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Abstract—Hyperspectral remote sensing increases the 

detectability of pixel- and subpixel-sized targets by exploiting the 

finer detail in the spectral signatures. In this paper, we describe a 

new unsupervised algorithm for the detection of both full pixel 

and mixed pixel targets in hyperspectral imagery. The proposed 

method automatically resolves targets by using extended 

mathematical morphology operations. The performance of the 

resulting detector is experimentally evaluated using simulated 

and real hyperspectral data collected by the NASA/Jet 

Propulsion Laboratory Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) and the DLR Reflective Optics System 

Imaging Spectrometer (ROSIS). 
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I. INTRODUCTION

Detection and identification of target materials from 
airborne and satellite platforms using hyperspectral sensors are 
of great interest in many different applications [1]. Many 
targets of interest provide only small signature differences from 
that of the clutter background. The ability to resolve these 
targets of low contrast can be significantly improved by using 
hyperspectral imaging instruments, which are able to provide 
very detailed spectral signatures of observed materials with 
improved signal-to-noise ratio (SNR). During the recent years, 
a great deal of new airborne hyperspectral instruments has been 
developed for remote sensing applications. For instance, the 
NASA/Jet Propulsion Laboratory Airborne Visible-Infrared 
Imaging Spectrometer (AVIRIS) covers the wavelength region 

from 0.4 to 2.5 µm using 224 spectral channels at a nominal 
resolution of 10 nm [2], while the DLR Reflective Optics 
System Imaging Spectrometer (hence ROSIS) [3] has 92 

spectral bands covering the range from 0.4 to 0.9 µm with 
approximately the same spectral resolution. In the near future, 
the use of hyperspectral sensors on satellite platforms will 
produce a nearly continual stream of high-dimensional data, 
and this expected high data volume will require fast, 
unsupervised means for storage, transmission and analysis.  

A diverse array of analysis techniques has been applied 
during the last decade for target detection in hyperspectral 
imagery [1]. They are inherently either full pixel techniques or 
mixed pixel techniques, where each pixel vector in a 
hyperspectral image records the spectral information. The 
underlying assumption governing full pixel techniques is that 

each pixel vector measures the response of one predominantly 
underlying target material at each site in a scene. In contrast, 
the underlying assumption governing mixed pixel techniques is 
that each pixel vector measures the response of multiple 
underlying materials at each site. An image is often a 
combination of the two situations, where many sites in a scene 
are pure materials, but many others are mixtures of materials. 

 Most available techniques for target detection in 
hyperspectral data focus on analyzing the data without 
incorporating information on the spatially adjacent data; i.e. the 
data is treated not as an image but as an unordered listing of 
spectral measurements where the spatial coordinates can be 
shuffled arbitrarily without affecting analysis. However, 
detection algorithms can exploit both spatial and spectral 
properties of targets. In this paper, a novel spatial/spectral 
unsupervised algorithm for detection of full pixel and mixed 
pixel targets in hyperspectral imagery is described. The method 
assumes that the targets to be searched present a spectrally pure 
signature (endmember) in the scene, although parts of the target 
may be mixed with the background. In order to resolve pixel 
targets, the proposed method automatically derives 
endmembers by using mathematical morphology operations 
extended to hyperspectral imagery. These operations, which 
take into account the spatial and spectral information in 
simultaneous fashion, rely on the use of a spatial kernel or 
structuring element (SE) at a pixel level. This element defines a 
spatial neighborhood around each target pixel. An optimum 
size for the SE is determined at each target pixel by calculating 
the derivative of the extended morphological profile.  

The remainder of the paper is organized as follows: in 
section 2, the mathematical basis of the proposed target 
detection approach is described. Section 3 provides application 
examples using both simulated (AVIRIS) and real (ROSIS) 
hyperspectral data. 

