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ABSTRACT 
 
Hyperspectral imaging systems, used in conjunction with appropriate detection and recognition algorithms, have 
demonstrated to be very appropriate tools for standoff detection in many different environments. Compared to other 
techniques available such as multispectral imaging, which typically collects only tens of images, hyperspectral 
instruments are capable of collecting hundreds of images, corresponding to different wavelength channels, for the same 
area on the surface of the Earth. While developments in hyperspectral technology hold great promise for advanced 
standoff detection, they create new processing challenges. In particular, the price paid for the wealth spatial and spectral 
information available from hyperspectral sensors is the enormous amounts of data that they generate. However, several 
applications exist where having the desired information calculated in real-time or near real-time is desired, e.g. those 
focused on the detection and tracking of forest fires, oil spills and other types of chemical contamination. In this paper, 
we discuss parallel implementations of a novel morphological algorithm for standoff detection in hyperspectral imagery. 
Several illustrative processing examples are provided, thus allowing an evaluation of the speedup factors provided by 
implementing the above algorithm, characterized by its combined use of spatial and spectral information, on massively 
parallel computer facilities. 
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1. INTRODUCTION 
 
Standoff detection involves passive and active methods for sensing of chemical and biological material when the sensor 
is physically separated from the site of interest (target area). Remote sensing and supporting technologies, such as GPS 
and GIS, are increasingly being used in environmental activities such as monitoring of natural resources, as well as 
detection and tracking of natural disasters such as forest fires, oil spills, and other types of chemical contamination. 
Hyperspectral imaging systems, used in conjunction with appropriate detection and recognition algorithms, have 
demonstrated to be very useful tools for standoff detection1. These instruments are capable of collecting hundreds of 
images, corresponding to different wavelength channels, for the same area on the surface of the Earth. A chief 
hyperspectral sensor is the NASA’s Jet Propulsion Laboratory Airborne Visible-Infrared Imaging Spectrometer 
(AVIRIS) system2, which currently covers the wavelength region from 0.4 to 2.5 mm using 224 spectral channels, at a 
nominal spectral resolution of 10 nm. On other hand, the Hyperion hyperspectral imager aboard Earth Observing-1 (EO-
1) spacecraft has been NASA’s first hyperspectral imager to become operational on-orbit. It routinely collects images 
hundreds of kilometers long with 220 spectral bands from 0.4 to 2.5 mm. With such spectral detail, the ability to detect 
and identify target materials is greatly enhanced with respect to other techniques available, such as multispectral 
imaging, which typically collects only tens of images. In the near future, the proliferation of hyperspectral sensors 
installed aboard satellite platforms will produce a nearly continual stream of multidimensional data, and this expected 
high data volume would demand fast and efficient means for storage, transmission and analysis3. 
 
A diverse array of analysis techniques has been applied to hyperspectral image analysis during the last decade1. They are 
inherently either full pixel techniques or mixed pixel techniques, where each pixel vector in a hyperspectral image 
records the spectral information. The underlying assumption governing full pixel techniques is that each pixel vector 
measures the response of one predominantly underlying material at each site in a scene. However, a number of the pixel 
vectors in the scene will likely measure the spectral response of a mixture of underlying materials. Mixed pixel 
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techniques have overcome some of the weaknesses of full pixel approaches by using linear and/or nonlinear mixture 
modeling and signal processing techniques4. Spectral mixture analysis usually involves two steps: to find spectrally 
unique signatures of pure ground components (usually referred to as endmembers) and to express individual pixels in 
terms of linear/nonlinear combinations of endmembers. Most available techniques for endmember selection and spectral 
unmixing focus on analyzing the data without incorporating information on the spatially adjacent data; i.e. the data is 
treated not as an image but as an unordered listing of spectral measurements where the spatial coordinates can be 
shuffled arbitrarily without affecting analysis. However, one of the distinguishing properties of hyperspectral data, as 
collected by available spectrometers, is the multivariate information coupled with a two-dimensional (2-D) pictorial 
representation amenable to image interpretation. Subsequently, there is a need to incorporate the image representation of 
the data in the analysis5. By taking into account the complementary nature of spatial and spectral information in 
simultaneous fashion, it is possible to alleviate the problems related to each of them taken separately. While integrated 
spatial/spectral developments in hyperspectral technology hold great promise for advanced standoff detection, they 
create new processing challenges6. In particular, the price paid for the wealth spatial and spectral information available 
from hyperspectral sensors is the enormous amounts of data that they generate. As a result, analysis techniques that make 
combined use of spatial and spectral information are often computationally tedious, and require lengthy durations to 
calculate desired quantities. However, several applications exist where having the desired information calculated in real-
time or near real-time is desired, e.g. those pursuing detection and tracking of environmental disasters such as forest 
fires, oil spills, and other types of chemical contamination. In the above cases, timely classification is highly desirable in 
order to design an effective environmental protection and response plan, which could help to reduce the environmental 
consequences of the event, as well as to protect human life. 
 
