
On the Use of Cluster Computing Architectures for Implementation of 

Hyperspectral Image Analysis Algorithms 

David Valencia, Antonio Plaza, Pablo Martínez and Javier Plaza 

Department of Computer Science, University of Extremadura, Cáceres, Spain 

{davaleco, aplaza, pablomar, jplaza}@unex.es 

Abstract 

Hyperspectral sensors represent the most advanced 

instruments currently available for remote sensing of 

the Earth. The high spatial and spectral resolution of 

the images supplied by systems like the Airborne 
Visible Infra-Red Imaging Spectrometer (AVIRIS), 

developed by NASA Jet Propulsion Laboratory, allows 

their exploitation in diverse applications, such as 

detection and control of wild fires and hazardous 

agents in water and atmosphere, detection of military 
targets and management of natural resources. Even 

though the above applications require a response in 

real time, few solutions are available to provide fast 

and efficient analysis of these types of data. This is 

mainly caused by the dimensionality of hyperspectral 

images, which limits their exploitation in analysis 
scenarios where the spatial and temporal requirements 

are very high. In the present work, we describe a new 

parallel methodology which deals with most of the 

previously addressed problems. The computational 

performance of the proposed analysis methodology is 

evaluated using two parallel computer systems, an SGI 
Origin 2000 shared memory system located at the 

European Center of Parallelism of Barcelona, and the 

Thunderhead Beowulf cluster at NASA’s Goddard 

Space Flight Center.  

1. Introduction 

The development of advanced instruments for 

remote observation of the Earth has created a growing 

interest in the design of efficient techniques for the 

interpretation of the images provided by these sensors. 

In particular, hyperspectral sensors are characterized 

by their high resolution in both spatial and spectral 

domains [1]. For instance, the Airborne Visible Infra-

Red Imaging Spectrometer (AVIRIS), developed by 

NASA Jet Propulsion Laboratory [2] covers the range 

of wavelengths from 0.4 to 2.5 mm using 224 spectral 

channels, with a spatial resolution of 20 meters per 

pixel and a nominal spectral resolution of 10 nm. As 

shown in Fig. 1, the analytic capability of AVIRIS 

allows for the collection of a detailed spectral signature 

for each pixel in the image, where the spectral 

signature at each pixel is given by a series of 

reflectance values obtained by the sensor at different 

wavelengths. 

Fig. 1. Concept of hyperspectral imaging. 

Despite the significant technological evolution of 

hyperspectral instruments, developments in techniques 

for analysis of the data provided by those sensors have 

not been so notorious. In particular, design of analysis 

techniques able to take advantage of both spatial and 

spectral information contained in the data is still a 

challenge for the scientific community [3]. While 

integrated spatial/spectral developments hold great 

promise for Earth science image analysis, they create 

new processing challenges. The price paid for the 

wealth spatial and spectral information available from 

hyperspectral sensors is the enormous amounts of data 

that they generate. As a result, analysis techniques in 

Earth observation studies often require lengthy 

durations to calculate desired quantities. Several 

applications exist, however, where having the desired 

information calculated in near real-time is highly 

desirable. Such is the case of applications aimed at 

detecting and/or tracking natural disasters such as 

forest fires, oil spills, and other types of chemical 

contamination, where timely classification is highly 

desirable. 

Parallel computing techniques have been widely 

used in image analysis and remote sensing tasks [4−8]. 
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Massively parallel Beowulf clusters, based on the 

Linux Operating System, were conceived at NASA’s 

Goddard Space Flight Center (NASA/GSFC) in 

Maryland with the goal of creating cost-effective 

systems to satisfy specific computational requirements 

in the Earth and space sciences community [9]. 

In this work, we describe a new parallel algorithm 

for efficient exploitation of hyperspectral image data. 

The main contribution of the proposed algorithm is its 

natural parallel framework for integration of spatial 

and spectral information. Section 2 describes the 

proposed method, which relies on multi-channel 

mathematical morphology concepts. Section 3 provides 

a detailed description of its parallel implementation. 

