
Parallel implementation of algorithms for
standoff detection in hyperspectral imagery

Antonio Plaza*, Pablo Martínez, Javier Plaza, Rosa Pérez

Neural Networks and Signal Processing Group (GRNPS), Computer Science Department,
University of Extremadura, Avda. de la Universidad S/N, 10071 Cáceres, SPAIN.

ABSTRACT

Hyperspectral imaging systems, used in conjunction with appropriate detection and recognition algorithms, have
demonstrated to be very appropriate tools for standoff detection in many different environments. Compared to other
techniques available such as multispectral imaging, which typically collects only tens of images, hyperspectral
instruments are capable of collecting hundreds of images, corresponding to different wavelength channels, for the same
area on the surface of the Earth. While developments in hyperspectral technology hold great promise for advanced
standoff detection, they create new processing challenges. In particular, the price paid for the wealth spatial and spectral
information available from hyperspectral sensors is the enormous amounts of data that they generate. However, several
applications exist where having the desired information calculated in real-time or near real-time is desired, e.g. those
focused on the detection and tracking of forest fires, oil spills and other types of chemical contamination. In this paper,
we discuss parallel implementations of a novel morphological algorithm for standoff detection in hyperspectral imagery.
Several illustrative processing examples are provided, thus allowing an evaluation of the speedup factors provided by
implementing the above algorithm, characterized by its combined use of spatial and spectral information, on massively
parallel computer facilities.

Keywords: Standoff detection, Hyperspectral imagery, Parallel computing, Morphological analysis.

1. INTRODUCTION

Standoff detection involves passive and active methods for sensing of chemical and biological material when the sensor
is physically separated from the site of interest (target area). Remote sensing and supporting technologies, such as GPS
and GIS, are increasingly being used in environmental activities such as monitoring of natural resources, as well as
detection and tracking of natural disasters such as forest fires, oil spills, and other types of chemical contamination.
Hyperspectral imaging systems, used in conjunction with appropriate detection and recognition algorithms, have
demonstrated to be very useful tools for standoff detection1. These instruments are capable of collecting hundreds of
images, corresponding to different wavelength channels, for the same area on the surface of the Earth. A chief
hyperspectral sensor is the NASA’s Jet Propulsion Laboratory Airborne Visible-Infrared Imaging Spectrometer
(AVIRIS) system2, which currently covers the wavelength region from 0.4 to 2.5 mm using 224 spectral channels, at a
nominal spectral resolution of 10 nm. On other hand, the Hyperion hyperspectral imager aboard Earth Observing-1 (EO-
1) spacecraft has been NASA’s first hyperspectral imager to become operational on-orbit. It routinely collects images
hundreds of kilometers long with 220 spectral bands from 0.4 to 2.5 mm. With such spectral detail, the ability to detect
and identify target materials is greatly enhanced with respect to other techniques available, such as multispectral
imaging, which typically collects only tens of images. In the near future, the proliferation of hyperspectral sensors
installed aboard satellite platforms will produce a nearly continual stream of multidimensional data, and this expected
high data volume would demand fast and efficient means for storage, transmission and analysis3.

A diverse array of analysis techniques has been applied to hyperspectral image analysis during the last decade1. They are
inherently either full pixel techniques or mixed pixel techniques, where each pixel vector in a hyperspectral image
records the spectral information. The underlying assumption governing full pixel techniques is that each pixel vector
measures the response of one predominantly underlying material at each site in a scene. However, a number of the pixel
vectors in the scene will likely measure the spectral response of a mixture of underlying materials. Mixed pixel

* E-mail: aplaza@unex.es; Phone: +34 927257195; Fax: +34 927257203.

