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1. Introduction 
 

Hyperspectral imaging systems, used in conjunction with appropriate detection and recognition 
algorithms, have demonstrated to be very useful tools in many different remote sensing applications [1]. 
These instruments are capable of collecting hundreds of images, corresponding to different wavelength 
channels, for the same area on the surface of the Earth. A chief hyperspectral sensor is the NASA’s Jet 
Propulsion Laboratory Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) system, which 
currently covers the wavelength region from 0.4 to 2.5 mm using 224 spectral channels, at a nominal 
spectral resolution of 10 nm [2]. On other hand, the Hyperion hyperspectral imager aboard Earth 
Observing-1 (EO-1) spacecraft has been NASA’s first hyperspectral imager to become operational on-
orbit. It routinely collects images hundreds of kilometers long with 220 spectral bands from 0.4 to 2.5 
mm. With such spectral detail, the ability to detect and identify target materials is greatly enhanced with 
respect to other techniques available, such as multispectral imaging, which typically collects only tens of 
images. In the near future, the proliferation of hyperspectral sensors installed aboard satellite platforms 
will produce a nearly continual stream of multidimensional data, and this expected high data volume 
would demand fast and efficient means for storage, transmission and analysis. 

 
A diverse array of analysis techniques has been applied to hyperspectral image analysis during the 

last decade [1]. They are inherently either full pixel techniques or mixed pixel techniques, where each 
pixel vector in a hyperspectral image records the spectral information. The underlying assumption 
governing full pixel techniques is that each pixel vector measures the response of one predominantly 
underlying material at each site in a scene. However, a number of the pixel vectors in the scene will likely 
measure the spectral response of a mixture of underlying materials. Mixed pixel techniques have 
overcome some of the weaknesses of full pixel approaches by using linear and/or nonlinear mixture 
modeling and signal processing techniques. Spectral mixture analysis usually involves two steps: to find 
spectrally unique signatures of pure ground components (usually referred to as endmembers) and to 
express individual pixels in terms of linear/nonlinear combinations of endmembers. 

 
Most available techniques for endmember selection and spectral unmixing focus on analyzing the 

data without incorporating information on the spatially adjacent data; i.e. the data is treated not as an 
image but as an unordered listing of spectral measurements where the spatial coordinates can be shuffled 
arbitrarily without affecting analysis [3]. However, one of the distinguishing properties of hyperspectral 
data, as collected by available spectrometers, is the multivariate information coupled with a two-
dimensional (2-D) pictorial representation amenable to image interpretation. Subsequently, there is a need 
to incorporate the image representation of the data in the analysis5. By taking into account the 
complementary nature of spatial and spectral information in simultaneous fashion, it is possible to 
alleviate the problems related to each of them taken separately. While integrated spatial/spectral 
developments in hyperspectral technology hold great promise for improving endmember extraction, they 
create new processing challenges [4]. In particular, the price paid for the wealth spatial and spectral 
information available from hyperspectral sensors is the enormous amounts of data that they generate. As a 
result, analysis techniques that make combined use of spatial and spectral information are often 
computationally tedious, and require lengthy durations to calculate desired quantities. However, several 
applications exist where having the desired information calculated in real-time or near real-time is 
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desired, e.g. military applications or those pursuing detection and tracking of environmental disasters such 
as forest fires, oil spills, and other types of chemical contamination. 

 
Parallel processing has been reported as an efficient technique to tackle large remotely sensed data 

sets, and to get reasonable response times in complex analysis scenarios [5-7]. In parallel processing, high 
performance can be achieved by two complementary means: Increased efficiency of the algorithms used 
in the codes and increased performance of the computers on which the codes are run. Parallel computer 
facilities offer the possibility of performance in hundreds of gigaflops, and memory capacity sufficient for 
advanced standoff detection in large, high-dimensional image data. Parallel architectures have been used 
in the past to improve computational performance of remotely sensed image analysis techniques. Thanks 
to the geographic local organization of the pixels in an image as a 2-D mesh, and to the regularity of most 
low-level computations, mesh-based parallel architectures are quite popular for image analysis 
applications [8]. However, the situation is more complex when dealing with hyperspectral image data, 
where spatial and spectral information can be equally employed to conduct the analysis. In order to take 
advantage of parallel computers, designing and implementing well-optimized hyperspectral analysis 
approaches can significantly improve their computational performance, and reduce the total research time 
to complete these studies. 

