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Abstract— The rapid development in space and computer 
technologies has made possible to store a large amount of 
remotely sensed image data, collected from heterogeneous 
sources. In particular, NASA is continuously gathering imagery 
data with hyperspectral sensors such as the Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) or the Hyperion 
imager aboard Earth Observing-1 (EO-1) spacecraft. The 
development of efficient techniques for transforming the massive 
amount of collected data into scientific understanding is critical 
for space-based Earth science and planetary exploration. 
Heterogeneous networks of workstations are a very promising 
cost-effective parallel computing architecture. Unlike traditional 
homogeneous parallel platforms, heterogeneous architectures are 
composed of processors running at different speeds. This 
heterogeneity results in distributed-memory parallel computing 
systems created from commodity components that can satisfy 
specific computational requirements for the Earth and space 
sciences community. This paper explores techniques for mapping 
hyperspectral image analysis algorithms onto heterogeneous 
networks of workstations. Important aspects in algorithm design 
such as portability, reusability and scalability are illustrated by 
using homogeneous and heterogeneous parallel computing 
facilities at NASA’s Goddard Space Flight Center and, European 
Center for Parallelism of Barcelona, and University of 
Extremadura in Spain. Hyperspectral image data from the 
AVIRIS data repository is used in experiments, which reveal that 
heterogeneous networks of workstations are a source of 
computational power that is both accessible and applicable to 
obtaining results quickly enough for practical use in information 
extraction applications from hyperspectral imagery. 

Keywords- Hyperspectral imaging, Parallel algorithms, 
Heterogeneous computing, Spatial/spectral analysis. 

I.  INTRODUCTION 
The rapid development of space and computer technologies 

has made possible to store a large amount of image data, 
collected from heterogeneous sources. In particular, NASA is 
continuously gathering imagery data with earth observing 
sensors. The automation of techniques for transforming 
collected data into scientific understanding is critical for space-
based earth science and planetary exploration with onboard 
scientific data analysis. Advances in sensor technology have 
led to the development of hyperspectral instruments capable of 
collecting hundreds of images, corresponding to different 
wavelength channels, for the same area on the surface of the 
Earth. A chief hyperspectral sensor is the NASA’s Jet 

Propulsion Laboratory Airborne Visible-Infrared Imaging 
Spectrometer (AVIRIS) system, which currently covers the 
wavelength region from 0.4 to 2.5 µm using 224 spectral 
channels, at a nominal spectral resolution of 10 nm. On other 
hand, the Hyperion hyperspectral imager aboard NASA’s Earth 
Observing-1 (EO-1) spacecraft has been NASA’s first 
hyperspectral imager to become operational on-orbit. It 
routinely collects images hundreds of kilometers long with 220 
spectral bands from 0.4 to 2.5 µm. In the near future, the use of 
hyperspectral sensors on satellite platforms will produce a 
nearly continual stream of multidimensional data, and this 
expected high data volume would demand fast and efficient 
means for storage, transmission and analysis. 

While developments in hyperspectral imaging hold great 
promise for Earth science image analysis, they create new 
processing challenges. In particular, the price paid for the 
wealth spatial and spectral information available from 
hyperspectral sensors is the enormous amounts of data that they 
generate. As a result, analysis techniques are often 
computationally tedious, and require lengthy durations to 
calculate desired quantities. Several applications exist for 
hyperspectral data where the desired information must be 
calculated in real-time or near real-time. That is the case of 
military applications, where a commonly pursued goal is the 
detection of either full pixel or subpixel targets, often 
associated to hostile weaponry, camouflage, concealment, 
and/or decoys. Another example is the detection and tracking 
of natural disasters such as forest fires, oil spills, and other 
types of chemical contamination, where timely classification is 
highly desirable. 

Parallel processing can help to tackle large remotely sensed 
data sets and to get reasonable response times in complex 
analysis scenarios [1]. Today’s RISC microprocessor systems 
and personal computers (PCs) have computational speeds 
above one gigaflop (billions of floating point operations per 
second). Heterogeneous networks of based on these 
architectures are a very promising distributed-memory parallel 
paradigm [2], which offers offers the possibility of 
performance in hundreds of gigaflops at low cost, and memory 
capacity sufficient for detailed hyperspectral studies. Unlike 
traditional homogeneous parallel platforms, heterogeneous 
architectures are composed of processors running at different 
speeds. Often, this heterogeneity is not even planned, but arises 
simply due to the march of technology over time and computer 
market sales and trends. 