Section 4 conducts a study of the computational 

performance of the parallel implementation in two 

parallel computers: an SGI Origin 2000 located at the 

European Center of Parallelism of Barcelona and the 

Thunderhead system at NASA/GSFC. Finally, section 

5 concludes with some remarks and hints at plausible 

future research. 

2. Methodology 

The proposed method for hyperspectral analysis can 

be included in the category of spectral unmixing 

approaches [10]. In the next subsection we describe the 

problem of the spectral mixing and then introduce a set 

of morphological operations oriented to resolve this 

problem. This section concludes with a description of 

our proposed algorithm, which will be parallelized in 

the following section. 

2.1. Spectral Unmixing 

Mixed pixels are predominant in hyperspectral 

images and result as mixtures of more than one distinct 

substance. They exist mainly due to available spatial 

resolution, often not sufficient to separate different 

materials. Spectral unmixing is a commonly used 

procedure in which the measured spectrum of a mixed 

pixel is decomposed into a collection of spectrally pure 

constituent spectra, or endmembers [11], and a set of 

correspondent fractions, or abundances, that indicate 

the proportion of each endmember present in the pixel. 

Identification of image endmembers is a crucial 

objective in hyperspectral image analysis applications. 

Most available techniques for endmember selection 

focus on analyzing the data without incorporating 

information on the spatially adjacent data; i.e. the 

hyperspectral data is treated not as an image but as an 

unordered listing of spectral measurements where the 

spatial coordinates can be shuffled arbitrarily without 

affecting the analysis. Subsequently, there is a need to 

incorporate the image representation of the data in the 

development of automated techniques for endmember 

selection and hyperspectral data exploitation. The main 

contribution of the method described in this work is 

simultaneous consideration of both spatial and spectral 

information. By taking into account the complementary 

nature of spatial and spectral information in 

simultaneous fashion, it is possible to alleviate the 

problems related to each of them taken separately. 

2.2. Morphological Method 

The proposed method is based on mathematical 

morphology [3], a classic image analysis technique that 

is generalized to the case of multidimensional data in 

this subsection. Two basic operations articulate classic 

MM theory: erosion and dilation. They are respectively 

based on the selection of the maximum and minimum 

value of a neighborhood or spatial region around each 

pixel of the image, where the shape and size of the 

considered region are determined by the spatial 

properties of a neighborhood function called 

structuring element (SE). The main challenge in order 

to extend these operations to the case of hyperspectral 

image data is the lack of an ordering relation between 

the pixels of the image, which can be seen as L-

dimensional (L-D) vectors where L is the number of 

spectral channels (see Fig. 1). Following a usual 

notation, let f  be an image defined on an L-D space 

and let B  a so-called SE. We impose an ordering 

relation by defining a cumulative distance between one 

particular pixel ( )yx,f  , where ( )yx,f  denotes an L-

D vector at discrete spatial coordinates ( ) 2y,x Z∈ , and 

all the pixel vectors in the spatial neighborhood given 

by B  ( B -neighborhood) as follows: 

[ ] [ ]=
s t

)t,s(),y,x(Dist)y,x(D fffB

where Dist is the spectral angle distance [11]. As a 

result, [ ])y,x(D fB  is given by the sum of Dist scores 

between ( )yx,f  and every pixel vector in the B -

neighborhood. Based on the cumulative distance 

above, the erosion of f  by B , denoted by 

( ) )y,x(BΘf , selects the pixel vector that produces the 

minimum value for BD  [3]. On the other hand, the 

dilation of f  by B , denoted by ( ) )y,x(B⊕f ,

selects the pixel vector that produces the maximum 

value for BD .  
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Fig. 2. Concept of spatia/spectral parallelizable pattern, and proposed partitioning scheme. 

2.3. Endmember Extraction Algorithm 

The proposed method to detect endmembers is 

called Automated Endmember Extraction Algorithm 

(AMEE) [3]. This method, entirely developed in our 

laboratory, allows for the analysis of hyperspectral 

images in automated fashion. The inputs are an N-D 

image f , a structuring element B , a number of 

iterations MAXI , and the number of endmembers p:

1. Set 1i =  and initialize a morphological 

eccentricity index ( ) 0y,xMEI =  for each ( )y,xf .