 
In this paper, we discuss parallel implementations of a novel algorithm for endmember extraction in 

hyperspectral imagery, which makes combined use of spatial and spectral information. The paper is 
organized as follows. In section 2, we describe the fundamentals of the proposed method, which is based 
on mathematical morphology concepts. Section 3 provides an overview of its parallel implementation. 
The performance of the proposed parallel approach is demonstrated in section 4 using real hyperspectral 
data sets, collected by the AVIRIS imaging spectrometer. Specific factors affecting the performance of 
algorithm implementations in parallel computers are examined in this section, including impact of 
interprocessor communication and coordination, number of processors, and speedup ratios. Finally, 
section 5 concludes with some remarks and future research lines. 
 
 
2. Morphological endmember extraction 
 

In this section, we give a description of the proposed algorithm for endmember extraction in 
hyperspectral imagery. In order to render this algorithm computationally it will need to be embedded in a 
parallel implementation, which is given in the following section. Before describing the algorithm, we 
emphasize that it considers hyperspectral image analysis from a broader perspective than the standard 
methods currently available. Instead of focusing exclusively on the spectral information contained in the 
data, it focuses on analyzing both spatial and spectral responses in a simultaneous manner. This is 
achieved by extending spatial-based mathematical morphology [9-10] operations to the spectral domain. 
Section 2.1 provides an overview of the proposed framework to extend morphological operations to 
multidimensional images. Section 2.2 describes the general algorithm, along with its parameters and 
requirements. 
 
2.1. Extension of morphological operations to hyperspectral images 
 

Mathematical morphology is a classic nonlinear image processing technique that was originally 
defined for binary images [9]. Based on set theory, binary morphology was established by introducing 
fundamental operators applied to two sets. One set is processed by another set of carefully selected shape 
and size, known as structuring element (SE), which is translated over the image. The SE acts as a probe 
for extracting or suppressing specific structures of the image objects by checking, for each position of the 
SE, whether it fits or not within the image objects. In the erosion (dilation) operation, the minimum 
(maximum) value of the image pixels within the SE is selected as the resulting value of the morphological 
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operation, and used to create a new image which is known as eroded (dilated) image. Morphological 
operations have been extended to gray-tone (mono-channel) images by viewing these data as an 
imaginary topographic relief; the brighter the gray tone, the higher the corresponding elevation [10]. The 
extension of the concepts of grayscale morphology to hyperspectral images is not straightforward. When 
such techniques are applied independently to each image channel (marginal morphology), there is a 
possibility for loss or corruption of information of the image due to the likely fact that new spectral 
constituents, i.e. not available in the original image, may be created as a result of processing image 
channels separately. An alternative way to approach this problem is to treat the data at each pixel as a 
vector. In order to define the basic morphological operations in N-D space, a concept for a maximum (or 
minimum) is necessary, and thus it is important to define an appropriate ordering of vectors in the 
selected vector space. Our innovative approach to the above problem has been the definition of a vector 
ordering scheme based on the spectral singularity of hyperspectral pixel vectors. First, a lattice structure is 
imposed onto N-D space by the definition of a cumulative metric based on the spectral angle distance 
(SAD). Second, basic morphological operations such as erosion and dilation are defined by extension. 
 
