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1. Introduction 
 
Spectral unmixing techniques are widely used for hyperspectral data analysis and quantification. Many novel applications 
have been developed from the unmixing point of view, including surface constituent identification for land use mapping, 
disaster assessment, geology, biological process analysis and change detection (Keshava and Mustard, 2002). All existing 
unmixing approaches require a previous step where the spectral signatures of ground constituents (endmembers) are 
identified (Kruse, 1998; Boardman et al., 1995), and then a mixture model is used to estimate the abundance fractions of 
these signatures by expressing individual pixels as a linear or non-linear combination of endmembers (Bateson et al., 2000). 
The accuracy of the quantification depends strongly on how accurate endmembers are identified in the first step. 
 
Several different strategies have been proposed to evaluate the quality of selected endmembers for spectral unmixing. The 
simplest approach has been direct comparison to reference signatures contained in a spectral library of ground 
measurements (Winter, 2000; Sweet et al., 2000). Another alternative has been focused on analyzing the abundance of 
endmembers in the scene, which is usually expressed as a series of greyscale images where the grey level value at each pixel 
represents a combined amount of the abundance of endmembers contained in the pixel. Then, the quality of a set of 
endmembers may be evaluated by comparing their associated abundance fractions to reference abundance planes, either by 
visual comparison (Winter, 2000; Kneubuehler et al., 1998) or, more reliably, by statistical measures like the average root 
mean square error (RMSE) (García and Ustin, 2001) or the Pearson correlation coefficient (Maselli, 1998).  
 
The previous approaches are possible when ground truth data is available and contains information about the abundance of 
materials in each pixel of the scene. Nevertheless, it should be noted that the obtention of reliable ground truth is difficult, 
expensive and very time-consuming, a fact that has traditionally prevented the existence of reliable ground measurements 
for a large number of datasets.  
 
Some approaches have been previously considered in order to assess endmember extraction accuracy when no ground truth 
information is available. Most of them are based on a reconstruction process of the original hyperspectral image, using the 
set of extracted endmembers and their estimated abundance maps, according to linear spectral mixture model definitions. 
The generated image may be compared to the original one by several statistical measures (Bowles et al., 2000).  
 
However, in many reconstruction-oriented approaches, an important question arises: the number of endmember vectors 
required to accurately approximate or regenerate the pixels of the original image. In order to answer this question, several 
authors have proposed to consider multiple sets of endmembers simultaneously for spectral unmixing (Roberts et al., 1998, 
Okin et al., 1998, Bateson et al., 2000). Following this idea, some studies have demonstrated that models based on three 
endmembers generally provide satisfactory results although, in some applications, models based on four and more 
endmembers improve considerably the results found using only three endmembers (Segl et al., 2000; Garcia and Ustin, 
2001). In general terms, it is expected that the quality of the reconstruction process would improve as the number of 
reference signatures used increases, even though mixed pixels are used in the reconstruction process. Nevertheless, the goal 
should be the identification of a reduced subset of pure spectral signatures which are able to provide a reconstruction which 
is similar enough (i.e., under a certain error tolerance threshold) to the original image. 
 
Although several comparative efforts have been proposed in recent years, no unified criterion has been accepted for rigorous 
and impartial comparison of endmember extraction algorithms. The importance of this issue cannot be understated since, 
without effective evaluation criteria, the performance of any new algorithm cannot be substantiated. In this paper, we take a 
first step by conducting a comparative study of performance analysis among several existing endmember extraction 
algorithms, including the Pixel Purity Index (Boardman et al., 1995), the N-FINDR algorithm (Winter, 2000) and our 
custom-designed method Automated Morphological Endmember Extraction, AMEE (Plaza et al., 2002; Plaza et al., 2001a; 
Plaza et al., 2001b). A novel comparative framework is introduced, allowing detailed quantitative assessment of endmember 
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extraction accuracy. The significance of these experimental results is to offer a performance evaluation of endmember 
detection algorithms in a rigorous fashion so that each algorithm is fairly compared to others on the same common context. 
Several different situations are considered in the above framework, regarding the availability or not of ground truth data and 
the intrinsic characteristics of such information. 
 
The paper is organized as follows. Section 2 defines an objective framework for evaluation of endmember extraction and 
subsequent classification accuracy. Section 3 presents a comparative performance analysis for the above-mentioned 
algorithms, and section 4 concludes with some remarks. 
 
 
2. Comparative framework for evaluation of endmember extraction algorithms 
 
In this section, a schema to evaluate endmember extraction algorithms is proposed. The framework has into account the 
following situations: 

1) Ground truth (GT) is available in the form of a spectral library of constituent signatures. 
2) GT contains the abundance of endmember materials for each pixel of the scene. 
3) GT is not available. 

