pixel would need to originate from sev-
eral processing elements, thus requiring intensive inter-processor communication.
However, if redundant information such as an overlap border is added to each of
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the adjacent partitions to avoid accesses outside the image domain, then bound-
ary data to be communicated between neighboring processors can be greatly
minimized. Such an overlapping scatter would obviously introduce redundant
computations, since the intersection between partitions would be non-empty.
Our implementation makes use of a constant structuring element B (with size
of 3 × 3 pixels) which is repeatedly iterated to increase the spatial context, and
the total amount of redundant information is minimized. To do so, we have im-
plemented three different approximations in order to handle with these so-called
border pixels:

• MP-1 implements a non-overlapping scatter operation followed by over-
lap communication for every hyperspectral pixel vector, thus communicating
small sets of pixels very often.

• MP-2 implements a standard non-overlapping scatter operation followed by
a special overlap communication which sends all border pixels beforehand ,
but only once.

• MP-3 performs a special ’overlapping scatter’ operation that also sends out
the overlap border data as part of the scatter operation itself (i.e., redundant
computations replace communications).

Here, we make use of MPI derived datatypes to directly scatter hyperspectral
data structures, which may be stored non-contiguously in memory, in a sin-
gle communication step. A pseudo-code of the proposed parallel morphological
feature extraction algorithm is given below. The inputs to the algorithm are
an N -dimensional cube f, and a structuring element B. The output is a set of
morphological profiles for each pixel.

1. Obtain information about the heterogeneous system, including the number of
processors, P , each processors identification number, {pi}P

i=1, and processor
cycle-times, {wi}P

i=1.
2. Using B and the information obtained in step 1, determine the total volume

of information, R, that needs to be replicated from the original data volume,
V , according to the data communication strategies outlined above, and let
the total workload W to be handled by the algorithm be given by W =
V +R. Then, partition the data using one of the three considered partitioning
strategies for morphological processing: MP-1, MP-2 or MP-3.

3. Set αi = 	 (P/wi)∑
P
i=1(1/wi)


 for all i ∈ {1, ..., P}.

4. For m =
∑P

i=1 αi to (V + R), find k ∈ {1, .., P} so that wk · (αk + 1) =
min{wi · (αi + 1)}P

i=1 and set αk = αk + 1.
5. Use the resulting {αi}P

i=1 to obtain a set of P spatial-domain heterogeneous
partitions of W in accordance with the selected strategy: MP-1, MP-2 or
MP-3, and send each partition to processor pi, along with B.

6. Calculate the morphological profiles p(x, y) for the pixels in the local data
partitions (in parallel) at each heterogeneous processor.

7. Collect all the individual results and merge them together to produce the
final output at the master processor.
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It should be noted that a homogeneous version of the algorithm above can be
simply obtained by replacing step 4 with αi = P/wi for all i ∈ {1, ..., P}, where
wi is the communication speed between processor pairs in the network, assumed
to be homogeneous.

8.2.3 Parallel Neural Classification Algorithm

The second step of the proposed parallel algorithm consists of a supervised par-
allel classifier based on a MLP neural network with back-propagation learning.
The neural network is trained with selected features from the previous mor-
phological feature extraction. This approach has been shown in previous work
to be very robust for classification of hyperspectral imagery [20]. However, the
considered neural architecture and back-propagation-type learning algorithm in-
troduce additional considerations for parallel implementation on HNOCs. This
section first describes the neural network architecture and learning procedure,
and then describes several strategies for its parallelization, resulting in two main
approaches for efficient implementation in HNOCs, namely, Exemplar partition-
ing and Hybrid partitioning.

Network architecture and learning

The architecture adopted for the proposed MLP-based neural network classifier
is shown in Fig. 8.2. The number of input neurons equals the number of spec-
tral bands acquired by the sensor. In case either PCT-based pre-processing or
morphological feature extraction are applied as a pre-processing steps, then the
number of neurons at the input layer equals the dimensionality of feature vectors
used for classification. The second layer is the hidden layer, where the number
of nodes, M , is usually estimated empirically. Finally, the number of neurons at
the output layer, C, equals the number of distinct classes to be identified in the
input data. With the above architecture, the activation function for hidden and
output nodes can be selected by the user. In this chapter, we have used sigmoid
activation for all experiments. With the above architectural design in mind, the
standard back-propagation learning algorithm can be outlined by the following
steps:

1. Forward phase. Let the individual components of an input pattern be denoted
by fj(x, y), with j = 1, 2, ..., N . The output of the neurons at the hidden layer
are obtained as: Hi = ϕ(

∑N
j=1 ωij · fj(x, y)) with i = 1, 2, ..., M , where ϕ(·)

is the activation function and ωij is the weight associated to the connection
between the i-th input node and the j -th hidden node. The outputs of the
MLP are obtained using Ok = ϕ(

∑M
i=1 ωki · Hi), with k = 1, 2, ..., C. Here,

ωki is the weight associated to the connection between the i-th hidden node
and the k -th output node.