2.2. Proposed algorithm 
 

The automated morphological endmember extraction (AMEE) algorithm [11] is the only available 
endmember extraction algorithm that makes simultaneous use of spatial and spectral information via 
multi-channel morphological processing. The input to the AMEE method is the full image data cube, with 
no previous dimensionality reduction. Let h  denote the input hyperspectral data cube and ( )yx,h  denote 
the pixel vector at spatial location ( )yx, . Similarly, let K  be a kernel defined in the spatial domain of the 
image (the y-x  plane). This kernel, called SE in mathematical morphology terminology, is translated 
over the image. The SE acts as a probe for extracting or suppressing specific structures of the image 
objects, according to the size and shape of the SE. Having the above definitions in mind, the AMEE 
method is based on the application of multi-channel erosion and dilation operations to the data. The above 
operations are respectively defined as follows [12-13]. 
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where dist  is the spectral angle mapper (SAM). Multi-channel erosion (respectively, dilation) selects the 
pixel vector which minimizes (respectively, maximizes) a cumulative distance-based cost function, based 
on the sum of the SAM distance scores between each pixel in the spatial neighborhood defined by K  and 
all the other pixels in the neighborhood. As a result, multi-channel erosion extracts the pixel vector that is 
more similar to its neighbors as opposed to multi-channel dilation, which extracts the most spectrally 
distinct pixel in the neighborhood (endmember candidate). It should be noted that, according to the 
definition of morphological erosion and dilation, the above operations are sensitive to the size and shape 
of the SE used in the computation. In our application, a morphological eccentricity index (MEI) is defined 
for each endmember candidate by calculating the SAM distance between the pixel provided by the 
dilation operation and the pixel provided by the erosion. This operation is repeated for all the pixels in the 
scene, using SE’s with a range of different sizes, until a final MEI image is generated. For illustrative 
purposes, we provide next a step-by-step algorithmic description of AMEE that will be used as a 
reference in the development of a parallel implementation of the algorithm. 
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AMEE algorithm 
Inputs: N-D image h , Structuring element B , Number of iterations MAXI , Number of endmembers p. 
Outputs: Set of endmembers { }p

1jj =
e ; Set of fractional abundances ( ){ }p

1ii y,x =α  for each pixel ( )y,xh . 

1. Set 1i =  and initialize a morphological eccentricity index score ( ) 0y,xMEI =  for each pixel 
( )y,xh . 

2. Move B  through all the pixels of h , defining a local spatial search area around each ( )y,xh  and 
calculate the maximum pixel ( )( )y,xB⊕h  and the minimum pixel ( )( )y,xBΘ h  at each B -
neighborhood. Update the resulting MEI score at each pixel selected as a local maximum, 

( ) ( )( )y,x'y,'x B⊕= hh , using the following expression: 
 

( )( ) ( )( )[ ]y,x ,y,xSAM)'y,'x(MEI)'y,'x(MEI BB Θ⊕+=  hh                                (3) 
 

3. Set 1ii += . If maxIi =  then go to step 4. Otherwise, set ( )B⊕= hh  and go to step 2. 
4. Select the set of  p pixels { }p

1jj =
e  in h  with higher score in the resulting MEI image. These pixels 

form the final endmember set. 
5. Estimate the fractional abundance ( )y,xiα  of each { }p

1ii =e  at ( )y,xh  by using the linear mixture 

model ( ) ( )∑
=

⋅α=
p

1i
ii y,xy,x eh , subject to ( )∑

=

=α
p

1i
i 1y,x  (sum-to-one) and ( ) 0y,xi ≥α (non-

negativity) constraints. The fully constrained least-squares (FCLSU) algorithm [14] is used to 
perform the abundance estimation, which results in a set of fractional abundances ( ){ }p

1ii y,x =α  for 
each ( )y,xh . 

It should be noted that the pixel at spatial coordinates )'y,'x(  in equation (3) might be the maximum 
pixel at the neighborhood of two or more pixels. When this happens, the value of   is uniquely defined as 
the sum of the SAM scores between ( )'y,'xh  and the minimum pixel in the neighborhood of each of the 
pixels above. As a result, if ( )'y,'xh  is selected several times as a maximum pixel, then its associated 
MEI score will be increased according to the number of times it was selected. 
 