techniques have overcome some of the weaknesses of full pixel approaches by using linear and/or nonlinear mixture
modeling and signal processing techniques4. Spectral mixture analysis usually involves two steps: to find spectrally
unique signatures of pure ground components (usually referred to as endmembers) and to express individual pixels in
terms of linear/nonlinear combinations of endmembers. Most available techniques for endmember selection and spectral
unmixing focus on analyzing the data without incorporating information on the spatially adjacent data; i.e. the data is
treated not as an image but as an unordered listing of spectral measurements where the spatial coordinates can be
shuffled arbitrarily without affecting analysis. However, one of the distinguishing properties of hyperspectral data, as
collected by available spectrometers, is the multivariate information coupled with a two-dimensional (2-D) pictorial
representation amenable to image interpretation. Subsequently, there is a need to incorporate the image representation of
the data in the analysis5. By taking into account the complementary nature of spatial and spectral information in
simultaneous fashion, it is possible to alleviate the problems related to each of them taken separately. While integrated
spatial/spectral developments in hyperspectral technology hold great promise for advanced standoff detection, they
create new processing challenges6. In particular, the price paid for the wealth spatial and spectral information available
from hyperspectral sensors is the enormous amounts of data that they generate. As a result, analysis techniques that make
combined use of spatial and spectral information are often computationally tedious, and require lengthy durations to
calculate desired quantities. However, several applications exist where having the desired information calculated in real-
time or near real-time is desired, e.g. those pursuing detection and tracking of environmental disasters such as forest
fires, oil spills, and other types of chemical contamination. In the above cases, timely classification is highly desirable in
order to design an effective environmental protection and response plan, which could help to reduce the environmental
consequences of the event, as well as to protect human life.

Parallel processing has been reported as an efficient technique to tackle large remotely sensed data sets, and to get
reasonable response times in complex analysis scenarios7,8. In parallel processing, high performance can be achieved by
two complementary means: Increased efficiency of the algorithms used in the codes and increased performance of the
computers on which the codes are run. Parallel computer facilities offer the possibility of performance in hundreds of
gigaflops, and memory capacity sufficient for advanced standoff detection in large, high-dimensional image data.
Parallel architectures have been used in the past to improve computational performance of remotely sensed image
analysis techniques9. Thanks to the geographic local organization of the pixels in an image as a 2-D mesh, and to the
regularity of most low-level computations, mesh-based parallel architectures are quite popular for image analysis
applications6. However, the situation is more complex when dealing with hyperspectral image data, where spatial and
spectral information can be equally employed to conduct the analysis. In order to take advantage of parallel computers,
designing and implementing well-optimized hyperspectral analysis approaches can significantly improve their
computational performance, and reduce the total research time to complete these studies.

In this paper, we discuss parallel implementations of a novel algorithm for standoff detection in hyperspectral imagery,
which makes combined use of spatial and spectral information. The paper is organized as follows. In section 2, we
describe the fundamentals of the proposed method, which is based on mathematical morphology concepts. Section 3
provides an overview of its parallel implementation. The performance of the proposed parallel approach is demonstrated
in section 4 using real hyperspectral data sets, collected by the AVIRIS imaging spectrometer. Specific factors affecting
the performance of algorithm implementations in parallel computers are examined in this section, including impact of
interprocessor communication and coordination, number of processors, and speedup ratios. Finally, section 5 concludes
with some remarks and future research lines.

2. MORPHOLOGICAL STANDOFF DETECTION IN HYPERSPECTRAL IMAGERY

In this section, we give a description of the proposed algorithm for standoff detection in hyperspectral imagery. In order
to render this algorithm computationally it will need to be embedded in a parallel implementation, which is given in the
following section. Before describing the algorithm, we emphasize that it considers hyperspectral image analysis from a
broader perspective than the standard methods currently available. Instead of focusing exclusively on the spectral
information contained in the data, it focuses on analyzing both spatial and spectral responses in a simultaneous manner.
This is achieved by extending spatial-based mathematical morphology10 operations to the spectral domain. Section 2.1
provides an overview of the proposed framework to extend morphological operations to multidimensional images.
Section 2.2 describes the general algorithm, along with its parameters and requirements.

2.1. Extension of mathematical morphology operations to hyperspectral images
Mathematical morphology10 is a classic nonlinear image processing technique that was originally defined for binary
images. Based on set theory, binary morphology was established by introducing fundamental operators applied to two
sets. One set is processed by another set of carefully selected shape and size, known as structuring element (SE), which
is translated over the image. The SE acts as a probe for extracting or suppressing specific structures of the image objects
by checking, for each position of the SE, whether it fits or not within the image objects11. In the erosion (dilation)
operation, the minimum (maximum) value of the image pixels within the SE is selected as the resulting value of the
morphological operation, and used to create a new image which is known as eroded (dilated) image. Morphological
operations have extended to gray-tone (mono-channel) images by viewing these data as an imaginary topographic relief;
the brighter the gray tone, the higher the corresponding elevation. The extension of the concepts of grayscale
morphology to hyperspectral images is not straightforward. When such techniques are applied independently to each
image channel (marginal morphology), there is a possibility for loss or corruption of information of the image due to the
likely fact that new spectral constituents, i.e. not available in the original image, may be created as a result of processing
image channels separately. An alternative way to approach this problem is to treat the data at each pixel as a vector. In
order to define the basic morphological operations in N-D space, a concept for a maximum (or minimum) is necessary11,
and thus it is important to define an appropriate ordering of vectors in the selected vector space. Our innovative approach
to the above problem has been the definition of a vector ordering scheme based on the spectral singularity of
hyperspectral pixel vectors. First, a lattice structure is imposed onto N-D space by the definition of a cumulative metric
based on the spectral angle distance (SAD). Second, basic morphological operations such as erosion and dilation are
defined by extension12.