2. Move B through all the pixels of f , defining a 

local spatial search area, and calculate the 

maximum ( )( )y,xB⊕f  and the minimum 

( )( )y,xBΘf  pixel at each B -neighborhood. 

3. Update the resulting MEI score at each pixel 

selected as a local maximum using the spectral 

angle between the result of the dilation and the 

result of the erosion: ( ) ( )( )y,x'y,'x B⊕= ff .

4. Set 1ii += . If maxIi =  then go to step 5. 

Otherwise, set B⊕= ff  and go to step 2. 

5. Select the pixels { }p

1jj =
e  with higher MEI score. 

3. Parallel Implementation 

The parallel implementation of the proposed 

method in section 2.3 has been developed using 

partitioning techniques in the spatial domain. In this 

section we will fully justify our choice for the 

partitioning scheme and further introduce the concept 

of spatial/spectral parallelizable pattern (SSPP). The 

section concludes with a short summary  of the 

operations realized by the proposed parallel 

implementation. 

3.1. Partitioning Scheme 

Two different approaches are considered in order to 

partition the data: partitioning in the spatial domain 

and partitioning in the spectral domain. The first option 

divides the hyperspectral image in multiple blocks, in a 

way that the pixels for each block preserve its entire 

spectral identity. The second option divides the 

original image in blocks constituted by several bands, 

in a way that we can preserve the spatial identity for 

each band but all the pixels in each block lose their 

spectral identity. In other words, if the partitioning 

scheme adopted were in the spatial domain, the 

information of a single pixel in the image would be 

scattered across several different processing units. 

If we take in account the fundamental 

characteristics of our method, which works with all of 

the spectral information associated to each pixel, the 

selection of a partitioning scheme in the spectral 

domain is critical and could substantially increase the 

costs of communication between processors [4]. The 

overhead introduced by the communication increases 

with the number of processors, thus introducing load 

balance problems [12]. On other hand, the spatial 
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information is particularly relevant in the local 

neighborhood around each pixel [3]. This is a reason 

why a partitioning scheme in the spatial domain is able 

to preserve most of the information required for our 

morphological processing.  

At this point, we introduce the concept of 

spatial/spectral parallelizable pattern (SSPP), which is 

defined as the maximum amount of information that 

the parallel system can process without the need for 

additional communication and/or coordination between 

processors [2]. Such patterns are automatically 

generated by an N-dimensional parallel partitioning 

module (NDPP), as Fig. 2 describes using two 

computing units. At the end of the process, the NDPP 

fuses the various local images obtaining a resulting 2-

D image used as a baseline to extract a final set of 

endmembers. 

An issue of major importance in the design of SE-

based parallel image processing applications is the 

possibility to access pixels out of the spatial domain of 

the partition available in the processor. In our parallel 

implementation, only the pixels of the SE which fall 

inside the image domain are considered for the 

morphological processing. In addition, when the pixel 

located in a remote processor is required in the 

calculation of the MEI index associated with another 

pixel in a given processor, we replicate the information 

necessary to avoid such border in the first processor, 

thus introducing redundant information in the system. 

According to our preliminary experiments, the cost of 

processing such redundant information is inferior to the 

overhead introduced by communication among 

different processors. Given the characteristics of the 

implementation proposed in section 2, which relies on 

the utilization of an SE of 3x3 pixels iteratively, the 

number of redundant pixels R introduced in the 

processing of a hyperspectral image is given by 

C
2

Nlog

F
2

Nlog

I122I122R
22

×−×+×−×=

where N is the number of processors, IF is the 

number of rows in the original image and IC is the 

number of columns in the original image. For example, 

in order to process an AVIRIS image of 512x512 

pixels with 16 processors, redundant pixels are given 

by ( )[ ] ( )[ ] 6144512122512122R 22 =×−×+×−×= .