5598
0-7803-9050-4/05/$20.00 ©2005 IEEE. 5598



In this paper, we explore techniques for mapping 
hyperspectral image analysis algorithms onto heterogeneous 
networks of workstations. The paper is structured as follows. 
Section II briefly describes a sequential morphological 
processing algorithm that will serve as our case study 
throughout the paper. Section III develops a parallel version 
specifically designed for heterogeneous platforms.  In Section 
IV, we assess the parallel performance of the algorithm by 
drawing comparisons between its efficiency on a 
heterogeneous cluster of workstations with the efficiency 
achieved by a homogeneous version of the same algorithm on 
Thunderhead, a (homogeneous) massively parallel computer at 
NASA’s Goddard Space Flight Center. Performance data on an 
SGI Origin 2000 computer are also given for comparison. 
Finally, Section 5 concludes with some remarks. 

II. SEQUENTIAL MORPHOLOGICAL PROCESSING ALGORITHM 
This section briefly develops a morphological processing 

algorithm for analysis and classification of hyperspectral image 
data. The algorithm will be used as a case study throughout the 
paper, as a representative algorithm of integrated 
spatial/spectral approaches, i.e., algorithms that take into 
account both the spatial and spectral information of the data in 
simultaneous fashion. This algorithm has been thoroughly 
described before [3], and we will not expand on its detailed 
implementation here. Instead, we provide relevant information 
on how to extend morphological operations to hyperspectral 
image data, an issue that indeed represents the most important 
computational requirement of the algorithm. 

Let us denote by f  a hyperspectral defined on an N-D 
space, where N is the number of channels or bands. The main 
goal of extended morphological operations is to impose an 
ordering relation in terms of spectral purity in the set of pixel 
vectors lying within a spatial search window (structuring 
element), designed by B , defined in advance. In order to do so, 
we define a cumulative distance between one particular pixel 

( )yx,f , where ( )yx,f  denotes an N-D vector at discrete 
spatial coordinates ( ) 2y,x Z∈ , and all the pixel vectors in the 
spatial neighborhood given by B  ( B -neighborhood) as: 

[ ] [ ]∑∑=
i j

j)(i, ),y,x(AMS)y,x(D fffB               (1) 

where )j,i(  refers to spatial coordinates in the B -
neighborhood and SAM is the spectral angle mapper, defined 
as follows: 

( ) ( ))j,i()y,x()j,i()y,x(cos)j,i( ),y,x(SAM 1 ffffff ⋅= −     (2) 

As a result, [ ])y,x(D fB  is given by the sum of SAM scores 
between ( )yx,f  and every other pixel vector in the B -
neighborhood. Based on the distance above, the extended 
erosion of f  by B  selects the B -neighborhood  pixel vector 
that produces the minimum value for BD : 

( ) ( ) ( ) ( ) ( )[ ]{ }{ }jyi,xDminarg'j,'i ,j'y,i'x)y,x( Bj,i ++=++=Θ ff f B

 (3) 

where the argmin operator selects the pixel vector is most 
highly similar, spectrally, to all the other pixels in the B -
neighborhood. On other hand, the extended dilation of f  by 
B  selects the B -neighborhood pixel vector that produces the 
maximum value for BD : 

( ) ( ) ( ) ( ) ( )[ ]{ }{ }jyi,xDmaxarg'j,'i ,j'y,i'x)y,x( j,i ++=−−=⊕ ff f BB

 (4) 

where the argmax operator selects the pixel vector that is most 
spectrally distinct to all the other pixels in the B -
neighborhood.  The proposed morphological algorithm is based 
on the calculation of a morphological eccentricity index (MEI) 
at each pixel location in the scene as follows [3]:  

( )( ) ( )( )[ ]y,x ,y,xSAM)y,x(MEI BB Θ⊕=  ff               (5) 

The resulting scores can be then used for a variety of 
applications in hyperspectral imaging, ranging from pure pixel 
(endmember) identification to mixed pixel characterization and 
classification. In the following section, we provide a parallel 
approach to compute MEI scores at a pixel level. 

III. PARALLEL IMPLEMENTATION 
This section describes a heterogeneous parallel processing 

framework for hyperspectral image analysis, which makes use 
of the algorithm outlined in section II as a particular case study. 
Before providing an overview of the proposed parallel 
algorithm, an important issue in algorithm design such as data 
partitioning is first discussed.  

 

 

Figure 1.  Spectral-domain (left) and spatial-domain data partitioning (right). 