We proceed to describe the evaluation approach to validate extracted endmembers in each situation. 
 
2.1. Evaluation by Comparison to GT Spectral Signatures 
 
Before addressing the metrics used to evaluate endmember quality in this case, the following definitions are introduced: 
 

N Total number of pixels in the original hyperspectral image. 
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Set containing X endmembers extracted from the hyperspectral image. 
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A particular endmember of EΓ . 
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Set containing Y GT signatures. 
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A particular GT signature of RΓ . 

 
A correlation matrix of spectral angle distances (SAM matrix) is used to perform the comparison in this situation. Figure 1 
shows an example of the construction of a SAM matrix between extracted endmembers and GT signatures. In this 
representation, we denote )R,E(SAMSAM mnnm = , where SAM refers to the cosine of the spectral angle.  
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Figure 1. SAM matrix between extracted and reference signatures. 

 
2.2. Evaluation by Comparison to GT Abundance Planes 
 
This schema is based on the assumption that each evaluated endmember Ei has an associated GT signature Ri. Both Ei and 
Ri have associated abundance maps, G(Ei) and G(Ri), which respectively contain the fractional abundance of the spectral 
signature in the pixels of the original image. Before addressing the quality measures used in this situation, the following 
definitions are introduced: 
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Original hyperspectral image expressed as a set of N hyperspectral pixels. 

( )TSj2j1jj )(P),(P),(PP λλλ=  ...,   
 

A particular pixel of the image. 

)E( ijΦ  
 

Fractional abundance of endmember material Ei at pixel Pj of the original image. 

)R( ijΦ  
 

Fractional abundance of reference material Ri at pixel Pj of the original image. 
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Greyscale abundance map of endmember Ei. 
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Greyscale abundance map of reference signature Ri. 

 
Each Ei, Ri pair is compared at a pixel level by calculating the root mean square error between their associated abundance 
maps using the following expression. 
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2.3. Evaluation when ground truth is not available 
 
The approach that we present to compare endmembers when no ground truth information is available is only applicable 
when the linear mixture model is suitable to perform the analysis and classification of the scene. The linear approach has 
been demonstrated in numerous applications to be a useful technique for interpreting the variability in remote sensing data. 
Nevertheless, it is only strictly valid for the situation where the endmembers are arranged in discrete, segregated patches on 
the surface (Keshava and Mustard, 2002). This condition is hardly met in nature, and many constituents of interest for earth 
science investigations exist in soils, or at smaller scales, in intimate association with one another. In this work, we rely on 
the linear model as an initial attempt to validate our framework, but we are aware that the use of this model may introduce 
errors in the comparison. 
 
Once this initial statement has been made, we proceed to describe our comparative framework in this situation. Using the 
previously defined notations, a particular pixel jP  in the original hyperspectral image can be approximated by the following 

expression: 
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where )E( ijΦ  denotes the abundance fraction of endmember material Ei at pixel Pj. The accuracy of the approximation in 

(12) for a single jP  using a set of endmembers ΓE can be quantified by the root mean square error: 
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In order to study the capacity of extracted endmembers to provide an accurate reconstruction of the original image, we 
consider a variable number of endmembers to perform the reconstruction. Our goal is to analyze the optimum number of 
endmembers needed to reconstruct the original image, and also to evaluate the accuracy of such reconstruction. In order to 
achieve the previously addressed objectives, the following algorithm is used.  
 
Step 1) Set a tolerance threshold T. 

Step 2) Calculate the abundance of each endmember Ei in image I: ∀Ei, { }N
1jiji )E()E(G

=
Φ= . 



Step 3) Order the endmembers in set EΓ  according to their total abundance in the original image. The total abundance of 

endmember Ei in image I is calculated as: ∑
=

Φ
N

1j
ij )E( . 

Step 4) Construct a new set NΓ  which contains the three most abundant endmembers of EΓ , and remove such 

endmembers from EΓ . 

Step 5) If T)(RMSE NI <Γ  then stop (a satisfactory reconstruction is achieved). 

Step 6) Remove the most abundant endmember in EΓ  and incorporate it to NΓ . 

Step 7) Repeat from step 5 until ∅=ΓE  (in this case, no satisfactory reconstruction was possible). 