2. Error back-propagation. In this stage, the differences between the desired
and obtained network outputs are calculated and back-propagated. The delta
terms for every node in the output layer are calculated using δo

k = (Ok −dk) ·
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Fig. 8.2. MLP neural network topology

ϕ
′
(·), with i = 1, 2, ..., C. Here, ϕ

′
(·) is the first derivative of the activation

function. Similarly, delta terms for the hidden nodes are obtained using δh
i =

∑C
k=1(ωki · δo

i ) · ϕ(·)), with i = 1, 2, ..., M .
3. Weight update. After the back-propagation step, all the weights of the net-

work need to be updated according to the delta terms and to η, a learn-
ing rate parameter. This is done using ωij = ωij + η · δh

i · fj(x, y) and
ωki = ωki + η · δo

k · Hi. Once this stage is accomplished, another training
pattern is presented to the network and the procedure is repeated for all
incoming training patterns.

Once the back-propagation learning algorithm is finalized, a classification
stage follows, in which each test input pixel vector is classified using the weights
obtained by the network during the training stage [20]. Diffferent strategies for
parallel classification using the proposed MLP architecture are given in the fol-
lowing subsection.

Parallel MLP classification

Several partitioning schemes can be analyzed when mapping a MLP neural net-
work on a cluster architecture [21]. The choice is application-dependent, and a
key issue is the number of training patterns to be used during the learning stage.
In this chapter, we present two different schemes for the multi-layer perceptron
classifier partitioning:

1. Exemplar partitioning. This approach, also called training example par-
allelism, explores data level parallelism and can be easily obtained by simply
partitioning the training pattern data set (see Fig. 8.3). Each process deter-
mines the weight changes for a disjoint subset of the training population
and then changes are combined and applied to the neural network at the
end of each epoch. As will be shown by experiments, this scheme requires
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Fig. 8.3. Exemplar partitioning scheme over MLP topology. Training data is divided
into different subsets which are used to train three different subnetworks, i.e., white,
grey and black.

a large number of training patterns to produce significant speedups, which
is the most common situation in most remote sensing applications due to
the limited availability of training samples and the great difficulty to gener-
ate accurately labeled ground-truth samples prior to analyzing the collected
data.

2. Hybrid partitioning. This approach is based on a combination of neuronal
level as well as synaptic level parallelism [22] which allows us to reduce the
processor intercommunications at each iteration (see Fig. 8.4). This approach
results from a combination of neuronal level parallelism and synaptic level
parallelism. In the former (also called vertical partitioning) all the incom-
ing weights to the neurons local to the processor are computed by a single
processor. In the latter, each workstation will compute only the outgoing
weight connections of the nodes (neurons) local to the processor. The hybrid
scheme combines those approaches, i.e., the hidden layer is partitioned using
neuronal parallelism while weight connections adopt synaptic scheme. As a
result, all inter-processor communications will be reduced to a cumulative
sum at each epoch, thus significantly reducing processing time on parallel
platforms.

Implementation of parallel Exemplar partitioning

As mentioned above, the exemplar parallelism strategy is relatively easy to im-
plement. It only requires the addition of an initialization algorithm and a syn-
chronization step on each iteration. The initialization procedure distribute the
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training patterns among the different processors according to their relative speed
and memory characteristics. As shown in Fig. 8.3, each processor will implement
a complete neural network topology which will compute only the previously re-
lated pattern subset. On each iteration, a synchronization step is required in
order to integrate the weights matrices actualization obtained at each MLP ar-
chitecture considering its respective training pattern subset. It can be easily
achieved by having all the processors communicate their partial weights change
matrices to the master node which computes the total sum of all partial matrices
and applies the changes to the network. It then broadcasts the new weights ma-
trix to the slave nodes. In our approximation, we improve the communication
task by taking advantage of MPI predefined communication directives, which
allow us to perform an all to all actualization and communication in a single
MPI directive.

A pseudo-code of the Exemplar partitioning algorithm can be summarized as
follows. The inputs to the algorithm are an N -dimensional cube f, and a set
of training patterns fj(x, y). The output is a classification label for each image
pixel.

1. Use steps 1-4 of the parallel morphological feature extraction algorithm to
obtain a set of values (αi)P

i=1 which will determine the share of the workload
to be accomplished by each heterogeneous processor.