 
3. Parallel implementation 
 

In this section, we provide an overview of a parallel version that improves the computational 
efficiency of the code described in section 2, so that the time in conducting scientific studies involving 
hyperspectral data analysis can be reduced. The proposed parallel implementation is based on domain 
decomposition techniques and the Message Passing Interface (MPI) library. Our major goal was 
designing an efficient parallel version of the algorithm running on multiple processors executing with 
significant speedup. To achieve this objective, we focused on the data structures of the code to discover 
all possible data dependencies. In order to achieve load balance and to exploit parallelism as much as 
possible, a general N-dimensional domain decomposition-based parallel partitioner (NDPP) was 
developed. The spatial domain of the hyperspectral data was chosen as the basis for the decomposition, so 
that the message passing was minimized and most of the code was executed in parallel on multiple 
processors. There are several reasons that justify the above decision. First, the application of spatial-
domain partitioning is a natural approach for low level image processing, as many operations require the 
same function to be applied to a small set of elements around each data element present in the image data 
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structure. A second reason has to do with the cost of inter-processor communication. In spectral-domain 
parallelism, the SE-based calculations made for each hyperspectral pixel need to originate from several 
PEs, and thus require intensive inter-processor communication. The overhead introduced by inter-
processor communication will increase linearly with the increase in the number of PE’s, and this will 
easily involve load unbalance problems. As a result, a final major reason for the use of a spatial domain-
based parallel model is that load balancing (i.e., evenly distributing all work among the available 
processing units) is generally much more difficult when a spectral-domain parallel model is adopted. It is 
particularly so in the case of a system that involves highly varying inter-processor communication 
operations, where it is difficult to ensure that each processor has exactly the same amount of work to do. 
Hereinafter, each partition produced by our NDPP will be referred to as parallelizable spatial/spectral 
pattern (PSSP). Next, we show how such patterns are obtained, and their further use in the 
implementation of the parallel algorithm. 
 
3.1. Parallelizable spatial/spectral patterns 
 

The concept of parallelizable spatial/spectral pattern (PSSP) is defined as the maximum amount of 
work that –when applied to partial image data– can be performed without communication [8]. As stated 
above, the so-called NDPP module divides the hyperspectral image into a collection of PSSPs and maps 
each pattern to a node, so that all internal data accesses refer to data local to the node that executes the 
operation. Then, each node performs automated analysis on its associated data set. Analysis of each 
pattern involves of a series of independent tasks, where a task specifies what hyperspectral pixels in the 
N-D input image must be read in order to update (write) the MEI value of a single data pixel in a 2-D 
destination image called MEI image. Each task is tied to a range of spatial locations, which constitute a 
subset of the positions inside the spatial domain of a partition of the source N-D scene. These positions 
are given by the shape and size of the structuring element. For illustrative purposes, Fig. 1 shows an 
example where MEI scores are calculated for two hyperspectral image pixels (P1 and P2), using a square-
shaped 3x3 SE and two processing nodes. As shown in Fig. 1, each pixel value in the output 2-D image 
depends on the hyperspectral pixels in the neighborhood of the pixel at the same position in the input 
image, which is given by the related kernel structure. In the end, the master node gathers back the results 
that are produced from each node.  

R

R
W

R

R

W

Global input N-D image

Local input N-D image

Local input N-D image

Local output 2-D image
Global output 2-D image

NDPP Gather

Parallelizable pattern at processing node #1

Parallelizable pattern at processing node #2

3x3 SE

3x3 SE
MEI

MEI

 
 

Figure 1. Partitioning of hyperspectral image using the NDPP, and assignment of each parallelizable pattern to 
processing units for local MEI index computation.  
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An important issue in kernel-based image processing operations is that accesses to pixels outside the 
input image’s domain are possible. In sequential implementations of such kernel-based operations, it is 
common practice to redirect such accesses according to a predefined border handling strategy. A better 
approach for parallel implementation, however, is to separate the border handling from the actual kernel-
based operation. This makes implementations more robust and, in general, also faster. Two specific 
border-handling strategies are implemented in our case as follows: 

1. When accesses to pixels outside the image domain are necessary, only those pixels inside the 
image are considered for the MEI calculation. 

2. Additional communication is required between processing nodes when the kernel computation is 
split amongst several processing nodes [see Fig. 2(a)]. In such cases, we allow an overlapping 
scatter of the global input image to avoid additional communication [see Fig. 2(b)]. In our 
implementation, the NDPP module automatically determines the size in pixels of the overlapping 
section. 

 

Global input N-D image

Input N-D image at node 1

Input N-D image at node 2

NDPP without 
overlapping scatter

Additional 
communication 
is required

a)

     

Global input N-D image

Input N-D image at node 1

Input N-D image at node 2

NDPP Overlapping scatter 
for a 3x3 kernel

Global input N-D image

Input N-D image at node 1

Input N-D image at node 2

NDPP Overlapping scatter 
for a 3x3 kernel

b)

 
 

Figure 2. (a) SE-based computation split among several processors. (b) Overlapping scatter avoids communication. 
 