Multi/
Hyperspectral

image

Spatial/spectral competitive endmember
selection through morphological operations

Automated
identification of

endmembers

Traditional mapping
methodologies

Final
Classification

Smin
(minimum kernel size)

T
(threshold)

Smax
(maximum kernel size)

L
(number of iterations)

MEI
Image

A
(threshold angle)

Multi/
Hyperspectral

image

Spatial/spectral competitive endmember
selection through morphological operations

Automated
identification of

endmembers

Traditional mapping
methodologies

Final
Classification

Smin
(minimum kernel size)

T
(threshold)

Smax
(maximum kernel size)

L
(number of iterations)

MEI
Image

A
(threshold angle)

Figure 1. Schematic representation of the proposed standoff detection algorithm.

2.2. Standoff detection algorithm
A general block diagram of the proposed algorithm is given in Fig. 1. As shown in this figure, the input to the method is
the full image data cube, with no previous dimensionality reduction. First, a minimum kernel minSK = is considered.
This element is moved through all the pixels of the image, defining a spatial context around each hyperspectral pixel

()y,xh . The spectrally purest (p) and the spectrally most highly mixed (m) spectral signatures are respectively
obtained at the neighborhood of ()y,xh defined by K using the following cumulative distance-based extended
morphological operations12.

() ()

−−= ∑∑∈
s t

Kt,s)ty,sx(),y,x(dist Maxarg_ hhp , () Kt,s ∈∀ , (1)

() ()

++= ∑∑∈
s t

Kt,s)ty,sx(),y,x(dist Minarg_ hhm , () Kt,s ∈∀ , (2)

where dist is the SAD distance. A morphological eccentricity index (MEI) is then obtained by calculating the SAD
between the two signatures above. This operation is repeated for all the pixels in the scene, using kernels of
progressively increased size, and the resulting scores are used to evaluate each pixel in both spatial and spectral terms.
The algorithm performs as many iterations as needed until maxSK = . The associated MEI value of selected pixels at
subsequent iterations is updated by means of newly obtained values, as a larger spatial context is considered, until a final
MEI image is generated. This approach ensures a complete spatial/spectral description of the image and provides an
efficient tool to integrate both types of information simultaneously13. Automated pure pixel (endmember) selection is
performed from the MEI image by using a threshold value. A final selection of representative spectral signatures for each
material present in the scene is refined by using a region-growing procedure that incorporates neighboring pixels that are
sufficiently similar (according to a certain threshold angle parameter) to the regions obtained after thresholding14. Mean
spectra are obtained for the resulting regions after the region-growing process above, and a final set of endmember
signatures is obtained. Traditional methodologies such as the spectral angle mapper (SAM) or linear spectral unmixing
(LSU) can be used for the purpose of mapping the obtained endmembers over the original image, and obtaining a final
classification result in terms of full pixel assignment to classes, or estimation of sub-pixel abundances in mixed pixels.

3. PARALLEL IMPLEMENTATION

In this section, we provide an overview of a parallel version that improves the computational efficiency of the code
described in section 2, so that the time in conducting scientific studies involving hyperspectral data analysis can be
reduced. The proposed parallel implementation is based on domain decomposition techniques and the Message Passing
Interface15 (MPI) library. Our major goal was designing an efficient parallel version of the algorithm running on multiple
processors executing with significant speedup. To achieve this objective, we focused on the data structures of the code to
discover all possible data dependencies. In order to achieve load balance and to exploit parallelism as much as possible, a
general N-dimensional domain decomposition-based parallel partitioner (NDPP) was developed. The spatial domain of
the hyperspectral data was chosen as the basis for the decomposition, so that the message passing was minimized and
most of the code was executed in parallel on multiple processors. Each partition produced by NDPP is called a
parallelizable spatial/spectral pattern16. Next, we show how such patterns are obtained, and their further use in the
implementation of the parallel algorithm. The section concludes with an overview of the sequence of operations
performed by the proposed parallel algorithm.