2. Use the resulting (αi)P
i=1 to obtain a set of P heterogeneous partitions of

the training patterns and map the resulting partitions fP
j (x, y) among the

P heterogeneous processors (which also store the full multi-layer perceptron
architecture).

3. Parallel training. For each training pattern contained on each partition, the
following three steps are executed in parallel for each processor:
a) Parallel forward phase. In this phase, the activation value of the hidden

neurons local to the processors are calculated. For each input pattern,
the activation value for the hidden neurons is calculated using HP

i =
ϕ(

∑N
j=1 ωij · fP

j (x, y)). Here the activation values of output neurons are
calculated according to OP

k = ϕ(
∑M

i=1 ωP
ki · HP

i ), with k = 1, 2, ..., C.
b) Parallel error back-propagation. In this phase, each processor calculates

the error terms for the local training patters. To do so, delta terms for
the output neurons are first calculated using (δo

k)P = (Ok − dk)P · ϕ′
(·),

with i = 1, 2, ..., C. Then, error terms for the hidden layer are computed
using (δh

i )P =
∑P

k=1(ω
P
ki · (δo

k)P ) · ϕ
′
(·), with i = 1, 2, ..., N .

c) Parallel weight update. In this phase, the weight connections between the
input and hidden layers are updated by ωij = ωij + ηP · (δh

i )P · fP
j (x, y).

Similarly, the weight connections between the hidden and output layers
are updated using ωP

ki = ωP
ki + ηP · (δo

k)P · HP
i .

d) Broadcast and intialization of weight matrices. In this phase, each node
sends its partial weight matrices to its neighbor node, which sums it to
its partial matrix and proceed to send it again to the neighbor. When
all nodes have added their local matrices, then the resulting total weight
matrices are broadcast to be used by all processors in the next iteration.
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4. Classification. For each pixel vector in the input data cube f, calculate (in
parallel)

∑P
j=1 Oj

k, with k = 1, 2, ..., C. A classification label for each pixel
can be obtained using the winner-take-all criterion commonly used in neural
network applications by finding the cumulative sum with maximum value,
say

∑P
j=1 Oj

k∗ , with k∗ = arg{max1≤k≤C

∑P
j=1 Oj

k}.

Implementation of parallel Hybrid partitioning

In the hybrid classifier, the hidden layer is partitioned so that each heterogeneous
processor receives a number of hidden neurons which depends on its relative
speed. Figure 8.4 shows how each processor stores the weight connections be-
tween the neurons local to the processor. Since the fully connected MLP network
is partitioned into P partitions and then mapped onto P heterogeneous proces-
sors using the above framework, each processor is required to communicate with
every other processor to simulate the complete network. For this purpose, each of
the processors in the network executes the three phases of the back-propagation
learning algorithm described above.

A pseudo-code of the Hybrid partitioning algorithm can be summarized as
follows. The inputs to the algorithm are an N -dimensional data cube f, and
a set of training patterns fj(x, y). The output is a classification label for each
image pixel.

1. Use steps 1-4 of the parallel morphological feature extraction algorithm to
obtain a set of values (αi)P

i=1 which will determine the share of the workload
to be accomplished by each heterogeneous processor.

2. Use the resulting (αi)P
i=1 to obtain a set of P heterogeneous partitions of the

hidden layer and map the resulting partitions among the P heterogeneous
processors (which also store the full input and output layers along with all
connections involving local neurons).

3. Parallel training. For each considered training pattern, the following three
parallel steps are executed:
a) Parallel forward phase. In this phase, the activation value of the hidden

neurons local to the processors are calculated. For each input pattern,
the activation value for the hidden neurons is calculated using HP

i =
ϕ(

∑N
j=1 ωij ·fj(x, y)). Here, the activation values and weight connections

of neurons present in other processors are required to calculate the acti-
vation values of output neurons according to OP

k = ϕ(
∑M/P

i=1 ωP
ki · HP

i ),
with k = 1, 2, ..., C. In our implementation, broadcasting the weights and
activation values is circumvented by calculating the partial sum of the
activation values of the output neurons.

b) Parallel error back-propagation. In this phase, each processor calculates
the error terms for the local hidden neurons. To do so, delta terms for
the output neurons are first calculated using the formula (δo

k)P = (Ok −
dk)P · ϕ

′
(·), with i = 1, 2, ..., C. Then, error terms for the hidden layer

are computed using (δh
i )P =

∑P
k=1(ω

P
ki ·(δo

k)P )·ϕ′
(·), with i = 1, 2, ..., N .
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Fig. 8.4. Hybrid partitioning scheme over MLP topology. The input and output layers
are common to all processors. The hidden nodes are distributed among different pro-
cessors (lines, dotted-lines and dashed-lines denote weight connections corresponding
to three different processors).

c) Parallel weight update. In this phase, the weight connections between the
input and hidden layers are updated by ωij = ωij + ηP · (δh

i )P · fj(x, y).
Similarly, the weight connections between the hidden and output layers
are updated using the expression: ωP

ki = ωP
ki + ηP · (δo

k)P · HP
i .