A. Data Partitioning 
A major requirement for efficient parallel algorithms on 

distributed memory systems is finding a decomposition that 
minimizes the communication between the processors. Domain 
decomposition techniques provide the greatest flexibility and 
scalability in parallel image processing. Two types of 
partitioning can be exploited in multi/hyperspectral image 
analysis algorithms: spectral-domain partitioning and spatial-
domain partitioning. Spectral-domain partitioning subdivides 
the volume into small cells or sub-volumes made up of 
contiguous spectral bands, and assigns one or more sub-
volumes to each processor [see Fig. 1(left)]. With this model, 
each pixel vector is split amongst several processors and the 
communication cost for the proposed processing algorithm is 
enormous, thus preventing scalable implementations. In order 
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to achieve load balance and to exploit parallelism as much as 
possible, a spatial-domain partitioning approach was adopted in 
our parallel framework [4]. The volume is divided into slabs as 
depicted in Fig. 1(right). It should be noted that, in spectral-
domain partitioning, the calculations made for each pixel 
vector need to originate from several processors, and thus 
require intensive inter-processor communication. 

B. Implementation details 
Before describing our parallel algorithm, we should point 

out that an important issue in neighborhood-based image 
processing applications such as convolution or mathematical 
morphology is that additional inter-processor communications 
are required when the structuring element computation needs to 
be split amongst several different processing nodes. However, 
if redundant information such as a scratch line is added to one 
of the adjacent partitions to avoid accesses outside image 
domain, as illustrated in Fig. 2, then boundary data no longer 
need to be exchanged between neighboring processors. It is 
clear at this point that the scratch line would introduce 
redundant computations, since the intersection between the two 
involved partitions would be non-empty. However, we have 
experimentally tested that redundant computation-based 
solutions are more effective that data exchange-based solutions 
in hyperspectral imaging [4], mainly due to the large volume of 
data that need to be exchanged between processors in the latter. 

 

Figure 2.  Redundant computations to reduce inter-processor communication. 

Below, a redundant computation-based parallel algorithm 
designed to be run in heterogeneous computing platforms is 
provided. The main purpose of the algorithm is to provide a 
mechanism to slice the available data into chunks, so that the 
total execution time is minimized. For this purpose, there is a 
need to load-balance the workloads of p  participating 
heterogeneous resources so that each processor iP  will 
accomplish a share iα  of the total workload W , where 0i ≥α  

for p≤≤ i1  and ∑ =
=α

p

1i i 1 . Therefore, a desired goal is to 

find a set of optimal values for the set { }p
1ii =α . Below, we 

provide a step-by-step description of the proposed algorithm, 
where the input parameters are a hyperspectral image, f , and 
a structuring element, B , that will be used for the construction 
of morphological operations. 

1. Obtain necessary information about the parallel 
system, including the number of available processors, 
p , each processor’s identification number, { }pP 1ii = , and 

processor cycle-times, { }pw 1ii = . 

2. Using B  and the information obtained in step 1, 
determine the total volume of information, R , that 
needs to be replicated from the original data volume, 
V , in order to avoid inter-processor communication. It 
should be noted that the total workload W  to be 
handled by the algorithm is given by RVW += . 

3. Set ( )
( )
















=α

∑ =

p
w

wp

1i i

i
i

1
 for all { }p , ,1i ⋅⋅⋅∈ . 

4. For ∑ =
α=

p
m

1i i  to ( )RV +  do begin: 

4.1. Find { }p , ,1k ⋅⋅⋅∈ , ( ) ( ){ }pww 1iiikk 1min1 =+α⋅=+α⋅ . 

4.2. Set 1kk +α=α . 

5. Use the resulting { }p
1ii =α  to obtain a set of p  spatial-

domain heterogeneous partitions of ( )RV + , and send 
its corresponding partition to each processor iP  along 
with B . The sequential algorithm in section II is 
executed in parallel at each processor. 

6. Collect all the individual results { }p
1iiMEI =  provided by 

each processor iP , and merge them together to form a 

final image { }i
1i

MEIMEI
p

=
∪= . 

It should be noted that a homogeneous version of the 
algorithm above can be obtained by replacing step 3, so that 

ii wp=α  for all { }p , ,1i ⋅⋅⋅∈ , where iw  is a constant 
communication speed between each processor pair. 
Performance data for the parallel algorithm are given in the 
following section. 