Parallel processing has been reported as an efficient technique to tackle large remotely sensed data sets, and to get 
reasonable response times in complex analysis scenarios7,8. In parallel processing, high performance can be achieved by 
two complementary means: Increased efficiency of the algorithms used in the codes and increased performance of the 
computers on which the codes are run. Parallel computer facilities offer the possibility of performance in hundreds of 
gigaflops, and memory capacity sufficient for advanced standoff detection in large, high-dimensional image data. 
Parallel architectures have been used in the past to improve computational performance of remotely sensed image 
analysis techniques9. Thanks to the geographic local organization of the pixels in an image as a 2-D mesh, and to the 
regularity of most low-level computations, mesh-based parallel architectures are quite popular for image analysis 
applications6. However, the situation is more complex when dealing with hyperspectral image data, where spatial and 
spectral information can be equally employed to conduct the analysis. In order to take advantage of parallel computers, 
designing and implementing well-optimized hyperspectral analysis approaches can significantly improve their 
computational performance, and reduce the total research time to complete these studies.  
 
In this paper, we discuss parallel implementations of a novel algorithm for standoff detection in hyperspectral imagery, 
which makes combined use of spatial and spectral information. The paper is organized as follows. In section 2, we 
describe the fundamentals of the proposed method, which is based on mathematical morphology concepts. Section 3 
provides an overview of its parallel implementation. The performance of the proposed parallel approach is demonstrated 
in section 4 using real hyperspectral data sets, collected by the AVIRIS imaging spectrometer. Specific factors affecting 
the performance of algorithm implementations in parallel computers are examined in this section, including impact of 
interprocessor communication and coordination, number of processors, and speedup ratios. Finally, section 5 concludes 
with some remarks and future research lines. 
 

2. MORPHOLOGICAL STANDOFF DETECTION IN HYPERSPECTRAL IMAGERY 
 
In this section, we give a description of the proposed algorithm for standoff detection in hyperspectral imagery. In order 
to render this algorithm computationally it will need to be embedded in a parallel implementation, which is given in the 
following section. Before describing the algorithm, we emphasize that it considers hyperspectral image analysis from a 
broader perspective than the standard methods currently available. Instead of focusing exclusively on the spectral 
information contained in the data, it focuses on analyzing both spatial and spectral responses in a simultaneous manner. 
This is achieved by extending spatial-based mathematical morphology10 operations to the spectral domain. Section 2.1 
provides an overview of the proposed framework to extend morphological operations to multidimensional images. 
Section 2.2 describes the general algorithm, along with its parameters and requirements. 
 



2.1. Extension of mathematical morphology operations to hyperspectral images 
Mathematical morphology10 is a classic nonlinear image processing technique that was originally defined for binary 
images. Based on set theory, binary morphology was established by introducing fundamental operators applied to two 
sets. One set is processed by another set of carefully selected shape and size, known as structuring element (SE), which 
is translated over the image. The SE acts as a probe for extracting or suppressing specific structures of the image objects 
by checking, for each position of the SE, whether it fits or not within the image objects11. In the erosion (dilation) 
operation, the minimum (maximum) value of the image pixels within the SE is selected as the resulting value of the 
morphological operation, and used to create a new image which is known as eroded (dilated) image. Morphological 
operations have extended to gray-tone (mono-channel) images by viewing these data as an imaginary topographic relief; 
the brighter the gray tone, the higher the corresponding elevation. The extension of the concepts of grayscale 
morphology to hyperspectral images is not straightforward. When such techniques are applied independently to each 
image channel (marginal morphology), there is a possibility for loss or corruption of information of the image due to the 
likely fact that new spectral constituents, i.e. not available in the original image, may be created as a result of processing 
image channels separately. An alternative way to approach this problem is to treat the data at each pixel as a vector. In 
order to define the basic morphological operations in N-D space, a concept for a maximum (or minimum) is necessary11, 
and thus it is important to define an appropriate ordering of vectors in the selected vector space. Our innovative approach 
to the above problem has been the definition of a vector ordering scheme based on the spectral singularity of 
hyperspectral pixel vectors. First, a lattice structure is imposed onto N-D space by the definition of a cumulative metric 
based on the spectral angle distance (SAD). Second, basic morphological operations such as erosion and dilation are 
defined by extension12. 
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Figure 1. Schematic representation of the proposed standoff detection algorithm. 
 