 
 
3. Results and discussion 
 
The following endmember extraction methods: PPI, N-FINDR and AMEE were applied to hyperspectral datasets obtained 
by the NASA/JPL-AVIRIS imaging spectrometer (Green et al., 1988). Also, a preliminary evaluation of the above methods 
was performed using data from the DAIS 7915 and ROSIS imaging spectrometers from DLR (Müller et al., 2001).  
• The AVIRIS hyperspectral dataset corresponds to the well-known mining region of Cuprite in Nevada. This area is 

well-understood mineralogically and has reliable ground truth in several forms (Clark et al., 1993; Swayze, 1997). This 
fact has made this region a standard test site for comparison of classification algorithms, since not many scenes with 
such quality ground truth measurements are available for public use. The Cuprite scene we have selected for this work 
was acquired in 1995, and has been reduced to 50 bands in the 2-2.5 nm region.  

• The DAIS¨7915 and ROSIS hyperspectral datasets were acquired near the town of Caceres, Spain, in 2001. These data 
are a good example of Dehesa agroecosystems, typical of the south-western part of Spain and mainly formed by cork-
oak trees, pasture and bare soils (semi-arid environment). Our knowledge of the field, obtained after several ground 
campaigns, make these dataset suitable to test algorithm accuracy. Next, we proceed to describe the experiments 
performed over these datasets. 

 
3.1. Experiments with AVIRIS hyperspectral dataset 
 
a) First experiment: comparison of the spectral shape 
 
In order to perform this experiment we have selected a set of ground spectral signatures contained in the USGS Digital 
Spectral Library splib04 (available at http://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html) as ground truth 
references for the comparison. In particular, we have used the AVIRIS-convolved version of this library 
(http://speclab.cr.usgs.gov/spectral.lib04/lib04-AVIRIS.html).  
 
Figure 2 shows a plot of the GT signatures from the USGS spectral library and the endmembers extracted by PPI, N-FINDR 
and AMEE algorithms. PPI endmembers were obtained and made public by Research Systems. N-FINDR endmembers 
were obtained by Dr. Michael E. Winter, author of the algorithm. Finally, AMEE endmembers were extracted by our 
research group. The USGS spectra are labeled in the plot with their correspondent names in the library. PPI endmembers 
were labeled with the names that appear in the plot, while N-FINDR and AMEE spectra are not labeled. The colors used in 
figure 2 have been selected so that the similar spectral signatures can be visually matched. It is appreciated in figure 2 that 
there are some differences in the absolute value of the reflectances and spectral shape that are likely due to atmospheric 
transmission effects. In order to avoid these effects, we use the SAM distance measure, which is invariant to ilumination 
details. 
 
Tables I, II and III respectively show the confusion matrices of spectral angle distances between USGS GT signatures and 
the endmembers extracted by PPI, N-FINDR and AMEE. Table IV shows the number of correctly detected endmembers, 
redundant endmembers, missed GT signatures and mean error for the considered endmember extraction algorithms using 
three different similarity threshold values. In order to understand the results shown in this table it should be noted that 
perfect performance for a certain algorithm would be correct detection of all endmembers and no missed GT signatures or 
redundant endmembers, independently of the similarity threshold considered. The results shown in table IV reveal that, 
when a strong similarity threshold is imposed, the three tested algorithms perform similarly. When the similarity constraint 
is relaxed, AMEE performs better than the other approaches, detecting all endmember signatures and producing only 2 



redundant endmembers, which correspond to the ones labeled as AMEE_ENDMEMBER_8 and AMEE_ENDMEMBER _9 
in figure 2. It should be noted that AMEE_ENDMEMBER_9 is a typical shade endmember, while 
AMEE_ENDMEMBER_8 is associated to the brightest parts of the Silica mineral (a similar endmember is also detected by 
the PPI algorithm). 
 
 

 

 
 
Figure 2. Clockwise, reference GT signatures extracted from AVIRIS-convolved USGS Digital Spectral Library and 
endmembers extracted for the Cuprite dataset by PPI, N-FINDR and AMEE methodologies. 
 
 

Table I. Confusion matrix of spectral angle distances between endmembers extracted by PPI and USGS GT references.  

 PPI: 
USGS: E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 
Alunite 0.119 0.155 0.208 0.178 0.265 0.207 0.238 0.208 0.216 0.230 0.206 

Buddingtonite 0.286 0.269 0.228 0.188 0.319 0.208 0.343 0.359 0.231 0.302 0.287 
Calcite 0.136 0.104 0.085 0.093 0.149 0.088 0.140 0.157 0.084 0.124 0.132 

Muscovite 0.256 0.229 0.232 0.263 0.234 0.241 0.238 0.268 0.247 0.223 0.167 
Kaolinite 0.164 0.178 0.223 0.233 0.208 0.236 0.139 0.093 0.218 0.189 0.226 

Sillimanite 0.151 0.149 0.181 0.199 0.186 0.197 0.103 0.090 0.177 0.161 0.194 
Chabazite 0.194 0.151 0.112 0.142 0.095 0.114 0.148 0.183 0.103 0.117 0.144 

 



Table II. Confusion matrix of spectral angle distances between endmembers extracted by N-FINDR and USGS GT 
references.  