The generalized description of parallelizable patterns given above, along with border-handling 

strategies, is important as it states the requirements for parallel implementation of a large set of 
processing operations. In addition, for each spatial/spectral pattern implemented on the basis of the 
generalized description, a parallelization strategy directly follows. As such, code reusability is 
maximized, and flexibility is enhanced. At the same time, communication overhead is minimized, while – 
for the given parallelization granularity – the available parallelism is fully exploited. 

 
3.2. Proposed parallel algorithm 
 

The parallel implementation of the AMEE algorithm (AMEEPAR) entirely relies on the spatial-
domain decomposition scheme implemented by a master node, which also acts as a root node in charge of 
all I/O operations [15]. The partitioner has been implemented so that it automatically determines the 
optimum size for the PSSPs to be distributed between the PEs. This is done by taking into account both 
the spatial and spectral resolution of the input hyperspectral image h . By distributing data evenly among 
the processors, load balance is achieved. Also, the utilization of the concept of PSSP allows us to greatly 
minimize inter-processor communication overhead. The proposed parallel algorithm has been 
implemented in the C++ programming language using calls to message passing interface (MPI), an 
application programmer interface which provides a substantial set of libraries for writing, debugging and 
performance testing of distributed programs. We briefly describe next the sequence of operations 
executed by the master node in the proposed MPI-based parallel implementation. 
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AMEEPAR algorithm 
Inputs: N-D image h , Structuring element B , Number of iterations MAXI , Number of endmembers p. 
Outputs: Set of endmembers { }p

1jj =
e , Set of fractional abundances ( ){ }p

1ii y,x =α  for each pixel ( )y,xh . 

1. Initialize MPI using MPI_Init() and generate necessary system information, including the total 
number of available PEs (denoted by K), each processor’s ID number, timing and other data using 
MPI_Comm_Size() and MPI_Comm_Rank(). 

2. Obtain a set of K partitions { }K
1jjPSSP

=
 of the original image h , so that j

K

1j
PSSP

=
= �h . Apply all 

necessary border-handling strategies in the construction of the partition set { }K
1jjPSSP

=
. 

3. Using the MPI_Send() function, send each jPSSP  to a different PE along with parameters B  
and MAXI . With the above information, steps 1-3 of the sequential AMEE algorithm will be 
executed locally at each processor for the corresponding jPSSP , giving an image jMEI  as a 
result. 

4. Using the MPI_Receive() function, collect all the individual images { } 1K
1jjMEI −

=
 produced by 

each PE, and merge them together to form a final image j

K

1j
MEIMEI

=
= � .  

5. Execute step 4 of the sequential AMEE algorithm, thus obtaining a set of  p endmembers { }p
1jj =

e . 

6. Use the MPI_BCast() function to distribute the set { }p
1jj =

e  to all available PEs, where step 5 of 

the sequential AMEE algorithm will be locally executed for each jPSSP  giving a set of fractional 

abundances ( ){ }p

1ijj
)j( y,x

i =
α  as a result, where ( )jj y,x  refer to the spatial coordinates of pixels in 

the jPSSP . 
7. Using the MPI_Receive() function, collect all the individual sets of fractional abundances 

( ){ }p

1ijj
)j( y,x

i =
α  calculated for every jPSSP , and form a final set of fractional abundances 

designated by ( ){ } ( ){ }pp
1ijj

)j(
K

1j
1ii y,xy,x

i ==
= α=α �  for each pixel ( )y,xh  of the original image. 

As a final note, we emphasize that the AMEEPAR algorithm is an excellent application for parallel 
computation, mainly because there is no dependence between the calculations made at each jPSSP  and 
only minimal communication is required for the entire calculation. The MPI code summarized above is 
portable to any type of distributed memory system (provided that the memory available to each PE is 
large enough to store the respective PSSP). Performance data for the parallel algorithm are given in 
section 4. 
 