2.2. Standoff detection algorithm 
A general block diagram of the proposed algorithm is given in Fig. 1. As shown in this figure, the input to the method is 
the full image data cube, with no previous dimensionality reduction. First, a minimum kernel minSK =  is considered. 
This element is moved through all the pixels of the image, defining a spatial context around each hyperspectral pixel 

( )y,xh . The spectrally purest ( p ) and the spectrally most highly mixed (m ) spectral signatures are respectively 
obtained at the neighborhood of ( )y,xh  defined by K  using the following cumulative distance-based extended 
morphological operations12. 
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where dist  is the SAD distance. A morphological eccentricity index (MEI) is then obtained by calculating the SAD 
between the two signatures above. This operation is repeated for all the pixels in the scene, using kernels of 
progressively increased size, and the resulting scores are used to evaluate each pixel in both spatial and spectral terms. 
The algorithm performs as many iterations as needed until maxSK = . The associated MEI value of selected pixels at 
subsequent iterations is updated by means of newly obtained values, as a larger spatial context is considered, until a final 
MEI image is generated. This approach ensures a complete spatial/spectral description of the image and provides an 
efficient tool to integrate both types of information simultaneously13. Automated pure pixel (endmember) selection is 
performed from the MEI image by using a threshold value. A final selection of representative spectral signatures for each 
material present in the scene is refined by using a region-growing procedure that incorporates neighboring pixels that are 
sufficiently similar (according to a certain threshold angle parameter) to the regions obtained after thresholding14. Mean 
spectra are obtained for the resulting regions after the region-growing process above, and a final set of endmember 
signatures is obtained. Traditional methodologies such as the spectral angle mapper (SAM) or linear spectral unmixing 
(LSU) can be used for the purpose of mapping the obtained endmembers over the original image, and obtaining a final 
classification result in terms of full pixel assignment to classes, or estimation of sub-pixel abundances in mixed pixels.  
 
 

3. PARALLEL IMPLEMENTATION 
 
In this section, we provide an overview of a parallel version that improves the computational efficiency of the code 
described in section 2, so that the time in conducting scientific studies involving hyperspectral data analysis can be 
reduced. The proposed parallel implementation is based on domain decomposition techniques and the Message Passing 
Interface15 (MPI) library. Our major goal was designing an efficient parallel version of the algorithm running on multiple 
processors executing with significant speedup. To achieve this objective, we focused on the data structures of the code to 
discover all possible data dependencies. In order to achieve load balance and to exploit parallelism as much as possible, a 
general N-dimensional domain decomposition-based parallel partitioner (NDPP) was developed. The spatial domain of 
the hyperspectral data was chosen as the basis for the decomposition, so that the message passing was minimized and 
most of the code was executed in parallel on multiple processors. Each partition produced by NDPP is called a 
parallelizable spatial/spectral pattern16. Next, we show how such patterns are obtained, and their further use in the 
implementation of the parallel algorithm. The section concludes with an overview of the sequence of operations 
performed by the proposed parallel algorithm. 
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Figure 2. Partitioning of hyperspectral image using the NDPP, and assignment of parallelizable patterns to processing 
units for local MEI index computation. Each processing node calculates the MEI score for a series of pixels. These 
partial values are combined to form a global output MEI image. 