IV. EXPERIMENTAL RESULTS 
This section provides an assessment of the effectiveness of 

the proposed parallel algorithm. The section is organized as 
follows. First, we provide an overview of the parallel 
computing architectures used for evaluation purposes. Second, 
performance data are given.  

A. Parallel Computing Architectures 
We have experimented with three clusters of workstations. 

The first one is a small-scale heterogeneous network of 16 
different SGI, Solaris and Linux workstations, and four 
communication segments. The communication network of the 
heterogeneous platform consists of four relatively fast 
homogeneous communication segments interconnected by 
three slower communication links. Although this is a simple 
architecture, it is also a quite typical and realistic one as well. 
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The second parallel computing architecture used in 
experiments is a distributed-memory homogeneous system 
(SGI Origin 2000) located at European Center for Parallelism 
of Barcelona (CEPBA). The system used in experiments is 
composed of 64 MIPS R10000 processors at 250 MHz (each 
one with 4 MB of cache memory) and 12 GB of main memory, 
interconnected via 1.2 Gbps communication network.  Finally, 
in order to test the algorithm on a larger-scale parallel platform, 
we have also implemented the algorithm on Thunderhead, a 
Beowulf cluster located at NASA’s Goddard Space Flight 
Center. It is composed of 256 dual Linux workstations at 2.4 
GHz, interconnected through 1.2 Gbps Myrinet network. 
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Figure 3.  Execution times in a 16-processor fully heterogeneous network.  

B. Performance Analysis 
The parallel algorithm in section III-B was applied to a 

145x145-pixel hyperspectral scene collected by AVIRIS, using 
seven different square-shaped structuring elements, i.e., 3x3B , 

5x5B , 7x7B , 9x9B , 11x11B , 13x13B  and 15x15B . The data set was 
acquired over the well-known Indian Pines region, a mixed 
forest/agricultural test site. The data set represents a very 
challenging classification problem due to the presence of mixed 
pixels. Extensive ground-truth information is available for the 
area, which is available online, along with ground-truth 
information (http://dynamo.ecn.purdue.edu). 

 For illustrative purposes, Fig. 3 plots the execution times in 
seconds of the parallel algorithm on the heterogeneous cluster 
as a function of the ratio WR , where R  is the amount of 
redundant information introduced by the structuring element, 
and W  is the total workload. It should be taken into account 
that the most appropriate structuring element in terms of 
computational cost-performance ratio was 11x11B , which 
resulted in 90.13% accuracy obtained by a classification 
algorithm based on the proposed morphological processing [3]. 
In order to explore the scalability and portability of the 
algorithm to massively parallel computing platforms (mainly 
homogeneous in nature), Fig. 4 shows the speedups achieved 
by the parallel algorithm and its homogeneous version over a 
single-processor run of the sequential algorithm in section II on 
Thunderhead, as a function of the number of processors. 11x11B  
was the considered structuring element size. Fig. 4 reveals that 
both the homogeneous and heterogeneous algorithm achieved 
very similar performance. Also, scalability results obtained in 
the Origin system were very similar to those addressed in Fig. 

4, but the number of processors was much smaller (only 16 
processors were available to us at the time of measurements). 
Regarding near real-time requirements, experiments revealed 
that processing times obtained in the Origin system generally 
prevented near real-time exploitation of the data, mainly due to 
the limited number of processors. However, the utilization of 
36 processors in the Thunderhead system allowed the proposed 
parallel algorithm to accomplish very high (above 90%) 
classification scores in about 60 seconds. The same scores 
could be obtained in less than 10 seconds when 64 processors 
were used. Although the measured processing times seem to 
indicate that near real-time data exploitation is possible, further 
experimentation is required in order to extrapolate the above 
results to additional hyperspectral data sets. 
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Figure 4.  Measured speedups in a 256-processor massively parallel network.  

V. CONCLUSIONS 
This paper provided an investigation of parallel techniques 

to extract relevant information from hyperspectral image data 
sets. For this purpose, networks of computers are a cost-
effective way of exploiting this sort of parallelism in remote 
sensing applications. It has been shown that parallel computing 
at the massively parallelism level, supported by message 
passing, provides a unique framework to extract information in 
near real-time and with adequate reliability in a remote sensing 
environment. The proposed parallel framework is particularly 
suitable for data mining applications that previously looked to 
be too computationally intensive for practical applications due 
to immense files and data archives common to remote sensing 
problems. Combining this readily available computational 
power with the new sensor instruments may introduce major 
changes in the systems used by NASA and other agencies for 
exploiting earth and planetary remotely sensed data.  
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