R

R
W

R

R

W

Global input N-D image

Local input N-D image

Local input N-D image

Local output 2-D image
Global output 2-D image

NDPP Gather

Parallelizable pattern at processing node #1

Parallelizable pattern at processing node #2

3x3 SE

3x3 SE
MEI

MEI

Figure 2. Partitioning of hyperspectral image using the NDPP, and assignment of parallelizable patterns to processing
units for local MEI index computation. Each processing node calculates the MEI score for a series of pixels. These
partial values are combined to form a global output MEI image.

3.1. Parallelizable spatial/spectral patterns
The concept of parallelizable spatial/spectral pattern is defined as the maximum amount of work that –when applied to
partial image data– can be performed without communication16. As stated above, the so-called NDPP module divides the
hyperspectral image into a collection of parallelizable patterns and maps each pattern to a node, so that all internal data
accesses refer to data local to the node that executes the operation. Then, each node performs automated analysis on its
associated data set. Analysis of each pattern involves of a series of independent tasks, where a task specifies what
hyperspectral pixels in the N-D input image must be read in order to update (write) the MEI value of a single data pixel
in a 2-D destination image called MEI image. Each task is tied to a range of spatial locations, which constitute a subset
of the positions inside the spatial domain of a partition of the source N-D scene. These positions are given by the shape
and size of the structuring element. For illustrative purposes, Fig. 2 shows an example where MEI scores are calculated
for two hyperspectral image pixels (P1 and P2), using a square-shaped 3x3 SE and two processing nodes. As shown in
Fig. 2, each pixel value in the output 2-D image depends on the hyperspectral pixels in the neighborhood of the pixel at
the same position in the input image, which is given by the related kernel structure. In the end, the master node gathers
back the results that are produced from each node.

An important issue in kernel-based image processing operations is that accesses to pixels outside the input image’s
domain are possible. In sequential implementations of such kernel-based operations, it is common practice to redirect
such accesses according to a predefined border handling strategy. A better approach for parallel implementation,
however, is to separate the border handling from the actual kernel-based operation16. This makes implementations more
robust and, in general, also faster. Two specific border-handling strategies are implemented in our case as follows:
1. When accesses to pixels outside the image domain are necessary, only those pixels inside the image are considered

for the MEI calculation.
2. Additional communication is required between processing nodes when the kernel computation is split amongst

several processing nodes [see Fig. 3(a)]. In such cases, we allow an overlapping scatter of the global input image to
avoid additional communication [see Fig. 3(b)]. In our implementation, the NDPP module automatically determines
the size in pixels of the overlapping section.

Global input N-D image

Input N-D image at node 1

Input N-D image at node 2

NDPP without
overlapping scatter

Additional
communication
is required

a)

Global input N-D image

Input N-D image at node 1

Input N-D image at node 2

NDPP Overlapping scatter
for a 3x3 kernel

Global input N-D image

Input N-D image at node 1

Input N-D image at node 2

NDPP Overlapping scatter
for a 3x3 kernel

b)

Figure 3. a) Kernel computation split among several processors. b) Overlapping scatter avoids further communication.

The generalized description of parallelizable patterns given above, along with border-handling strategies, is important as
it states the requirements for parallel implementation of a large set of processing operations. In addition, for each
spatial/spectral pattern implemented on the basis of the generalized description, a parallelization strategy directly
follows. As such, code reusability is maximized, and flexibility is enhanced.

3.2. Summary of operations
As shown in the previous section, the parallel implementation of the proposed morphological algorithm is based on an
efficient decomposition scheme, provided by a so-called NDPP module that also acts as master node in charge of all I/O
operations. The partitioner has been implemented so that it automatically determines an optimum size for parallelizable
patterns to be distributed among processing nodes. This is done by taking into account both spatial and spectral
resolutions. By distributing data evenly among the processors, load balance is achieved. In the proposed MPI-based

implementation, the NDPP distributes data to the other processors through the function MPI_Bcast(), i.e. a single-
source broadcast to all processors. The master processor then sends each slave processor its portion of the input
hyperspectral image through a pair of functions, MPI_Send() and MPI_Recv(). After each processor has finished
working on its portion of the data, it must send its results back to the master processor for output to the resulting MEI
image file. This is accomplished again through the send/receive function pairs. In a nutshell, executing the following
sequence of operations on a parallel platform carries out the entire parallel computation:

1. Read the original hyperspectral image, the structuring element, the number of available processors and other
input data.