II. MORPHOLOGICAL TARGET DETECTION

A. Extension of mathematical morphology to hyperspectral 

imagery 

Our attention in this section focuses primarily on the 
development of a mechanism to extend morphological 
operations to hyperspectral image data. The two basic 
operations of classic mathematical morphology are dilation and 
erosion [4]. Following a usual notation, let us consider a 
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grayscale image f , defined on a space E . Typically, E  is the 

2-Dimensional (2-D) continuous space 2R  or the 2-D discrete 

space 2Z . In the following, we refer to morphological 

operations defined on the discrete space. The flat erosion of f

by using a structuring element (SE) 2ZB ⊂  is defined by 

( )( )
( )

( )tys,xy,x
)(t,s 2

++=⊗
∈
∧ fBf

BZ

, ( ) 2y,x Z∈ ,       (1) 

where ( )B2Z  denotes the set of discrete spatial coordinates 

associated to pixels lying within the neighborhood defined by 

B  and ∧  denotes the minimum. On the other hand, the flat 
dilation of f  by B  is defined by 
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where ∨  denotes the maximum. In order to extend the 
two basic morphological operations to hyperspectral images, let 

us now consider an image f , defined on the N-Dimensional 

(N-D) continuous space, where N  is the number of spectral 

channels. An ordering relation can be imposed in the set of 
pixels lying within a flat structuring element, denoted by B ,
by defining metrics that calculate the cumulative distance 

between one particular pixel ( )yx,f , where ( )yx,f  denotes an 

N-D vector at discrete spatial coordinates ( ) 2y,x Z∈ , and every 

other pixel in the neighborhood given by B . Based on the 
previous considerations, flat extended dilation and flat 
extended erosion can be respectively defined as follows:  
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where Dist  is a point-wise distance measure between two 

N-D vectors. The choice of Dist  is a key topic in the resulting 

ordering relation between hyperspectral image pixels within the 
structuring element [5]. In this work, Dist  refers to the spectral 

angle distance, which is invariant to unknown multiplicative 
scaling that may arise due to different illumination conditions 
and sensor observation angle. This choice allows us to use 
extended morphological for endmember extraction. 

B. Construction of extended morphological profiles 

Our main goal in this section is to incorporate the idea of 
multiscale analysis into extended morphological operations. 
Pesaresi and Benediktsson have reported that the selection of 
the most appropriate SE size can be achieved at each pixel by 
plotting the morphological operation output at each pixel 
against the value of the varying SE size [6]. The resulting plot 
is called a morphological profile. Morphological profiles in 

grayscale imagery are based on opening and closing by 
reconstruction, a special class of morphological filters that have 
proven to be successful for multiscale image processing. In 
order to extend reconstruction-based opening and closing 
operations to hyperspectral imagery, let us consider a 

hyperspectral image f  defined on NR . Given a flat SE 

(designed by B ) of minimal size, extended opening by 
reconstruction can be defined by 

( ) ( ) ( )[ ]( )y,x|y,x k

1k

k
fff BB Bδ=

≥
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where  

( )[ ]( ) ( ) ( )y,x|y,x|

 timesk

k δ⋅⋅⋅δδ=δ ffff BB BBBB .      (4) 

The elementary term ( )[ ]( )y,x| ff BBδ  is an extended 

geodesic dilation, defined as the maximum of the elementary 

dilation of Bf  using B  at pixel ( )yx,  and the value of 

( )yx,f . This operation is repeated k times until idempotence is 

reached. In a similar fashion, extended closing by 
reconstruction is given by  

( ) ( ) ( )[ ]( )y,x|y,x k

1k

k
fff BB B •ε=•

≥
∧ .         (5) 

Using (3) and (5), extended morphological profiles are 

created as follows. Let the vector ( )y,xkp  be the extended 

opening by reconstruction profile at the pixel ( )y,x  of the 

image f , defined by: 

( ) ( ) ( ){ }y,xy,xk
λ= Bfp ,      { }k...,,1,0=λ ,      (6) 

And let ( )y,xk
•p  be the extended closing by reconstruction 

profile at the pixel ( )y,x  of the image f , defined by: 

( ) ( ) ( ){ }y,xy,xk
λ• •= Bfp ,      { }k...,,1,0=λ ,      (7) 

Here ( ) ( ) ( ) ( ) ( )y,xy,xy,x
00

BB fff ==•  for 0=λ  by the 

definition of extended opening and closing by reconstruction 
[6]. We define the derivative of the extended opening profile 

( )y,xkp∆  as the following vector, where { }k...,2,,1=λ :

( ) ( ) ( ) ( ) ( )[ ]{ }y,x,y,xy,x
1

k
−λλ=∆ BB ffp Dist (8) 

By duality, the derivative of the closing profile ( )y,xk
•∆p  is 

defined as the vector: 

( ) ( ) ( ) ( ) ( )[ ]{ }y,x,y,xy,x
1

k
−λλ• ••=∆ BB ffp Dist

(9) 

The above procedure is the basis of our novel algorithm for 
automated target detection in hyperspectral imagery, called 
ADMP (Automated Determination of Morphological Profiles). 
It relies on the calculation of the maximum of the combined 
opening-closing profile at each pixel. This value is used to 
determine an optimum SE size at each target pixel, which is 
then used to characterize the target in both spatial and spectral 
terms [5] by applying combinations of morphology operations. 
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III. RESULTS 

In this section, we evaluate the proposed approach by using 
both simulated (AVIRIS) and real (ROSIS) hyperspectral data.  