4. Classification. For each pixel vector in the input data cube f, calculate (in
parallel)

∑P
j=1 Oj

k, with k = 1, 2, ..., C. A classification label for each pixel
can be obtained using the winner-take-all criterion commonly used in neural
networks by finding the cumulative sum with maximum value, say

∑P
j=1 Oj

k∗ ,
with k∗ = arg{max1≤k≤C

∑P
j=1 Oj

k}.

8.3 Experimental Results

This section provides an assessment of the effectiveness of the parallel algorithms
described in section 2. The section is organized as follows. First, we describe the
parallel computing platforms used in this chapter for evaluation purposes. Then,
we provide performance data for the proposed parallel algorithms in the context
of two real hyperspectral imaging applications.

8.3.1 Parallel Computing Platforms

Before describing the parallel systems used for evaluation in this chapter, we
briefly outline a recent study [23] on performance analysis for heterogeneous al-
gorithms that we have adopted in this work for evaluation purposes. Specifically,
we assess the parallel performance of the proposed heterogeneous algorithms
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Table 8.1. Specifications of processors in a heterogeneous network of computers at
University of Maryland

Processor Architecture Cycle-time Main memory Cache
identification description (secs/megaflop) (MB) (KB)

p1 Free BSD – i386 Intel Pentium 4 0.0058 2048 1024
p2, p5, p8 Linux – Intel Xeon 0.0102 1024 512

p3 Linux – AMD Athlon 0.0026 7748 512
p4, p6, p7, p9 Linux – Intel Xeon 0.0072 1024 1024

p10 SunOS – SUNW UltraSparc-5 0.0451 512 2048
p11 − p16 Linux – AMD Athlon 0.0131 2048 1024

using the basic postulate that these algorithms cannot be executed on a het-
erogeneous network faster than its homogeneous prototypes on the equivalent
homogeneous network.

Let us assume that a heterogeneous network consists of {pi}P
i heterogeneous

workstations with different cycle-times wi, which span m communication seg-
ments {sj}m

j=1, where c(j) denotes the communication speed of segment sj . Sim-

ilarly, let p(j) be the number of processors that belong to sj , and let w
(j)
t be

the speed of the t -th processor connected to sj , where t = 1, ..., p(j). Finally, let
c(j,k) be the speed of the communication link between segments sj and sk, with
j, k = 1, ..., m. According to [23], the above network can be considered equivalent
to a homogeneous one made up of {qi}P

i=1processors with constant cycle-time
and interconnected through a homogeneous communication network with speed
c if the following expressions are satisfied:

c =

∑m
j=1 c(j) · [p(j)(p(j)−1)

2 ]
P (P−1)

2

+

∑m
j=1

∑m
k=j+1 p(j) · p(k) · c(j,k)

P (P−1)
2

, (8.5)

w =

∑m
j=1

∑p(j)

t=1 w
(j)
t

P
, (8.6)

where equation (8.5) states that the average speed of point-to-point communica-
tions between processors {pi}P

i=1 in the heterogeneous network should be equal
to the speed of point-to-point communications between processors {qi}P

i=1 in the
homogeneous network, with both networks having the same number of proces-
sors. On the other hand, equation (8.6) states that the aggregate performance of
processors {pi}P

i=1 should be equal to the aggregate performance of processors
{qi}P

i=1.
We have configured two networks of workstations at University of Maryland

to serve as sample networks for testing the performance of the proposed het-
erogeneous hyperspectral imaging algorithm. The networks are considered ap-
proximately equivalent under the above framework. In addition, we have also
used a massively parallel Beowulf cluster at NASA’s Goddard Space Flight Cen-
ter in Maryland to test the scalability of the proposed parallel algorithms in a
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Table 8.2. Capacity of communication links (time in milliseconds to transfer a one-
megabit message) between processors in the heterogeneous network at University of
Maryland

Processor p1 − p4 p5 − p8 p9 − p10 p11 − p16

p1 − p4 19.26 48.31 96.62 154.76
p5 − p8 48.31 17.65 48.31 106.45
p9 − p10 96.62 48.31 16.38 58.14
p11 − p16 154.76 106.45 58.14 14.05

large-scale parallel platform. A more detailed description of the parallel platforms
used in this chapter follows:

1. Fully heterogeneous network. Consists of 16 different workstations, and
four communication segments. Table 8.1 shows the properties of the 16 het-
erogeneous workstations, where processors {pi}4

i=1 are attached to commu-
nication segment s1, processors {pi}8

i=5 communicate through s2,processors
{pi}10

i=9 are interconnected via s3, and processors {pi}16
i=11 share the com-

munication segment s4. The communication links between the different seg-
ments {sj}4

j=1 only support serial communication. For illustrative purposes,
Table 8.2 also shows the capacity of all point-to-point communications in
the heterogeneous network, expressed as the time in milliseconds to transfer
a one-megabit message between each processor pair (pi, pj) in the heteroge-
neous system. As noted, the communication network of the fully heteroge-
neous network consists of four relatively fast homogeneous communication
segments, interconnected by three slower communication links with capaci-
ties c(1,2) = 29.05, c(2,3) = 48.31, c(3,4) = 58.14 in milliseconds, respectively.
Although this is a simple architecture, it is also a quite typical and realistic
one as well.

2. Fully homogeneous network. Consists of 16 identical Linux workstations
{qi}16

i=1 with processor cycle-time of w = 0.0131 seconds per megaflop, inter-
connected via a homogeneous communication network where the capacity of
links is c = 26.64 milliseconds.

3. Thunderhead Beowulf cluster. Consists of 268 dual 2.4 Ghz Intel
4 Xeon nodes, each with 1 GB of memory and 80 GB of hard disk
(see http://thunderhead.gsfc.nasa.gov for additional details). The total disk
space available in the system is 21.44 Tbyte, and the theoretical peak perfor-
mance of the system is 2.5728 Tflops (1.2 Tflops on the Linpack benchmark).
Along with the 568-processor computer core, Thunderhead has several nodes
attached to the core with Myrinet 2000 connectivity (see Fig. 8.5). Our par-
allel algorithms were run from one of such nodes, called thunder1. The op-
erating system is Linux Fedora Core, and MPICH was the message-passing
library used (see http://www-unix.mcs.anl.gov/mpi/mpich).
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Fig. 8.5. Thunderhead Beowulf cluster at NASA’s Goddard Space Flight Center

8.3.2 Performance Evaluation

Before empirically investigating the performance of the proposed parallel hyper-
spectral imaging algorithms in the five considered platforms, we describe two
hyperspectral image scenes that will be used in experiments.

1. AVIRIS data. The first scene was collected by the 224-band AVIRIS sensor
over Salinas Valley, California, and is characterized by high spatial resolu-
tion (3.7-meter pixels). The area covered comprises 512 lines by 217 samples.
20 bands were discarded previous to the analysis due to low signal-to-noise
ratio in those bands. Fig. 6(a) shows the spectral band at 587 nm wave-
length, and Fig. 8.6(b) shows the ground-truth map, in the form of a class
assignment for each labeled pixel with 15 mutually exclusive ground-truth
classes. As shown by Fig. 8.6(b), ground truth is available for nearly half of
Salinas scene. The data set above represents a very challenging classification
problem (due to the spectral similarity of most classes, discriminating among
them is very difficult). This fact has made the scene a universal and widely
used benchmark test site to validate classification accuracy of hyperspectral
algorithms [7].

2. DAIS 7915 data. The second hyperspectral data set used in experiments
was collected by the DAIS 7915 airbone imaging spectrometer of the German
Aerospace Agency (DLR). It was collected by a flight at 1500 meters altitude
over the city of Pavia, Italy. The resulting scene has spatial resolution of 5
meters and size of 400 lines by 400 samples. Fig. 8.7(a) shows the image
collected at 639 nm by DAIS 7915 imaging spectrometer, which reveals a
dense residential area on one side of the river, as well as open areas and
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Fig. 8.6. (a) AVIRIS data collected over Salinas Valley, California, at 587 nm. (b)
Salinas land-cover ground classes for several areas of the scene. (c) Classification results
using the proposed morphological/neural algorithm.

meadows on the other side. Ground-truth is available for several areas of the
scene (see Fig. 8.7(b)). Following a previous research study on this scene [7],
we take into account only 40 spectral bands of reflective energy, and thus
skip thermal infrared and middle infrared bands above 1958 nm because of
low signal to noise ratio in those bands.