 
4. Experimental results 
 

Various code performance tests were carried out for both sequential and parallel codes. The parallel 
algorithm described in section 3 has been implemented on the SGI Origin 2000 Silicon Graphics 
supercomputer at CEPBA (European Center for Parallelism of Barcelona) and the Thunderhead Beowulf 
cluster at NASA’s Goddard Space Flight Center (see Fig. 3). The former is a distributed memory, 
message-passing parallel machine composed of 64 MIPS R10000 processors (each one with 4 MB of 
cache) and 12 Gb of main memory, interconnected via 1.2 Gbps communication network. The latter is a 
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commodity cluster computer composed of 256 dual 2.4 Ghz Intel Xeon nodes, each with 1 Gb of memory 
and 80 Gb of main memory, interconnected via 2 Ghz optical fibre Myrinet. 
 

   
(a) SGI Origin 2000 (b) Thunderhead 

 

Figure 3. (a) SGI Origin 2000 multicomputer at European Center for Parallelism of Barcelona; (b) Thunderhead 
Beowulf cluster at NASA’s Goddard Space Flight Center. 
 

To empirically investigate the scaling properties of the algorithm described in this paper, it was 
applied to two standard AVIRIS hyperspectral data sets, described in Table 1 (see also Fig. 4), where 
AVCUP97 refers to a scene collected over Cuprite mining district in Nevada and AVJRBP97 refers to a 
scene collected over Jasper Ridge biological preserve in California. We have selected the above datasets 
because they are widely available online (from http://aviris.jpl.nasa.gov), and have served as benchmark 
data for many scientific studies, including performance evaluation of hyperspectral analysis algorithms. In 
addition, detailed ground-truth information is available for the scenes above, which can be used to 
validate performance of endmember extraction techniques. 

 

Image Location Year Pixels Bands Size Spectral range Pixel size Applications 
AVCUP97 Cuprite,NV 1997 614x512 224 137.5 Mb 0.4 – 2.5 µm 20 meters Geology 
AVJRBP97 Jasper Ridge,CA 1997 614x512 224 137.5 Mb 0.4 – 2.5 µm 20 meters Vegetation 

 

Table 1. Summary of hyperspectral images used in experimental results. 

 

       
(a)  (b) 

 

Figure 4. Representative spectral bands from AVIRIS hyperspectral scenes: (a) AVCUP95. (b) AVJREF97. 
 



Presented at the NASA Jet Propulsion Laboratory AVIRIS Airborne Earth Science Workshop 
Pasadena, California, March 31-April 2, 2004. 

 

9 

To empirically investigate the scaling properties of the parallel algorithm, its performance was tested 
by timing the program over a variety of input hyperspectral scenes and number of processors. The 
measured speedups were simply computed by dividing the parallel times by the single processor times. If 
we approximate the real time required to complete a task on K parallel processors, ( )KT , as 
 

( )
n
BAKT += ,                                                                      (4) 

 

where A  is the serial (non-parallelizable) portion of the computation, and B  is the parallel portion, then 
the parameters A , and B  can be determined by linear regression of measured CPU times versus the 
inverse number of CPUs, K/1 . In our implementation, B refers to spatial/spectral competitive 
endmember selection through morphological operations, and A refers to automated identification of 
endmembers. We can define the speedup for K CPUs, Kc , as  
 

( )
( ) ( )K/BA

BA
KT
1TcK +

+== .                                                                 (5) 

 

The relationship above, usually expressed as an inequality to account for parallelization overhead, is 
generally known as Amdahl’s Law [16]. It is obvious from this expression that the speedup of a parallel 
algorithm does not continue to increase with increasing the number of processors. Since only the parallel 
component scales while the time required to complete the serial component remains constant, there is a 
theoretical limit for the maximum parallel speedup, denoted as 
 

A
B1

A
BAclimc KK

+=+==
∞→∞ .                     (6) 

 