A. Experiments with simulated data 

A simulated 224-band (0.4-2.5 µm), 90x130 pixels AVIRIS 
scene was created for experiments containing fifteen computer-
simulated targets of different shapes and sizes, ranging from 2 
to 37 pixels. Spectral signatures of man-made objects, directly 
obtained from available AVIRIS data, were used to simulate 
the fifteen targets, while background was simulated by using 
available soil and grass spectra uniformly. The precise spatial 
locations of all simulated targets were used to create ground-
truth [see Fig. 1(a)], where two types of target pixels were 
designated, BLACK and GREY. The BLACK-masked (B) 
pixels are assumed to be target center pixels, while GREY-
masked (G) may be boundary pixels or target pixels mixed 
with background pixels. Random noise was added to the above 
scene to simulate contributions from ambient (clutter) and 
instrumental sources, resulting in SNR of 30:1. Using the 
above scene, we tallied the number of target pixels detected or 
hit by the proposed algorithm. We made a subtle distinction 
between a target detected and a target hit. A target is hit when 
at least either one B or one G pixel is detected. On other hand, 
a target is T%-partially detected (T%-D) when at least T% of 
its B and G pixels are correctly detected. Finally, a target is 
fully detected when all its B and G pixels are detected (i.e. 
100%-D). Out of 15 simulated targets, all of them were hit by 
the algorithm; 12 were fully detected, 2 were 70%-D (5 and 9 
pixel-sized targets, respectively) and the smallest target was 
50%-D. The overall false positive rate was below 0.7%. 

B. Experiments with real data 

In this section, we apply the proposed method to a real 
hyperspectral scene collected by the ROSIS imaging 
spectrometer over a ‘Dehesa’ ecosystem (mainly formed by 
cork-oak trees, soil and pasture) in Cáceres, SW Spain [see Fig. 
1(b)]. The scene consists of 88x130 pixels of 1.2x1.2 meters, 
each containing 92 spectral bands covering the spectral range 

0.4-0.9 µm. Very accurate characterization of cork-oak tree 
crowns is important in Dehesa environments in order to obtain 
high-precision monitoring of natural resources. Partial ground-
truth is available for this site, given by the true spatial locations 
of B and G pixels belonging to cork-oak trees [see Fig. 1(c)]. 
These objects were accurately geo-registered in the image by 
using GPS data, collected during a ground campaign on the test 
site. Extended morphological profiles for two cork-oak trees, 
labeled in Fig. 1(b), are shown in Figs. 1(d) and 1(e). The 
resulting opening and closing profiles are combined in D-3

plots, where the spectral signature of the analyzed pixel, 
denoted by P in the plots, is shown along with the resulting 
spectral signatures obtained after applying a series of opening- 
and closing-by-reconstruction operations using different SE 
sizes. These iterations are labeled in the plots as 

( ) ( )y,xOk
k

Bf=  for the opening series, and 

( ) ( )y,xCk
k

B•= f  for the closing series, { }32,,1k = . As shown 

in Figs. 1(d) and 1(e), pure cork-oak pixels remain indifferent 

to the three closing-by-reconstruction iterations, but are 
replaced during the opening-by-reconstruction process. The 
point where the derivative of the morphological profile takes 
the maximum value (see equations 8 and 9) is used to record 
the most appropriate size of the SE for each pixel. The 
derivative value at this point provides an indication of the 
morphological characteristic of the target in the given spatial 
domain range, using a spatial/spectral criterion. All 39 targets, 
were hit (22 were fully detected, 11 were 70%-D, 4 were 50%-
D and 2 were 30%-D), with overall false positive rate of 1.2%. 
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Figure 1.  a) Locations of B and G pixels in AVIRIS-simulated scene. b) 

Spectral band at 734 nm of ROSIS scene, with two trees labeled as #1 and #2. 

c) Ground-truth locations of B (pure) and G (mixed) cork-oak pixels. d) 
Morphological profile for tree #1. e) Morphological profile for tree #2. 
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