2. Use the MPI library to generate necessary system information, including the total number of processors, each
processor’s ID number, timing and other data.

3. Partition the original hyperspectral image using the NDPP, obtaining a collection of parallelizable
spatial/spectral patterns.

4. For each parallelizable pattern, execute the sequential algorithm in a different processor, obtaining a collection
of local 2-D MEI images.

5. Collect the final results from all processors and form a final MEI image with the same spatial dimensions (i.e.
number of pixels) as the original input data.

6. Perform automated endmember extraction from resulting MEI image by using a combination of automated
thresholding techniques and spatial/spectral region growing17. It must be taken into account that these
operations have not yet been parallelized. Also, the mapping/abundance estimation stage of the algorithm (see
Fig. 1) has not been considered for the parallel implementation, which is reduced in this work to the competitive
spatial/spectral endmember selection.

As a final note, we emphasize that the original algorithm is an excellent application for parallel computing, because there
is no dependence between the calculations made at each spatial/spectral pattern, and only minimal communication is
required for the entire calculation. Performance data for the parallel implementation described above are given in the
next section.

4. RESULTS AND DISCUSSION

Various code performance tests were carried out for both sequential and parallel codes. The parallel algorithm described
in section 3 has been implemented on the SGI Origin 2000 Silicon Graphics supercomputer at CEPBA (European Center
for Parallelism of Barcelona). The system is a distributed memory, message-passing parallel machine of the MIMD
class. It is composed of 64 MIPS R10000 processors (each one with 4 MB of cache) and 12 Gb of main memory,
interconnected via 1.2 Gbps communication network that has the topology of a three-dimensional hyper-crossbar. The
theoretical peak performance of the system is 32 Gflop/s. The operating system is Irix 6.5, with single-kernel
architecture. Our algorithm was coded entirely in C++, and compiled using version 7.3.1.2 of the MIPSpro compiler
suite. The communication library used was the message-passing interface MPI.

To empirically investigate the scaling properties of the algorithm described in this paper, it was applied to four standard
AVIRIS hyperspectral data sets, described in Table 1 (see also Fig. 4). We have selected the above datasets because they
are widely available online18, and have served as benchmark data for many scientific studies, including performance
evaluation of hyperspectral analysis algorithms. In addition, there is ground-truth information available for the scenes
that can be used to validate performance of analysis techniques.

Identifier Area Year Pixels Bands Spectral range Units Application area
AVCUP95 Cuprite, NV 1995 320x200 50 2 – 2.5 µm Reflectance Geology

AVIP92 Indian Pines, IN 1992 145x145 220 0.4 – 2.5 µm Radiance Agriculture

AVJRAD97

Jasper Ridge, CA

1997

614x512

224

0.4 – 2.5 µm

Radiance Vegetation and
soil studies

AVJREF97

Jasper Ridge, CA

1997

614x512

224

0.4 – 2.5 µm

Reflectance Vegetation and
soil studies

Table 1. Database of AVIRIS hyperspectral scenes used to illustrate performance of the proposed parallel algorithm.

a) b) c)

Figure 4. Representative spectral bands from AVIRIS hyperspectral scenes. a) AVCUP95. b) AVIP92. c) AVJREF97.

The proposed morphological method was run on the above images serially and with two- through 4-, 8-, and 16-fold
parallelism. Due to the operating system configuration on the supercomputer used in this study, parallel computation on
more than 16 CPUs was not available to us at the time experiments were carried out. The performance of the parallel
implementation was tested by timing the program over a variety of inputs and numbers of processors (see Table 2). Two
different structuring element sizes, i.e. 3x3 pixels and 15x15 pixels were considered in each algorithm run, bearing in
mind that 15x15 pixel-sized kernels generally produce more accurate results in the analysis. The measured speedups
were simply computed by dividing the parallel times by the single processor times. If we approximate the real time
required to complete a task on n parallel processors, ()nT , as