In order to test the accuracy of the proposed parallel morphological/neural
classifier in the context of a land-cover classification of agricultural crop fields,
a random sample of less than 2% of the pixels was chosen from the known
ground truth of the two images described above. Morphological profiles were then
constructed in parallel for the selected training samples using 10 iterations, which
resulted in feature vectors with dimensionality of 20 (i.e., 10 structuring element
iterations for the opening series and 10 iterations for the closing series). The
resulting features were then used to train the parallel back-propagation neural
network classifier with one hidden layer, where the number of hidden neurons
was selected empirically as the square root of the product of the number of input
features and information classes (several configurations of the hidden layer were
tested and the one that gave the highest overall accuracies was reported). The
trained classifier was then applied to the remaining 98% of labeled pixels in each
considered scene, yielding the classification results shown qualitatively for visual
evaluation in Fig. 8.6(c) and quantitatively in Table 8.3.

For comparative purposes, the accuracies obtained using the full spectral in-
formation and PCT-reduced features as input to the neural classifier are also
reported in Table 8.3. As shown by the table, morphological input features
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Table 8.3. Individual and overall test classification accuracies (in percentage) achieved
by the parallel neural classifier for the Salinas AVIRIS data using as input feature
vectors: the full spectral information contained in the original hyperspectral image,
PCT-based features, and morphological features

AVIRIS Spectral PCT-based Morphological
Salinas information features features
Broccoli green weeds 1 93.28 90.03 95.69
Broccoli green weeds 2 92.33 89.27 95.02
Fallow 96.23 91.16 97.10
Fallow rough plow 96.51 91.90 96.78
Fallow smooth 93.72 93.21 97.63
Stubble 94.71 95.43 98.96
Celery 89.34 94.28 98.03
Grapes untrained 88.02 86.38 95.34
Soil vineyard develop 88.55 84.21 90.45
Corn senesced green weeds 82.46 75.33 87.54
Lettuce romaine 4 weeks 78.86 76.34 83.21
Lettuce romaine 5 weeks 82.14 77.80 91.35
Lettuce romaine 6 weeks 84.53 78.03 88.56
Lettuce romaine 7 weeks 84.85 81.54 86.57
Vineyard untrained 87.14 84.63 92.93
Overall accuracy 87.25 86.21 95.08

Fig. 8.7. (a) DAIS 1795 data collected at 1500m. over the city of Pavia, Italy, at 639
nm. (b) Pavia land-cover ground classes for several areas of the scene. (c) Classification
results using the proposed morphological/neural algorithm.

substantially improve individual and overall classification accuracies with re-
gards to PCT-based features and the full spectral information. This is not sur-
prising since morphological operations use both spatial and spectral information
as opposed to the other methods which rely on spectral information alone.

In order to substantiate the performance of the parallel algorithms in a
different (and perhaps more challenging) application domain, we repeated the
experiments above using the DAIS 7915 hyperspectral scene collected over down-
town Pavia, Italy. The classification results achieved by the proposed morpho-
logical/neural classification algorithm are visually displayed in Fig. 8.7(c), and
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Table 8.4. Individual and overall test classification accuracies (in percentage) achieved
by the morphological/neural classifier for the DAIS 7915 Pavia scene using as input
feature vectors: the full spectral information contained in the original hyperspectral
image, PCT-based features, and morphological features

DAIS 7915 Spectral PCT-based Morphological
Pavia information features features
Water 87.30 86.17 100.00
Trees 94.64 97.62 98.72
Asphalt 97.79 84.48 98.88
Parking lot 83.82 81.93 71.77
Bitumen 86.11 75.48 98.68
Brick roofs 83.69 82.36 99.37
Meadow 88.88 89.86 92.61
Bare soil 79.85 84.68 95.11
Shadows 89.64 92.81 96.19
Overall accuracy 88.65 89.75 96.16

Table 8.5. Execution times and load balancing rates (in the parentheses) for the
different alternatives tested in the implementation of the morphological and neural
stages of the proposed parallel classifier

Morphological stage Neural stage
Heterogeneous versions: MP-1 MP-2 MP-3 Exemplar Hybrid

Heterogeneous network: 267 (1.13) 211 (1.02) 214 (1.03) 156 (1.04) 125 (1.02)
Homogeneous network: 279 (1.15) 216 (1.03) 221 (1.04) 178 (1.03) 141 (1.01)

Homogeneous versions: MP-1 MP-2 MP-3 Exemplar Hybrid
Heterogeneous network: 2871 (1.89) 2535 (1.75) 2261 (1.68) 1261 (1.69) 1123 (1.61)
Homogeneous network: 265 (1.13) 209 (1.02) 212 (1.03) 152 (1.04) 121 (1.02)

quantitatively reported in the form of individual and overall test classification
accuracies in Table 8.4. The results obtained in this example confirm our in-
trospection that the use of spatial/spectral filtering prior to classification can
substantially increase the results obtained using the full original spectral infor-
mation or a reduced version of this spectral-based information using standard
transformations such as the PCT. Although these results are promising from the
viewpoint of classification accuracy, further analyses in terms of computational
complexity are required to fully substantiate the suitability of the proposed
parallel morphological/neural algorithm for being used in real application with
time-critical constraints.