3.1. Parallelizable spatial/spectral patterns 
The concept of parallelizable spatial/spectral pattern is defined as the maximum amount of work that –when applied to 
partial image data– can be performed without communication16. As stated above, the so-called NDPP module divides the 
hyperspectral image into a collection of parallelizable patterns and maps each pattern to a node, so that all internal data 
accesses refer to data local to the node that executes the operation. Then, each node performs automated analysis on its 
associated data set. Analysis of each pattern involves of a series of independent tasks, where a task specifies what 
hyperspectral pixels in the N-D input image must be read in order to update (write) the MEI value of a single data pixel 
in a 2-D destination image called MEI image. Each task is tied to a range of spatial locations, which constitute a subset 
of the positions inside the spatial domain of a partition of the source N-D scene. These positions are given by the shape 
and size of the structuring element. For illustrative purposes, Fig. 2 shows an example where MEI scores are calculated 
for two hyperspectral image pixels (P1 and P2), using a square-shaped 3x3 SE and two processing nodes. As shown in 
Fig. 2, each pixel value in the output 2-D image depends on the hyperspectral pixels in the neighborhood of the pixel at 
the same position in the input image, which is given by the related kernel structure. In the end, the master node gathers 
back the results that are produced from each node.  
 
An important issue in kernel-based image processing operations is that accesses to pixels outside the input image’s 
domain are possible. In sequential implementations of such kernel-based operations, it is common practice to redirect 
such accesses according to a predefined border handling strategy. A better approach for parallel implementation, 
however, is to separate the border handling from the actual kernel-based operation16. This makes implementations more 
robust and, in general, also faster. Two specific border-handling strategies are implemented in our case as follows: 
1. When accesses to pixels outside the image domain are necessary, only those pixels inside the image are considered 

for the MEI calculation. 
2. Additional communication is required between processing nodes when the kernel computation is split amongst 

several processing nodes [see Fig. 3(a)]. In such cases, we allow an overlapping scatter of the global input image to 
avoid additional communication [see Fig. 3(b)]. In our implementation, the NDPP module automatically determines 
the size in pixels of the overlapping section. 
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Figure 3. a) Kernel computation split among several processors. b) Overlapping scatter avoids further communication. 
 
The generalized description of parallelizable patterns given above, along with border-handling strategies, is important as 
it states the requirements for parallel implementation of a large set of processing operations. In addition, for each 
spatial/spectral pattern implemented on the basis of the generalized description, a parallelization strategy directly 
follows. As such, code reusability is maximized, and flexibility is enhanced. 
 
3.2. Summary of operations 
As shown in the previous section, the parallel implementation of the proposed morphological algorithm is based on an 
efficient decomposition scheme, provided by a so-called NDPP module that also acts as master node in charge of all I/O 
operations. The partitioner has been implemented so that it automatically determines an optimum size for parallelizable 
patterns to be distributed among processing nodes. This is done by taking into account both spatial and spectral 
resolutions. By distributing data evenly among the processors, load balance is achieved. In the proposed MPI-based 



implementation, the NDPP distributes data to the other processors through the function MPI_Bcast(), i.e. a single-
source broadcast to all processors. The master processor then sends each slave processor its portion of the input 
hyperspectral image through a pair of functions, MPI_Send() and MPI_Recv(). After each processor has finished 
working on its portion of the data, it must send its results back to the master processor for output to the resulting MEI 
image file. This is accomplished again through the send/receive function pairs. In a nutshell, executing the following 
sequence of operations on a parallel platform carries out the entire parallel computation: 

1. Read the original hyperspectral image, the structuring element, the number of available processors and other 
input data. 

2. Use the MPI library to generate necessary system information, including the total number of processors, each 
processor’s ID number, timing and other data. 

3. Partition the original hyperspectral image using the NDPP, obtaining a collection of parallelizable 
spatial/spectral patterns. 

4. For each parallelizable pattern, execute the sequential algorithm in a different processor, obtaining a collection 
of local 2-D MEI images. 

5. Collect the final results from all processors and form a final MEI image with the same spatial dimensions (i.e. 
number of pixels) as the original input data. 

6. Perform automated endmember extraction from resulting MEI image by using a combination of automated 
thresholding techniques and spatial/spectral region growing17. It must be taken into account that these 
operations have not yet been parallelized. Also, the mapping/abundance estimation stage of the algorithm (see 
Fig. 1) has not been considered for the parallel implementation, which is reduced in this work to the competitive 
spatial/spectral endmember selection. 