()
n
BAnT += , (3)

where A is the serial (non-parallelizable) portion of the computation, and B is the parallel portion, then the parameters
A , and B can be determined by linear regression of measured CPU times versus the inverse number of CPUs, n/1 . In
our implementation, B refers to spatial/spectral competitive endmember selection through morphological operations, and
A refers to automated identification of endmembers (see Fig. 1). We can define the speedup for n CPUs, nc , as

()
() ()n/BA

BA
nT
1Tcn +

+== . (4)

The relationship above, usually expressed as an inequality to account for parallelization overhead, is generally known as
Amdahl’s Law19. It is obvious from this expression that the speedup of a parallel algorithm does not continue to increase
with increasing the number of processors. Since only the parallel component scales while the time required to complete
the serial component remains constant, there is a theoretical limit for the maximum parallel speedup, denoted as

A
B1

A
BAclimc nn

+=+==
∞→∞ . (5)

From the results shown in Table 2, it can be noticed that the proposed parallel algorithm achieves significant speedup
when compared to the serial implementation, in particular when 16-fold parallelism is applied. It can be derived from
Table 2 that the measured speedup of the program drops for 8, 4 and 2 processing nodes. The measured speedup is
higher for large structuring elements, a fact that reveals that morphological operations are suitable to the designing of
efficient implementations of algorithms for hyperspectral image analysis. The algorithm achieves similar speedup factors
for radiance and reflectance data. Further results are still required in order to determine if adding more processors may be
counterproductive due to the large impact of communication. As an important final note, we should also state that the
region growing process, which has not yet been parallelized, has a strong impact on the final results17. As reported in
previous work, this step is important in order to reduce algorithm sensitivity to noise and outliers in the data. For
example, the region-growing stage takes approximately 86 seconds when the algorithm is run serially on the AVIP92
scene. On other hand, this stage takes only 38 and 35 seconds in the AVJRAD97 and AVJREF97 scenes, respectively.
This result reveals that the region-growing is scene-dependent. As a result, although the parallelization of the
spatial/spectral competitive procedure task leads to a significant improvement in the computational performance of the
algorithm, additional work is still required in order to parallelize the automated selection of endmembers performed by
the algorithm, which includes the computationally expensive and scene-dependent region-growing procedure.

Original
Image

Structuring
element size

Serial proc. time
T(1) in seconds

Number of
Processors n

Parallel proc. time
T(n) in seconds

Measured
speedup cn

2 88 1.23
4 57 1.89
8 39 2.79

3x3

109

16 28 3.89
2 194 1.32
4 112 2.28
8 62 4.11

AVCUP95

15x15

257

16 48 5.35
2 124 1.19
4 88 1.67
8 55 2.65

3x3

148

16 41 3.60
2 258 1.35
4 146 2.38
8 83 4.19

AVIP92

15x15

349

16 65 5.36
2 341 1.18
4 245 1.64
8 182 2.21

3x3

403

16 142 2.83
2 781 1.26
4 437 2.25
8 282 3.49

AVJRAD97

15x15

985

16 212 4.64
2 328 1.21
4 235 1.69
8 176 2.25

3x3

397

16 136 2.91
2 741 1.31
4 428 2.27
8 275 3.53

AVJREF97

15x15

972

16 203 4.78

Table 2. Measured parallel speedup for different images/structuring elements, and different numbers of processors.

CONCLUSIONS AND FUTURE LINES

This paper was dedicated to the interest of parallel asynchronous computations in hyperspectral image analysis. We
showed that extended spatial/spectral algorithms, based on classic spatial-based morphological operations, can be
efficiently implemented on massively parallel computers. We have also confirmed that the framework of mathematical
morphology is very suitable to the designing of efficient hyperspectral analysis algorithms. In the proposed scheme, code
reusability is enhanced by the application of so-called parallelizable patterns. Essentially, such patterns define the
maximum amount of work that can be executed by a single processing unit without having to communicate to obtain
data values that reside elsewhere. A limitation of this approach is that not all of the steps of the proposed algorithm have
been yet optimized for parallel processing. A research topic deserving future research is the parallelization of the
spatial/spectral region-growing step, which refines and greatly improves the task of extracting endmembers for spectral
mixture analysis of hyperspectral data. With the above issues in mind, the present investigation indicates the feasibility
of on-board processing of remotely sensed data, using parallel computing techniques, to interpret and classify
hyperspectral data more accurately and efficiently than is currently possible. Finally, we will continue implementing
example programs to investigate the implication of parallelization of typical applications, especially in the area of near
real-time hyperspectral image processing.