To investigate the properties of the parallel morphological/neural classifica-
tion algorithm developed in this chapter, the performance of its two main mod-
ules (morphological feature extraction and neural classification) was first tested
by timing the program using the heterogeneous network and its equivalent ho-
mogeneous one. Since the proposed parallel morphological/neural classification
algorithm is dominated by regular computations, and given the satisfactory clas-
sification results reported in two completely different application scenarios, only
parallel performance results for the Pavia (DAIS 7195 data) scene will be pro-
vided in the following subsection for the sake of simplicity.
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For illustrative purposes, Table 8.5 shows the execution times measured for
morphological and neural heterogeneous algorithms and their respective homo-
geneous versions on the two HNOCs (homogeneous and heterogeneous) at Uni-
versity of Maryland. Three alternative implementations of the parallel morpho-
logical feature extraction algorithm (denoted as MP-1, MP-2 and MP-3) and
two different implementations of the parallel neural classification algorithm (Ex-
emplar and Hybrid) were tested. As expected, the execution times reported on
Table 8.5 for morphological and neural heterogeneous algorithms and their re-
spective homogeneous versions indicate that the heterogeneous implementations
were able to adapt much better to the heterogeneous computing environment
than the homogeneous ones, which were only able to perform satisfactorily on
the homogeneous network. From Table 8.5, one can also see that the hetero-
geneous algorithms were always several times faster than their homogeneous
counterparts in the heterogeneous network, while the homogeneous algorithms
only slightly outperformed their heterogeneous counterparts in the homogeneous
network. Interestingly, Table 8.5 also reveals that the performance of the het-
erogeneous algorithms on the heterogeneous network was almost the same as
that evidenced by the equivalent homogeneous algorithms on the homogeneous
network (i.e., the algorithms achieved essentially the same speed, but each on
its network). This seems to indicate that the heterogeneous algorithms are very
close to the optimal heterogeneous modification of the basic homogeneous ones.

In order to measure load balance, Table 8.5 also shows (in the parentheses)
the imbalance scores achieved by the different stages of the parallel algorithm on
the two considered networks of workstations. The imbalance is simply defined
as D = Rmax/Rmin, where Rmax and Rmin are the maxima and minima pro-
cessor run times across all processors, respectively. Therefore, perfect balance is
achieved when D = 1. As we can see from Table 8.5, the proposed heterogeneous
implementations were all effective in terms of load balance in all cases except
for MP-1 which communicates pixels too often. On the other hand, the homo-
geneous algorithms executed on the heterogeneous platforms achieved the worst
load-balancing ratios as expected.

For the sake of quantitative comparison, Table 8.6 reports the measured exe-
cution times achieved by all tested algorithms on Thunderhead, using different
numbers of processors. It should be noted that the processing time measured for
the sequential version of morphological feature extraction on one single Thun-
derhead node was 2057 seconds, while the processing time measured for the
sequential version of the neural network classification stage was 1638 seconds.
The parallel times reported on Table 8.6 reveal that the combination of MP-2 for
spatial/spectral feature extraction, followed by the Hybrid neural classifier for
robust classification is able to provide highly accurate hyperspectral classifica-
tion results (in light of Tables 8.3 and 8.4), but also quickly enough for practical
use. For instance, using 256 Thunderhead processors, the proposed classifier was
able to provide a highly accurate classification for the Salinas AVIRIS scene in
less than 20 seconds. In this regard, the measured processing times represent
a significant improvement over commonly used processing strategies for this
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Fig. 8.8. Scalability of parallel morphological feature extraction algorithms (MP-1,
MP-2 and MP-3) and parallel neural classifiers (Exemplar and Hybrid) on Thunder-
head.

Table 8.6. Processing times in seconds and speedups (in the parentheses) achieved by
multi-processor runs of the considered parallel algorithms on the Thunderhead Beowulf
cluster at NASA’s Goddard Space Flight Center

4 16 36 64 100 144 196 256
MP-1 1177 (1.8) 339 (6.5) 146 (15.0) 81 (27.2) 53 (41.5) 42 (52.4) 37 (59.5) 36 (61.2)
MP-2 797 (2.5) 203 (10.0) 79 (25.8) 39 (52.3) 23 (88.73) 17 (120.0) 13 (157.0) 10 (204.1)
MP-3 826 (2.4) 215 (9.5) 88 (23.3) 45 (45.7) 27 (76.2) 20 (102.8) 16 (128.5) 12 (171.5)

2 4 8 16 32 64 128 256
Exmp. 1041 (1.9) 414 (4.8) 248 (8.1) 174 (11.5) 142 (14.1) 99 (20.2) 120 (16.7) 120 (16.7)

Hyb. 973 (1.6) 458 (3.5) 222 (7.2) 114 (14.0) 55 (29.2) 27 (59.5) 15 (107.1) 7 (229.5)

kind of high-dimensional data sets, which can take up to more than one hour
of computation for the considered problem size as evidenced by the sequential
computation times reported above.