If we assume that each pixel has 224 spectral values, 
each of them coded using two bytes, the total amount if 

redundant information introduced in the system is 

2,625 MB (6144x224x2) which, compared with the 

total size of the original image in bytes (about 114 

MB), can be considered insignificant. As noted above, 

the amount of redundant information is below 2.5 % of 

the total information present in the original image. It is 

important to point out that the amount of redundant 
information grows as the number of processors 

increases, a fact that introduces a limit to the 

performance of the parallel code which is directly 

related to the problem of having more redundant 

information than pixels to process inside a certain SE.  

3.2. Summary of Operations 

The parallel implementation described in Fig. 2 is 
based on a partitioning scheme in the spatial domain in 

which one of the processors acts as the master node 

(NDPP) in charge of the I/O operations. The partitioner 

has been implemented so that it automatically 

determines the optimum size for the SSPPs to be 

distributed between the different processors. The 
NDPP sends to each processor a portion (SSPP) of the 

original image. Each processor works locally with its 

corresponding portion. Once it has finished the local 

processing, each processor sends the results back to the 

NDPP. Finally, the NDPP compounds the partial 

results and carries out the process of selecting the final 
endmembers using the information provided by each of 

the processors. Performance data for the parallel 

algorithm are given in section 4. 

4. Experimental Results 

This section describes the performance of the 
parallel implementation in section 3 in terms of its 

computational efficiency (speedup) compared with the 

serial version of the code, and also in terms of its 

accuracy in the fully automated classification of 

hyperspectral images. In a first subsection we describe 
the parallel computers used in the study, while in the 

second subsection we discuss the obtained results in 

the analysis of a well-known AVIRIS image. 

4.1. Parallel Computers 

Two parallel computers have been used to evaluate 

the computational performance of the morphological 

algorithm proposed. The first is an SGI Origin 2000 
cache coherent shared memory system with non 

uniform (latency) memory access, located at the 

European Center of Parallelism of Barcelona. It is 

composed of 64 MIPS R10000 processors (each of 

them with 4 Mb of cache and 12 GB of main memory) 

connected through an intercommunication network of 
1.2 Gbps. The theoretical peak performance of the 

system is 32 Gflops. The operating system used during 

our experiments was Irix 5.6, and the software was 
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compiled using mpicc available from MIPSpro 7.3.1.2 

suite. The second parallel computer used in the study is 

a Beowulf type cluster named Thunderhead located at 
the Applied Information Sciences Branch of 

NASA/GSFC. This system consists of 256 nodes, each 

of them with two 2.4 GHz Intel Xeon processors. Each 

node has 1 Gb of local memory. The communication 

network is Myrinet at 2 GHz (optical fibre). The 

operating system in Thunderhead is Linux Red Hat 8.0, 
and MPICH is the communication library. 

4.2. Results and Discussion 

To empirically investigate the scaling properties of 

the parallel algorithm, we have used a hyperspectral 

image obtained by the AVIRIS sensor in June 1992 

over a small area (145 lines by 145 samples and 220 

spectral bands) gathered over the Indian Pines test site 
in Northwestern Indiana. The data set represents a very 

challenging classification problem due to the presence 

of mixed pixels. 

Using the information provided by available ground 

truth information, we have analyzed the cost-

performance accuracy of the proposed morphological 
approach. Our classification scheme consisted of the 

following steps: 1) Endmember extraction via 

morphological operations, 2) Classification of each 

pixel as belonging to a class given by the most 

abundant endmember in the pixel. The following 

parameters were considered: MAXI  was set to 1, 3, 5 

and 7 iterations, respectively. B  is a 3x3-pixel 

structuring element of fixed size, and p , the maximum 

number of endmembers to be detected that was set to 

61=p  after calculating the intrinsic dimensionality of 

the data using the Harsanyi-Farrand-Chang (HFC) 

method in [1]. Setting 7IMAX =  resulted in an overall 

accuracy of more than 90% and very high 

classification scores for all the individual ground-truth 

classes. Classification accuracies do not significantly 

improve for 7IMAX > .