 N-FINDR: 
USGS: E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 
Alunite 0.211 0.233 0.119 0.241 0.182 0.208 0.180 0.225 0.205 0.282 

Buddingtonite 0.192 0.338 0.283 0.283 0.178 0.300 0.167 0.279 0.320 0.247 
Calcite 0.085 0.137 0.132 0.121 0.113 0.143 0.092 0.105 0.121 0.175 

Muscovite 0.255 0.235 0.256 0.227 0.276 0.146 0.279 0.234 0.257 0.319 
Kaolinite 0.243 0.141 0.164 0.210 0.249 0.226 0.240 0.195 0.127 0.284 

Sillimanite 0.201 0.102 0.149 0.181 0.219 0.196 0.205 0.159 0.098 0.251 
Chabazite 0.117 0.152 0.191 0.083 0.159 0.154 0.148 0.109 0.147 0.179 

 

 

Table III. Confusion matrix of spectral angle distances between endmembers extracted by AMEE and USGS GT references.  

 AMEE: 
USGS: E1 E2 E3 E4 E5 E6 E7 E8 E9 
Alunite 0.119 0.213 0.179 0.243 0.232 0.162 0.248 0.216 0.213 

Buddingtonite 0.286 0.227 0.125 0.289 0.297 0.316 0.415 0.311 0.226 
Calcite 0.194 0.109 0.153 0.087 0.173 0.158 0.230 0.136 0.084 

Muscovite 0.151 0.178 0.212 0.184 0.234 0.127 0.122 0.155 0.147 
Kaolinite 0.164 0.221 0.244 0.211 0.268 0.136 0.100 0.185 0.183 

Sillimanite 0.136 0.081 0.145 0.127 0.169 0.128 0.213 0.129 0.058 
Chabazite 0.256 0.237 0.270 0.225 0.143 0.221 0.298 0.194 0.284 

 

 
Table IV. Mean error, number of matched endmembers, redundant endmembers and missed GT signatures for each method 
using three different tolerance threshold errors. 

  T = 0.10 T = 0.15 T = 0.20 
Method: NE MEr MEn MG RE MEr MEn MG RE MEr MEn MG RE 

PPI 11 0.090 3 4 8 0.105 5 2 6 0.115 6 2 5 
N-FINDR 10 0.091 3 4 7 0.106 5 2 5 0.110 6 1 4 

AMEE 9 0.081 3 4 6 0.101 7 0 2 0.108 7 0 2 

 
NE – Number of extracted endmembers MEr – Mean error  MEn – Number of matched endmembers 
MG – Number of missed GT signatures T – Tolerance threshold  RE – Number of redundant endmembers 

 
b) Second experiment: comparison of fractional abundance maps 
 
In this experiment, we have focused on comparing the fractional abundance maps derived from the endmembers shown in 
figure 2. Abundance maps of GT USGS signatures, obtained using Fully Constrained Linear Spectral Unmixing (FCLSU) 
are used as ground truth information. The experiment presented in the previous subsection revealed that five USGS 
signatures are easily detected by all the studied endmember extraction algorithms: Alunite, Buddingtonite, Calcite, Kaolinite 
and Muscovite. Following this result, we have calculated the abundance planes of the endmembers obtained by PPI, N-
FINDR and AMEE for the previously addressed minerals, using a FCLSU approach. 
 
Table V. Root Mean Square Error (RMSE) obtained by comparing FCLSU fractional abundances of selected USGS GT 
signatures to FCLSU abundance maps of correspondent extracted endmembers. The average RMSE for the signatures 
considered is also addressed. 

USGS-derived Abundance Map PPI Map N-FINDR Map AMEE Map 
Alunite 0.071 0.072 0.070 

Buddingtonite 0.170 0.150 0.157 
Calcite 0.011 0.023 0.020 

Kaolinite 0.048 0.089 0.009 
Muscovite 0.042 0.045 0.063 
Average 0.068 0,075 0.064 

 



A detailed quantitative study of the quality of derived abundance planes has been carried out by calculating the RMSE 
between pairs of correspondent abundance maps. The results obtained are shown in Table V, which also addresses the mean 
error for each method. This table reveals that the similarity between the obtained abundance maps is very high in general, 
although the performance is slightly different depending on the mineral considered. AMEE algorithm obtains the best result 
for the Alunite and Kaolinite materials, while PPI is the most successful algorithm with the Calcite and Muscovite and N-
FINDR is the best approach with Buddingtonite.  
 
c) Third experiment: reconstruction of the original image 
 
In this experiments we test the accuracy of the considered approaches to provide a reconstruction of the original image. 
Table VI shows a comparison of the RMSE errors obtained by the considered approaches, using the algorithm shown in 
section 2.3.  
 