Taking into account the limit imposed by Amdahl ’s law, a series of application-specific experiments, 
focused on analyzing the scalability and classification accuracy of the proposed parallel algorithm, are 
shown in Table 2 and Fig. 5. Firstly, an experiment-based cross examination on AMEEPAR’s 
endmember extraction accuracy is presented in Table 2, which tabulates the scores obtained after 
comparing endmembers extracted from AVCUP97 and AVJRBP97 to ground-truth signatures available 
from USGS and University of California, respectively (see Fig. 6). In both cases, SAM is used as a 
spectral similarity metric to compute the fitness between extracted endmembers and ground-truth 
signatures (the closer the value of SAD  to 0 , the highest the spectral similarity between the endmembers 
and the signatures). For comparative purposes, results obtained by other well-known endmember 
extraction algorithms such as Pixel Purity Index (PPI) [17], N-FINDR [18] and Iterative Error Analysis 
(IEA) [19] are also displayed. Results in Table 2 reveal that the proposed method is able to extract image 
endmembers which are almost identical, spectrally, to reference signatures, in particular when 3I MAX ≥ . 

 
In order to investigate computational performance on different parallel platforms, Fig. 5 compares 

measured, ideal and theoretic speedups achieved by the AMEEPAR algorithm, using AVCUP97 and 
AVJRBP as benchmark data on the SGI Origin 2000 and Thunderhead computers. From Fig. 5, it can be 
observed that a very good scalability of the parallel code is achieved on the SGI Origin 2000 [see Figs. 
5(a) and 5(c)]. On other hand, results on the Beowulf cluster show speedups which are very close to the 
theoretic limit values provided by Amdahl’s law [see Figs. 5(b) and 5(d)]. It should be noted that 
processing times obtained in the multicomputer prevent near real-time exploitation of the scene, mainly 
due to the limited number of PEs available at the time of the experiments. However, the improvement of 
the parallel implementation with regard to the serial implementation is very significant as shown by the 
almost ideal measured speedups. On other hand, despite the extremely large size of both AVCUP97 and 
AVJRBP97 scenes (see Table 1), the computational time to obtain high-quality endmember signatures 
can be as low as 39 seconds in the Thunderhead cluster for 128K ≥  processors. This fact reveals that our 
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parallel algorithm is able to accomplish fast and accurate endmember extraction from full-size AVIRIS 
scenes, provided that the number of PEs is sufficiently large to accommodate the extremely high 
computational requirements involved in those calculations. 

 
 AVCUP97 AVJRBP97 
 Alunite Buddingtonite Calcite Kaolinite Muscovite Soil Forest Grass Chaparral Shade 
 

PPI 
 

 

0.084 
 

 

0.065 
 

 

0.075 
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0.066 
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Table 2. SAD-based spectral similarity scores between endmember signatures extracted by PPI, N-FINDR, IEA and 
AMEEPAR and ground-truth spectral signatures. 
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Figure 5. Parallel performance of AMEEPAR algorithm. 
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(a) AVJRBP97  (b) AVCUP97 

 

Figure 6. Ground-truth spectral signatures used in experimental evaluation of endmember extraction algorithms. 
 
 
5. Conclusions and future research 
 

The aim of this paper has been the parallel implementation on high performance computers of an 
innovative technique for endmember extraction and hyperspectral image analysis. We demonstrate that 
spatial/spectral algorithms, based on classic spatial-based morphological operations, can be efficiently 
implemented on massively parallel computers. We have also shown that the framework of mathematical 
morphology is very suitable to the designing of efficient hyperspectral analysis algorithms. In the 
proposed parallel approach, code reusability is enhanced by the application of so-called parallelizable 
patterns. Essentially, such patterns define the maximum amount of work that can be executed by a single 
processing unit without having to communicate to obtain data values that reside elsewhere. Experimental 
results in this paper suggest that our parallel algorithm provides adequate results in both the quality of the 
solutions and the time to obtain them, in particular, when it is implemented on a commodity Beowulf 
cluster. With the above issues in mind, the present investigation indicates the feasibility of on-board 
processing of remotely sensed data, using parallel computing techniques, to interpret and classify 
hyperspectral data more accurately and efficiently than is currently possible. As future work, we plan to 
implement the parallel algorithm in other high performance parallel computing architectures, such as the 
Medusa Beowulf cluster at NASA/GSFC or the Bull NovaScale 5160 multicomputer at CEPBA. We are 
also working toward a field programmable gate array (FPGA)-based implementation that may allow us to 
accomplish the goal of near real-time processing of hyperspectral image data, with potential applications 
in hyperspectral image compression. 
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