Taking into account the results presented above, and with the ultimate goal
of exploring issues of scalability (considered to be a highly desirable property
in the design of heterogeneous parallel algorithms), we have also compared the
speedups achieved by the heterogeneous algorithms on the Thunderhead Be-
owulf cluster. Fig. 8.8 plots the speedups achieved by multi-processor runs of
the heterogeneous parallel implementations of the three developed versions of
morphological feature extraction algorithms (MP-1, MP-2 and MP-3) over the
corresponding single-processor runs of each considered algorithm on Thunder-
head. Fig. 8.8 also shows similar results for the two presented parallel neural net-
work classifiers (Exemplar and Hybrid). Although not displayed in Fig. 8.8, the
scalability of homogeneous algorithms was essentially the same as that evidenced
by their heterogeneous versions, with MP-2 and MP-3 showing scalability results
close to linear and the expected slow down of MP-1 due to the great amount of
small communications introduced, indicating that the ratio of communications
to computations is progressively more significant as the number of processors is
increased, and parallel performance is significantly degraded. The above results
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clearly indicate that the proposed data-replication strategy is more appropriate
than the tested data-communication strategy in the design of a parallel version
of morphological feature extraction.

As for parallel neural classifiers, the scalability of the Hybrid approach is very
close to linear. As mentioned in previous sections, the Hybrid parallel method is
based in the distribution of weight connections among different processors, which
does not affect the basis of back-propagation learning algorithm. However, the
speedup of Exemplar parallel method saturates for 64 processors and slightly
declines afterwards. This is mainly due to the limited number of training pat-
terns used during the training and the convergence problems resulting from the
execution of several neural classifiers in parallel. It should be noticed that back-
propagation algorithm is strongly dependent of the number of selected training
patterns. Since the Exemplar method divides the total training pattern set into
as many subsets as CPUs available, each local processing will likely have differ-
ent local minima and convergence challenges, thus introducing load imbalance
problems. According to our experimentation, the Exemplar approach is suitable
for applications in which the number of available training patters is very high,
which is often not the case in the context of remote sensing applications such as
those discussed in this chapter.

8.4 Conclusions and Future Research

In this chapter, we have presented several innovative parallel neural network-
based algorithms for hyperspectral image classification and implemented them
on high performance computing platforms such as heterogeneous and homo-
geneous networks of workstations and commodity Beowulf clusters. As a case
study of specific issues involved in the exploitation of heterogeneous algorithms
for hyperspectral image information extraction, this work provided a detailed
discussion on the effects that platform heterogeneity has on degrading paral-
lel performance of a new morphological/neural classification algorithm, able to
exploit the spatial and spectral information in simultaneous fashion.

The proposed parallel classification approach was tested using hyperspectral
data sets corresponding to real applications, such as a complex urban mapping
scenario and an agricultural land-cover classification problem, both of which
have been commonly used as benchmark test sites in the remote sensing com-
munity. The parallel performance evaluation strategy conducted in this work
for assessing heterogeneous parallel algorithms was based on experimentally
assessing each heterogeneous algorithm by comparing its efficiency on a fully
heterogeneous network (made up of processing units with different speeds and
highly heterogeneous communication links) with the efficiency achieved by its
equivalent homogeneous version on an equally powerful homogeneous network.
Scalability results on a massively parallel commodity cluster are also provided.

Experimental results in this work anticipate that the combination of the
(readily available) computational power offered by heterogeneous parallel plat-
forms and the recent advances in the design of advanced parallel algorithms for
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hyperspectral data classification algorithms (such as those presented in this
work) may introduce substantial changes in the systems currently used for ex-
ploiting the sheer volume of hyperspectral data which is now being collected
worldwide, on a daily basis.

Although the experimental results presented in this chapter are encouraging,
further work is still needed to arrive to optimal parallel design and implemen-
tations for the considered parallel algorithms. We also plan to implement the
proposed parallel techniques on other massively parallel computing architec-
tures, such as NASA’s Project Columbia and Grid computing environments.
We are also developing implementations of the proposed algorithms on field
programmable gate arrays (FPGAs) and commodity graphics processing units
(GPUs), which represent a very appealing type of high performance hardware
architecture for onboard hyperspectral image classification and compression.
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