As a final note, we emphasize that the original algorithm is an excellent application for parallel computing, because there 
is no dependence between the calculations made at each spatial/spectral pattern, and only minimal communication is 
required for the entire calculation. Performance data for the parallel implementation described above are given in the 
next section. 
 

4. RESULTS AND DISCUSSION 
 
Various code performance tests were carried out for both sequential and parallel codes. The parallel algorithm described 
in section 3 has been implemented on the SGI Origin 2000 Silicon Graphics supercomputer at CEPBA (European Center 
for Parallelism of Barcelona). The system is a distributed memory, message-passing parallel machine of the MIMD 
class. It is composed of 64 MIPS R10000 processors (each one with 4 MB of cache) and 12 Gb of main memory, 
interconnected via 1.2 Gbps communication network that has the topology of a three-dimensional hyper-crossbar. The 
theoretical peak performance of the system is 32 Gflop/s. The operating system is Irix 6.5, with single-kernel 
architecture. Our algorithm was coded entirely in C++, and compiled using version 7.3.1.2 of the MIPSpro compiler 
suite. The communication library used was the message-passing interface MPI. 
 
To empirically investigate the scaling properties of the algorithm described in this paper, it was applied to four standard 
AVIRIS hyperspectral data sets, described in Table 1 (see also Fig. 4). We have selected the above datasets because they 
are widely available online18, and have served as benchmark data for many scientific studies, including performance 
evaluation of hyperspectral analysis algorithms. In addition, there is ground-truth information available for the scenes 
that can be used to validate performance of analysis techniques. 
 
 
 
 

Identifier Area Year Pixels Bands Spectral range Units Application area
AVCUP95 Cuprite, NV 1995 320x200 50 2 – 2.5 µm Reflectance Geology 

AVIP92 Indian Pines, IN 1992 145x145 220 0.4 – 2.5 µm Radiance Agriculture 
 

AVJRAD97 
 

Jasper Ridge, CA 
 

1997 
 

614x512 
 

224 
 

0.4 – 2.5 µm 
 

Radiance Vegetation and  
soil studies 

 

AVJREF97 
 

Jasper Ridge, CA 
 

1997 
 

614x512 
 

224 
 

0.4 – 2.5 µm 
 

Reflectance Vegetation and  
soil studies 

 

Table 1. Database of AVIRIS hyperspectral scenes used to illustrate performance of the proposed parallel algorithm. 
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Figure 4. Representative spectral bands from AVIRIS hyperspectral scenes. a) AVCUP95. b) AVIP92. c) AVJREF97. 
 

The proposed morphological method was run on the above images serially and with two- through 4-, 8-, and 16-fold 
parallelism. Due to the operating system configuration on the supercomputer used in this study, parallel computation on 
more than 16 CPUs was not available to us at the time experiments were carried out. The performance of the parallel 
implementation was tested by timing the program over a variety of inputs and numbers of processors (see Table 2). Two 
different structuring element sizes, i.e. 3x3 pixels and 15x15 pixels were considered in each algorithm run, bearing in 
mind that 15x15 pixel-sized kernels generally produce more accurate results in the analysis. The measured speedups 
were simply computed by dividing the parallel times by the single processor times. If we approximate the real time 
required to complete a task on n  parallel processors, ( )nT , as 
 

( )
n
BAnT += ,           (3) 

 