Table VI. RMSE errors obtained by the proposed endmember extraction algorithms in the reconstruction of AVIRIS Cuprite 
dataset. 

 Number of endmembers used in the reconstruction (ordered by total abundance): 
 3 4 5 6 7 8 9 10 11 

PPI 0.197 0.168 0.144 0.123 0.100 0.075 0.060 0.045 0.032 
N-FINDR 0.197 0.115 0.098 0.086 0.073 0.063 0.054 0.049  

AMEE 0.174 0.128 0.102 0.074 0.055 0.046 0.042   

 
From this table, PPI is the most accurate method when all extracted endmembers are used in the reconstruction (3.2% error 
versus 4.9% of N-FINDR and 4.2% of AMEE). Nevertheless, when the number of endmembers used in the reconstruction is 
reduced, both N-FINDR and AMEE outperform PPI. For instance, if 7 endmembers are used for the reconstruction, the use 
of PPI results in a 10% error, while N-FINDR reduces the error to 7.3% and AMEE results in just a 5.5% error, which is a 
significant improvement over PPI. Further experiments are required to validate the previously addressed results using 
additional datasets and different conditions. 
 
3.2. Experiments with DAIS 7915 and ROSIS hyperspectral datasets 
 
In this section, we address some preliminary results obtained after applying our AMEE algorithm to DAIS 7915 and ROSIS 
hyperspectral datasets, obtained over the town of Cáceres, Spain, in July 2001. These results are showed just for illustrative 
(not comparative) purposes. In the future, the development of several ground campaigns will allow us to make these images, 
along with quality ground measurements, available to the scientific community dedicated to hyperspectral data analysis as 
test images to validate endmember extraction and classification algorithms. Figures 3 and 4 show extracted endmembers 
and corresponding abundance maps for DAIS 7915 and ROSIS imagery, respectively. 
 



 
 

    
 
Figure 3. Preliminary endmember extraction results of AMEE algorithm applied to DAIS 7915 hyperspectral data. Top: 
extracted endmembers. Bottom, left to right: original image; abundance map for Endmember_1 (soil-pasture); abundance 
map for Endmember_2 (cork-oak trees); abundance map for Endmember_3 (shadow). 
 
 
 

 
 

    
 
Figure 4. Preliminary endmember extraction results of AMEE algorithm applied to ROSIS hyperspectral data. Top: 
extracted endmembers. Bottom, left to right: original image; abundance map for Endmember_1 (cork-oak trees); abundance 
map for Endmember_2 (soil); abundance map for Endmember_3 (pasture). 
 
 



4. Conclusions and future lines 
 
Many endmember extraction algorithms have been proposed in the literature over the last decade. Comparison of these 
approaches has been a challenging task due to a lack of rigorous criteria to substantiate any new algorithm. Another 
difficulty arises from the fact that there is no standardized data to perform the comparison. In this paper, we have conducted 
a first attempt to impartially evaluate the accuracy of several well-known endmember extraction algorithms. The study 
focuses on two hyperspectral datasets: the famous AVIRIS dataset of the Cuprite mining region in Nevada (a well-
understood mineralogically region which has been extensively mapped and truthed) and a DAIS 7915 dataset containing a 
typical Spanish Dehesa environment (pasture and cork-oak trees).  
 
Comparison of endmembers has been carried out from several points of view. Firstly, the problem was tackled under the 
assumption that reliable ground truth information is available. In this sense, we performed a simple preliminary experiment 
based on comparing the spectral shape of extracted endmembers to available reference signatures. A further attempt from 
the perspective of a mixed pixel classification problem was also conducted by comparing abundance planes of endmember 
constituents to reference maps. Finally, a new schema to compare algorithms when no ground truth measurements are 
available was presented and discussed. Since reliable ground truth is generally expensive and difficult to obtain, we believe 
this approach may be of interest to the community.  
 
Despite our effort to conduct comprehensive, impartial and rigorous comparative analysis of various algorithms, completion 
is not claimed. In particular, the number of algorithms compared in this work is limited to three methods. Also, the number 
of comparative measures is reduced to linear distances. Plausible future research should include a comparative analysis of 
linear and non linear distances, as well as comparative measures that include second order statistics.  
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