In order to analyze the scalability of the parallel 

code, Fig. 3 plots the speedup factors as a function of 

the number of available processors N  at the SGI 

Origin 2000 and Thunderhead computers. The factors 

were calculated as follows. First, the real time required 

to complete a task on N  parallel processors, ( )NT , 

was approximated by ( )
K

B
ANT N

N += , where NA  is 

the sequential (non-parallelizable) portion of the 

computation and NB  is the parallel portion. In our 

parallel application, NA  corresponds to the sequence 

of operations implemented by the NDPP module, and 

NB  corresponds to the selection of endmembers. 

Then, we can define the speedup for N processors, NS , 

as 
( )
( ) ( )N/BA

BA

NT

1T
S

NN

NN
N +

+
≈= , where ( )1T  denotes 

single processor time. The relationship above is 

generally known as Amdahl’s Law. It is obvious from 

this expression that the speedup of a parallel algorithm 
does not continue to increase with increasing the 

number of processors. The reason is that the sequential 

portion NA  is proportionally more important as the 

number of processors increase and, thus, the 

performance of the parallelization is degraded for a 

large number of processors. Since only the parallel 

portion NB  scales with the time required to complete 

the calculation and the serial component remains 
constant, there is a theoretical limit for the maximum 

parallel speedup achievable for N  processors, which 

is given by 
N

N

N

NN
N

N

N

A

B
1

A

BA
SlimS +=

+
==

∞→∞ .
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Fig. 3. Parallel performance in the SGI Origin 2000 
(top) and Thunderhead Beowulf cluster (bottom). 

It should be noted that a maximum number of 8 and 

256 processors were respectively utilized in the SGI 

Origin 2000 and Thunderhead, respectively. Due to 
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queue limitations, we could only access half of the 

processors available at Thunderhead. Although we are 

aware that it may not be fair to compare scalability of 
systems with such a large difference in the processor 

count, we emphasize that this limitation was due to 

system availability at the time of the experiments.  

From results in Fig. 3, we can conclude that the 

proposed parallel algorithm achieves significant 

speedups when compared to the serial implementation 
in the two parallel computers. As shown in Fig. 3 (top), 

the small system even shows a slight superlinear 

scaling, probably due to cache reuse. Also, the 

measured speedups tend to be higher for large values 

of MAXI , a fact that reveals that the proposed scheme 

scales better when the number of morphological 

operations to be accomplished is very high.  

N 1IMAX = 3IMAX = 5IMAX = 7IMAX =

1 311 947   1528 1925 

4 124  321  557  685 

16 45  95  144  156 

36 26 46  61  71 

64 19 29  41  43 

100 12 20  26  29 
144 9 15  20  23 

196 6 11  17  20 

256 4 10  14  18 

Table 1. Execution time (seconds) measured 
at NASA/GSFC Thunderhead Beowulf cluster. 

From Fig. 3, it is also clear that the speedups 

produced by the parallel algorithm are close to the 

correspondent theoretic values, especially when MAXI

is set to a high number. Table 1 shows the execution 

times in seconds of the proposed algorithm with the 

AVIP92 scene for several combinations of number of 
iterations and number of processors in Thunderhead. 

As shown by Table 1, the utilization of 256 processors 

allows near real-time processing of the AVIRIS scene: 

only 18 seconds were required to produce an overall 

classification score above 90%, which is a good result 

in light of the complexity of the scene. 

5. Conclusions and Future Work 

We have described a parallel algorithm able to 

process high-dimensional hyperspectral images in near 

real time. Experimental results suggest that our parallel 
algorithm provides adequate results in both the quality 

of the solutions and the time to obtain them. 

Specifically, the proposed algorithm can produce a fast 

response in applications with near real-time 

requirements. The proposed algorithm may be of great 

utility to detect and monitor forest fires, such as those 

that recently happened in the Extremadura region in 
SW Spain. In this regard, our future research line is to 

integrate the proposed parallel algorithm onto an 

automated forest fire tracking system in conjunction 

with Junta de Extremadura (local government). 
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