where A  is the serial (non-parallelizable) portion of the computation, and B  is the parallel portion, then the parameters 
A , and B  can be determined by linear regression of measured CPU times versus the inverse number of CPUs, n/1 . In 
our implementation, B refers to spatial/spectral competitive endmember selection through morphological operations, and 
A refers to automated identification of endmembers (see Fig. 1). We can define the speedup for n  CPUs, nc , as  
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The relationship above, usually expressed as an inequality to account for parallelization overhead, is generally known as 
Amdahl’s Law19. It is obvious from this expression that the speedup of a parallel algorithm does not continue to increase 
with increasing the number of processors. Since only the parallel component scales while the time required to complete 
the serial component remains constant, there is a theoretical limit for the maximum parallel speedup, denoted as 
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From the results shown in Table 2, it can be noticed that the proposed parallel algorithm achieves significant speedup 
when compared to the serial implementation, in particular when 16-fold parallelism is applied. It can be derived from 
Table 2 that the measured speedup of the program drops for 8, 4 and 2 processing nodes. The measured speedup is 
higher for large structuring elements, a fact that reveals that morphological operations are suitable to the designing of 
efficient implementations of algorithms for hyperspectral image analysis. The algorithm achieves similar speedup factors 
for radiance and reflectance data. Further results are still required in order to determine if adding more processors may be 
counterproductive due to the large impact of communication. As an important final note, we should also state that the 
region growing process, which has not yet been parallelized, has a strong impact on the final results17. As reported in 
previous work, this step is important in order to reduce algorithm sensitivity to noise and outliers in the data. For 
example, the region-growing stage takes approximately 86 seconds when the algorithm is run serially on the AVIP92 
scene. On other hand, this stage takes only 38 and 35 seconds in the AVJRAD97 and AVJREF97 scenes, respectively. 
This result reveals that the region-growing is scene-dependent. As a result, although the parallelization of the 
spatial/spectral competitive procedure task leads to a significant improvement in the computational performance of the 
algorithm, additional work is still required in order to parallelize the automated selection of endmembers performed by 
the algorithm, which includes the computationally expensive and scene-dependent region-growing procedure. 



 
Original 
Image 

Structuring  
element size 

Serial proc. time 
T(1) in seconds 

Number of 
Processors n

Parallel proc. time 
T(n) in seconds 

Measured 
speedup cn 

2 88 1.23 
4 57 1.89 
8 39 2.79 

 
 

3x3 
 

 
 

109 
 

16 28 3.89 
2 194 1.32 
4 112 2.28 
8 62 4.11 

 
 
 
 

AVCUP95 
  

 

15x15 

 
 

257 

16 48 5.35 
2 124 1.19 
4 88 1.67 
8 55 2.65 

 
 

3x3 

 
 

148 

16 41 3.60 
2 258 1.35 
4 146 2.38 
8 83 4.19 

 
 
 
 

AVIP92 
  

 

15x15 

 
 

349 

16 65 5.36 
2 341 1.18 
4 245 1.64 
8 182 2.21 

 
 

3x3 

 
 

403 

16 142 2.83 
2 781 1.26 
4 437 2.25 
8 282 3.49 

 
 
 
 

AVJRAD97 
  

 

15x15 

 
 

985 

16 212 4.64 
2 328 1.21 
4 235 1.69 
8 176 2.25 

 
 

3x3 

 
 

397 

16 136 2.91 
2 741 1.31 
4 428 2.27 
8 275 3.53 

 
 
 
 

AVJREF97 
  

 

15x15 

 
 

972 

16 203 4.78 
 

Table 2. Measured parallel speedup for different images/structuring elements, and different numbers of processors. 
 

 
CONCLUSIONS AND FUTURE LINES 

 
This paper was dedicated to the interest of parallel asynchronous computations in hyperspectral image analysis. We 
showed that extended spatial/spectral algorithms, based on classic spatial-based morphological operations, can be 
efficiently implemented on massively parallel computers. We have also confirmed that the framework of mathematical 
morphology is very suitable to the designing of efficient hyperspectral analysis algorithms. In the proposed scheme, code 
reusability is enhanced by the application of so-called parallelizable patterns. Essentially, such patterns define the 
maximum amount of work that can be executed by a single processing unit without having to communicate to obtain 
data values that reside elsewhere. A limitation of this approach is that not all of the steps of the proposed algorithm have 
been yet optimized for parallel processing. A research topic deserving future research is the parallelization of the 
spatial/spectral region-growing step, which refines and greatly improves the task of extracting endmembers for spectral 
mixture analysis of hyperspectral data. With the above issues in mind, the present investigation indicates the feasibility 
of on-board processing of remotely sensed data, using parallel computing techniques, to interpret and classify 
hyperspectral data more accurately and efficiently than is currently possible. Finally, we will continue implementing 
example programs to investigate the implication of parallelization of typical applications, especially in the area of near 
real-time hyperspectral image processing. 
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