ACKNOWLEDGEMENT

We gratefully thank Dr. James C. Tilton (Applied Information Sciences Branch, NASA/Goddard Space Flight Center)
for providing us with an MPI-based parallel implementation of his Hierarchical Segmentation (HSEG) program, which
served as a guide for the development of parallel implementations described in this work. We also thank Prof. Mateo
Valero (Polytechnic University of Catalonia), for granting us account-based access to the SGI Origin 2000 Silicon
Graphics supercomputer at CEPBA (European Center for Parallelism of Barcelona), which was used in computational
performance tests. Support of the present research by Prof. Francisco Tirado (Free University of Madrid) is also
gratefully acknowledged.

REFERENCES

1. C.-I Chang, Hyperspectral imaging: spectral detection and classification, Kluwer Academic Publishers, 2003.
2. R.O. Green et al., “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote

Sensing of Environment, vol. 65, pp. 227–248, 1998.
3. D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Processing Magazine, vol. 19, pp. 17–28, 2002.
4. J.B. Adams, M.O. Smith, and A.R. Gillispie, “Imaging spectroscopy: interpretations based on spectral mixture

analysis,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters and P. A.
Englert, Eds. Cambridge, U.K.: Univ. of Cambridge, 1993, pp. 145-166.

5. V. Madhok and D. Landgrebe, Spectral-spatial analysis of remote sensing data: An image model and a procedural
design, Ph.D. dissertation, School of Electrical Engineering and Computer Science, Purdue University, Lafayette,
IN, 1998.

6. J. Le Moigne and J.C. Tilton, “Refining image segmentation by integration of edge and region data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 33, pp. 605–615, 1995.

7. J.A. Gualtieri and J. C. Tilton, “Hierarchical segmentation of hyperspectral data,” in Summaries of the 11th
NASA/Jet Propulsion Laboratory Airborne Earth Science Workshop, Pasadena, CA, 2002.

8. J.C. Tilton, “A recursive PVM implementation of an image segmentation algorithm with performance results
comparing the HIVE and the Cray T3E,” In Proceedings of the 7th Symposium on the Frontiers of Massively
Parallel Computation, Annapolis, MD, 1999.

9. P. Wang, K.Y. Liu, T. Cwik, R.O. Green, “MODTRAN on supercomputers and parallel computers,” Parallel
Computing, vol. 28, pp. 53–64, 2002.

10. P. Soille, Morphological image analysis: Principles and applications, Springer-Verlag, 2003.
11. P. Soille and M. Pesaresi, “Advances in mathematical morphology applied to geoscience and remote sensing,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 40, pp. 2042–2055, 2002.
12. A. Plaza, P. Martínez, R.M. Pérez, J. Plaza, “Spatial/spectral endmember extraction by multidimensional

morphological operations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, pp. 2025–2041, 2002.
13. A. Plaza, P. Martínez, J.A. Gualtieri, R.M. Pérez, “Spatial/spectral identification of endmembers from AVIRIS data

using mathematical morphology,” In Summaries of the 10th NASA/Jet Propulsion Laboratory Airborne Earch
Science Workshop, Pasadena, CA, 2001.

14. A. Plaza, P. Martínez, J.A. Gualtieri, R.M. Pérez, “Automated identification of endmembers from hyperspectral
images using mathematical morphology,” In Proceedings of the 8th SPIE International Symposium on Remote
Sensing, Toulouse, France, 2001.

15. MPICH: A portable implementation of MPI. Available online: http://www-unix.mcs.anl.gov/mpi/mpich/.
16. F.J. Seinstra, D. Koelma, J.M. Geusebroek, “A software architecture for transparent parallel image processing,”

Parallel Computing, vol. 28, pp. 967-923, 2002.
17. J. C. Tilton, Method for recursive hierarchical segmentation by region growing and spectral clustering with a

natural convergence criterion, Disclosure of Invention and New Technology: NASA Case No. GSC 14,328-1,
February 28, 2000.

18. California Institute of Technology. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) homepage. Available
online: http://aviris.jpl.nasa.gov.

19. J.L. Hennessy and D.A. Patterson, Computer architecture: A quantitative approach, Third edition. Morgan
Kaufmann Publishers, San Mateo, CA, 2002.

